
Manuela Panić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8156785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chemistry, 2019, 300, 125185.	8.2	157
2	Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environmental Science and Pollution Research, 2018, 25, 14188-14196.	5.3	139
3	Ready-to-use green polyphenolic extracts from food by-products. Food Chemistry, 2019, 283, 628-636.	8.2	85
4	Physicochemical Properties, Cytotoxicity, and Antioxidative Activity of Natural Deep Eutectic Solvents Containing Organic Acid. Chemical and Biochemical Engineering Quarterly, 2019, 33, 1-18.	0.9	63
5	Natural deep eutectic solvent as a unique solvent for valorisation of orange peel waste by the integrated biorefinery approach. Waste Management, 2021, 120, 340-350.	7.4	48
6	Designing a biocatalytic process involving deep eutectic solvents. Journal of Chemical Technology and Biotechnology, 2021, 96, 14-30.	3.2	45
7	Plant-mediated stereoselective biotransformations in natural deep eutectic solvents. Process Biochemistry, 2018, 66, 133-139.	3.7	24
8	Impact of Deep Eutectic Solvents on Extraction of Polyphenols from Grape Seeds and Skin. Applied Sciences (Switzerland), 2020, 10, 4830.	2.5	23
9	Microwave-assisted extraction of phenolic compounds from <i>Cannabis sativa</i> L.: optimization and kinetics study. Separation Science and Technology, 2021, 56, 2047-2060.	2.5	23
10	COSMOtherm as an Effective Tool for Selection of Deep Eutectic Solvents Based Ready-To-Use Extracts from Graševina Grape Pomace. Molecules, 2021, 26, 4722.	3.8	22
11	Development of Near Infrared Spectroscopy Models for Quantitative Prediction of the Content of Bioactive Compounds in Olive Leaves. Chemical and Biochemical Engineering Quarterly, 2019, 32, 535-543.	0.9	18
12	Biological Potential of Flaxseed Protein Hydrolysates Obtained by Different Proteases. Plant Foods for Human Nutrition, 2020, 75, 518-524.	3.2	18
13	Green asymmetric reduction of acetophenone derivatives: Saccharomyces cerevisiae and aqueous natural deep eutectic solvent. Biotechnology Letters, 2019, 41, 253-262.	2.2	16
14	Development of continuously operated aqueous two-phase microextraction process using natural deep eutectic solvents. Separation and Purification Technology, 2020, 244, 116746.	7.9	16
15	Prediction of pH Value of Aqueous Acidic and Basic Deep Eutectic Solvent Using COSMO-RS σ Profiles' Molecular Descriptors. Molecules, 2022, 27, 4489.	3.8	14
16	Development of environmentally friendly lipase-catalysed kinetic resolution of (R,S)-1-phenylethyl acetate using aqueous natural deep eutectic solvents. Process Biochemistry, 2021, 102, 1-9.	3.7	13
17	Development of ANN models based on combined UVâ€visâ€NIR spectra for rapid quantification of physical and chemical properties of industrial hemp extracts. Phytochemical Analysis, 2021, 32, 326-338.	2.4	12
18	Natural deep eutectic solvents are viable solvents for plant cell culture-assisted stereoselective biocatalysis. Process Biochemistry, 2020, 93, 69-76.	3.7	7

Manuela Panić

#	Article	IF	CITATIONS
19	Enhancement of the Green Extraction of Bioactive Molecules from Olea europaea Leaves. Separations, 2022, 9, 33.	2.4	4
20	Stereoselective biocatalysis in green solvents. Journal of Biotechnology, 2017, 256, S53.	3.8	0
21	Modified alginate as immobilization matrix and barrier between two-phase liquid system: implementation in D-/L-lactic acid production and beyond. Journal of Biotechnology, 2018, 280, S43-S44.	3.8	Ο
22	Niskotemperaturna eutektiÄka otapala – racionalnim dizajnom do zelenog otapala budućnosti. Kemija U Industriji, 2021, , .	0.3	0