Claudia Binda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8157305/publications.pdf

Version: 2024-02-01

50244 85498 7,279 72 46 71 citations h-index g-index papers 72 72 72 6167 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dual Reversible Coumarin Inhibitors Mutually Bound to Monoamine Oxidase B and Acetylcholinesterase Crystal Structures. ACS Medicinal Chemistry Letters, 2022, 13, 499-506.	1.3	11
2	Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments. ChemBioChem, 2021, 22, 743-753.	1.3	19
3	Promising Non-cytotoxic Monosubstituted Chalcones to Target Monoamine Oxidase-B. ACS Medicinal Chemistry Letters, 2021, 12, 1151-1158.	1.3	15
4	Stereoselective Activity of 1-Propargyl-4-styrylpiperidine-like Analogues That Can Discriminate between Monoamine Oxidase Isoforms A and B. Journal of Medicinal Chemistry, 2020, 63, 1361-1387.	2.9	33
5	Crystallographic snapshots of UDP-glucuronic acid 4-epimerase ligand binding, rotation, and reduction. Journal of Biological Chemistry, 2020, 295, 12461-12473.	1.6	7
6	The multipurpose family of flavoprotein oxidases. The Enzymes, 2020, 47, 63-86.	0.7	12
7	Diphenylene Iodonium Is a Noncovalent MAO Inhibitor: A Biochemical and Structural Analysis. ChemMedChem, 2020, 15, 1394-1397.	1.6	4
8	Rational Redesign of Monoamine Oxidase A into a Dehydrogenase to Probe ROS in Cardiac Aging. ACS Chemical Biology, 2020, 15, 1795-1800.	1.6	12
9	Tranylcypromineâ€Based LSD1 Inhibitors: Structureâ€Activity Relationships, Antiproliferative Effects in Leukemia, and Gene Target Modulation. ChemMedChem, 2020, 15, 643-658.	1.6	18
10	Monoamine Oxidases. Sub-Cellular Biochemistry, 2018, 87, 117-139.	1.0	77
11	Tight-Binding Inhibition of Human Monoamine Oxidase B by Chromone Analogs: A Kinetic, Crystallographic, and Biological Analysis. Journal of Medicinal Chemistry, 2018, 61, 4203-4212.	2.9	58
12	Kinetic Resolution of <i>sec</i> â€Thiols by Enantioselective Oxidation with Rationally Engineered 5â€(Hydroxymethyl)furfural Oxidase. Angewandte Chemie, 2018, 130, 2914-2918.	1.6	3
13	Kinetic Resolution of <i>sec</i> â€Thiols by Enantioselective Oxidation with Rationally Engineered 5â€(Hydroxymethyl)furfural Oxidase. Angewandte Chemie - International Edition, 2018, 57, 2864-2868.	7.2	15
14	Structure-Based Engineering of <i>Phanerochaete chrysosporium</i> Alcohol Oxidase for Enhanced Oxidative Power toward Glycerol. Biochemistry, 2018, 57, 6209-6218.	1.2	25
15	The structure of monoamine oxidases: past, present, and future. Journal of Neural Transmission, 2018, 125, 1567-1579.	1.4	40
16	Monoamine oxidaseâ€A is a novel driver of stressâ€induced premature senescence through inhibition of parkinâ€mediated mitophagy. Aging Cell, 2018, 17, e12811.	3.0	78
17	Isolation and characterization of a thermostable F420:NADPH oxidoreductase from Thermobifida fusca. Journal of Biological Chemistry, 2017, 292, 10123-10130.	1.6	17
18	Discovery and characterization of an F420-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1. Applied Microbiology and Biotechnology, 2017, 101, 2831-2842.	1.7	28

#	Article	IF	CITATIONS
19	Comparative Analysis of the Neurochemical Profile and MAO Inhibition Properties of <i>N</i> -(Furan-2-ylmethyl)- <i>N</i> -methylprop-2-yn-1-amine. ACS Chemical Neuroscience, 2017, 8, 1026-1035.	1.7	22
20	Two tyrosine residues, Tyr-108 and Tyr-503, are responsible for the deprotonation of phenolic substrates in vanillyl-alcohol oxidase. Journal of Biological Chemistry, 2017, 292, 14668-14679.	1.6	14
21	Monoamine Oxidases, Oxidative Stress, and Altered Mitochondrial Dynamics in Cardiac Ageing. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	1.9	76
22	Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from <i>Rhodococcus jostii</i> RHA1: A Versatile Oxidative Biocatalyst. ChemBioChem, 2016, 17, 1359-1366.	1.3	29
23	Biocatalytic Characterization of Human FMO5: Unearthing Baeyer–Villiger Reactions in Humans. ACS Chemical Biology, 2016, 11, 1039-1048.	1.6	57
24	Design and synthesis of novel chalcones as potent selective monoamine oxidase-B inhibitors. European Journal of Medicinal Chemistry, 2016, 114, 162-169.	2.6	77
25	TOWARDS NEW ANTITUBERCULAR DRUGS. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 2015, , .	0.0	0
26	An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation. Journal of Biological Chemistry, 2015, 290, 12676-12688.	1.6	38
27	Structure-Based Enzyme Tailoring of 5-Hydroxymethylfurfural Oxidase. ACS Catalysis, 2015, 5, 1833-1839.	5.5	91
28	2-Carboxyquinoxalines Kill <i>Mycobacterium tuberculosis</i> through Noncovalent Inhibition of DprE1. ACS Chemical Biology, 2015, 10, 705-714.	1.6	116
29	Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer's disease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1104-1110.	1.1	48
30	4-Aminoquinolone Piperidine Amides: Noncovalent Inhibitors of DprE1 with Long Residence Time and Potent Antimycobacterial Activity. Journal of Medicinal Chemistry, 2014, 57, 5419-5434.	2.9	97
31	Monoamine Oxidase Inhibitors: Diverse and Surprising Chemistry with Expanding Pharmacological Potential. NATO Science for Peace and Security Series A: Chemistry and Biology, 2013, , 309-312.	0.5	2
32	The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis. Applied Microbiology and Biotechnology, 2013, 97, 8841-8848.	1.7	92
33	Structural Basis for Benzothiazinone-Mediated Killing of <i>Mycobacterium tuberculosis</i> Science Translational Medicine, 2012, 4, 150ra121.	5.8	159
34	Molecular Insights into Human Monoamine Oxidase B Inhibition by the Glitazone Antidiabetes Drugs. ACS Medicinal Chemistry Letters, 2012, 3, 39-42.	1.3	74
35	Interactions of Monoamine Oxidases with the Antiepileptic Drug Zonisamide: Specificity of Inhibition and Structure of the Human Monoamine Oxidase B Complex. Journal of Medicinal Chemistry, 2011, 54, 909-912.	2.9	56
36	Structural properties of human monoamine oxidases A and B. International Review of Neurobiology, 2011, 100, 1-11.	0.9	55

#	Article	IF	Citations
37	The â€~gating' residues lle199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition. FEBS Journal, 2011, 278, 4860-4869.	2.2	78
38	Molecular Mimicry and Ligand Recognition in Binding and Catalysis by the Histone Demethylase LSD1-CoREST Complex. Structure, 2011, 19, 212-220.	1.6	85
39	Lights and Shadows on Monoamine Oxidase Inhibition in Neuroprotective Pharmacological Therapies. Current Topics in Medicinal Chemistry, 2011, 11, 2788-2796.	1.0	50
40	Alternative Splicing of the Histone Demethylase LSD1/KDM1 Contributes to the Modulation of Neurite Morphogenesis in the Mammalian Nervous System. Journal of Neuroscience, 2010, 30, 2521-2532.	1.7	138
41	Biochemical, Structural, and Biological Evaluation of Tranylcypromine Derivatives as Inhibitors of Histone Demethylases LSD1 and LSD2. Journal of the American Chemical Society, 2010, 132, 6827-6833.	6.6	261
42	Potentiation of Ligand Binding through Cooperative Effects in Monoamine Oxidase B. Journal of Biological Chemistry, 2010, 285, 36849-36856.	1.6	93
43	A Novel Mammalian Flavin-dependent Histone Demethylase. Journal of Biological Chemistry, 2009, 284, 17775-17782.	1.6	240
44	New roles of flavoproteins in molecular cell biology: Histone demethylase LSD1 and chromatin. FEBS Journal, 2009, 276, 4304-4312.	2.2	71
45	Molecular and Mechanistic Properties of the Membrane-Bound Mitochondrial Monoamine Oxidases. Biochemistry, 2009, 48, 4220-4230.	1.2	258
46	LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends in Biochemical Sciences, 2008, 33, 181-189.	3.7	153
47	Structural and Mechanistic Studies of Mofegiline Inhibition of Recombinant Human Monoamine Oxidase B. Journal of Medicinal Chemistry, 2008, 51, 8019-8026.	2.9	45
48	Structural and Mechanistic Studies of Arylalkylhydrazine Inhibition of Human Monoamine Oxidases A and B. Biochemistry, 2008, 47, 5616-5625.	1.2	70
49	Structural Basis of LSD1-CoREST Selectivity in Histone H3 Recognition. Journal of Biological Chemistry, 2007, 282, 20070-20074.	1.6	209
50	Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B. Archives of Biochemistry and Biophysics, 2007, 464, 269-276.	1.4	177
51	Structures of Human Monoamine Oxidase B Complexes with Selective Noncovalent Inhibitors: Safinamide and Coumarin Analogs. Journal of Medicinal Chemistry, 2007, 50, 5848-5852.	2.9	472
52	Functional Role of the "Aromatic Cage―in Human Monoamine Oxidase B:  Structures and Catalytic Properties of Tyr435 Mutant Proteins,. Biochemistry, 2006, 45, 4775-4784.	1.2	127
53	8 Demethylation pathways for histone methyllysine residues. The Enzymes, 2006, 24, 229-242.	0.7	1
54	A Highly Specific Mechanism of Histone H3-K4 Recognition by Histone Demethylase LSD1. Journal of Biological Chemistry, 2006, 281, 35289-35295.	1.6	115

#	Article	IF	CITATIONS
55	Demonstration of Isoleucine 199 as a Structural Determinant for the Selective Inhibition of Human Monoamine Oxidase B by Specific Reversible Inhibitors. Journal of Biological Chemistry, 2005, 280, 15761-15766.	1.6	189
56	Human Histone Demethylase LSD1 Reads the Histone Code. Journal of Biological Chemistry, 2005, 280, 41360-41365.	1.6	223
57	Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12684-12689.	3.3	446
58	Binding of Rasagiline-Related Inhibitors to Human Monoamine Oxidases:  A Kinetic and Crystallographic Analysis. Journal of Medicinal Chemistry, 2005, 48, 8148-8154.	2.9	95
59	Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Letters, 2005, 579, 2203-2207.	1.3	243
60	Crystal Structures of Monoamine Oxidase B in Complex with Four Inhibitors of the N-Propargylaminoindan Class. Journal of Medicinal Chemistry, 2004, 47, 1767-1774.	2.9	200
61	Inactivation of Purified Human Recombinant Monoamine Oxidases A and B by Rasagiline and Its Analogues. Journal of Medicinal Chemistry, 2004, 47, 1760-1766.	2.9	86
62	Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. FEBS Letters, 2004, 564, 225-228.	1.3	100
63	The FAD Binding Sites of Human Monoamine Oxidases A and B. NeuroToxicology, 2004, 25, 63-72.	1.4	76
64	Polystyrene microbridges used in sitting-drop crystallization release 1,4-diphenyl-2-butene, a novel inhibitor of human MAO B. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1874-1876.	2.5	10
65	Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9750-9755.	3.3	360
66	Structure-Function Relationships in Flavoenzyme-dependent Amine Oxidations. Journal of Biological Chemistry, 2002, 277, 23973-23976.	1.6	152
67	Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nature Structural Biology, 2002, 9, 22-26.	9.7	546
68	Structural Bases for Inhibitor Binding and Catalysis in Polyamine Oxidaseâ€,‡. Biochemistry, 2001, 40, 2766-2776.	1.2	63
69	Inhibition of Pig Liver and <i>Zea mays </i> L. Polyamine Oxidase: A Comparative Study. Journal of Enzyme Inhibition and Medicinal Chemistry, 2001, 16, 147-155.	0.5	18
70	Cross-Talk and Ammonia Channeling between Active Centers in the Unexpected Domain Arrangement of Glutamate Synthase. Structure, 2000, 8, 1299-1308.	1.6	86
71	A 30 \tilde{A} long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase. Structure, 1999, 7, 265-276.	1.6	160
72	Crystallization and preliminary X-ray analysis of polyamine oxidase from Zea mays L Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1429-1431.	2.5	8