Rachel Auzély-Velty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8157202/publications.pdf

Version: 2024-02-01

471509 642732 23 723 17 23 citations g-index h-index papers 23 23 23 1267 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Injectable Self-Healing Hydrogels Based on Boronate Ester Formation between Hyaluronic Acid Partners Modified with Benzoxaborin Derivatives and Saccharides. Biomacromolecules, 2020, 21, 230-239.	5.4	67
2	Boronate-ester crosslinked hyaluronic acid hydrogels for dihydrocaffeic acid delivery and fibroblasts protection against UVB irradiation. Carbohydrate Polymers, 2020, 247, 116845.	10.2	19
3	Hydrogel-Colloid Composite Bioinks for Targeted Tissue-Printing. Biomacromolecules, 2020, 21, 2949-2965.	5.4	17
4	Boronic acid and diol-containing polymers: how to choose the correct couple to form "strong― hydrogels at physiological pH. Soft Matter, 2020, 16, 3628-3641.	2.7	27
5	Dynamic Covalent Chemistry Enables Reconfigurable Allâ€Polysaccharide Nanogels. Macromolecular Rapid Communications, 2020, 41, e2000213.	3.9	12
6	Synthesis and magnetic manipulation of hybrid nanobeads based on Fe3O4 nanoclusters and hyaluronic acid grafted with an ethylene glycol-based copolymer. Applied Surface Science, 2020, 510, 145354.	6.1	4
7	Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis. Materials Science and Engineering C, 2020, 110, 110720.	7.3	21
8	Self-crosslinking smart hydrogels through direct complexation between benzoxaborole derivatives and diols from hyaluronic acid. Polymer Chemistry, 2020, 11, 3800-3811.	3.9	16
9	Design of Soft Nanocarriers Combining Hyaluronic Acid with Another Functional Polymer for Cancer Therapy and Other Biomedical Applications. Pharmaceutics, 2019, 11, 338.	4.5	18
10	Heparosan as a potential alternative to hyaluronic acid for the design of biopolymer-based nanovectors for anticancer therapy. Biomaterials Science, 2019, 7, 2850-2860.	5.4	18
11	Dihydrocaffeic Acid Prevents UVB-Induced Oxidative Stress Leading to the Inhibition of Apoptosis and MMP-1 Expression via p38 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	47
12	A versatile method for the selective core-crosslinking of hyaluronic acid nanogels <i>via</i> ketone-hydrazide chemistry: from chemical characterization to <i>in vivo</i> biodistribution. Biomaterials Science, 2018, 6, 1754-1763.	5.4	16
13	Catechol-modified hyaluronic acid: in situ-forming hydrogels by auto-oxidation of catechol or photo-oxidation using visible light. Polymer Bulletin, 2017, 74, 4069-4085.	3.3	23
14	î²-CD-Functionalized Microdevice for Rapid Capture and Release of Bacteria. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13928-13938.	8.0	9
15	Coumarin-containing thermoresponsive hyaluronic acid-based nanogels as delivery systems for anticancer chemotherapy. Nanoscale, 2017, 9, 12150-12162.	5. 6	35
16	Type, Density, and Presentation of Grafted Adhesion Peptides on Polysaccharide-Based Hydrogels Control Preosteoblast Behavior and Differentiation. Biomacromolecules, 2015, 16, 715-722.	5.4	23
17	Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages. Acta Biomaterialia, 2014, 10, 4750-4758.	8.3	50
18	Readily Prepared Dynamic Hydrogels by Combining Phenyl Boronic Acid―and Maltoseâ€Modified Anionic Polysaccharides at Neutral pH. Macromolecular Rapid Communications, 2014, 35, 2089-2095.	3.9	72

#	Article	lF	CITATIONS
19	Photochemical crosslinking of hyaluronic acid confined in nanoemulsions: towards nanogels with a controlled structure. Journal of Materials Chemistry B, 2013, 1, 3369.	5 . 8	46
20	Tunable self-assembled nanogels composed of well-defined thermoresponsive hyaluronic acid–polymer conjugates. Journal of Materials Chemistry B, 2013, 1, 3883.	5.8	31
21	Modification of polysaccharides via thiolâ€ene chemistry: A versatile route to functional biomaterials. Journal of Polymer Science Part A, 2012, 50, 4019-4028.	2.3	69
22	Novel Hyaluronic Acid Based Supramolecular Assemblies Stabilized by Multivalent Specific Interactions:Â Rheological Behavior in Aqueous Solution. Macromolecules, 2007, 40, 9555-9563.	4.8	55
23	Rheological properties of binary associating polymers. Rheologica Acta, 2007, 46, 541-568.	2.4	28