
Elżbieta GrzÄdka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8156643/publications.pdf Version: 2024-02-01

<u>ΕΙΔΊΔΒΙΕΤΑ CDZÄ DKA</u>

#	Article	IF	CITATIONS
1	The influence of fucoidan on stability, adsorption and electrokinetic properties of ZnO and TiO2 suspensions. Applied Nanoscience (Switzerland), 2022, 12, 919-927.	3.1	5
2	Accumulation of radioisotopes and heavy metals in selected species of mushrooms. Food Chemistry, 2022, 367, 130670.	8.2	17
3	Comparison of the influence of cationic polysaccharides on the stability properties of montmorillonite suspensions in the presence of sodium dodecyl sulphate. Carbohydrate Polymers, 2022, 278, 118985.	10.2	7
4	Textural and Thermal Properties of the Novel Fucoidan/Nano-Oxides Hybrid Materials with Cosmetic, Pharmaceutical and Environmental Potential. International Journal of Molecular Sciences, 2022, 23, 805.	4.1	7
5	Interactions between Nanoclay, CTAB and Linear/Star Shaped Polymers. International Journal of Molecular Sciences, 2022, 23, 3051.	4.1	2
6	Influence of polysaccharides with different chemical character on stability of montmorillonite suspensions in the presence of pseudoamphoteric cocamidopropyl betaine. Journal of Molecular Liquids, 2022, 357, 119097.	4.9	3
7	The journey of tuning chitosan properties in colloidal systems: Interactions with surfactants in the bulk and on the alumina surface. Chemical Engineering Journal, 2022, 450, 138145.	12.7	9
8	Mixtures of cationic guar gum and anionic surfactants as stabilizers of zirconia suspensions. Journal of Molecular Liquids, 2021, 343, 117677.	4.9	9
9	Removal of hazardous oxide nanoparticles by the biopolymer flocculation in the presence of divalent salt. Chemical Engineering Journal, 2021, 423, 130264.	12.7	16
10	Influence of Zwitterionic CAPB on Flocculation of the Aqueous Cationic Guar Gum/Glauconite Suspensions at Various pH. International Journal of Molecular Sciences, 2021, 22, 12157.	4.1	4
11	Cationic starch as the effective flocculant of silica in the presence of different surfactants. Separation and Purification Technology, 2020, 234, 116132.	7.9	19
12	CMC as a stabiliser of metal oxide suspensions. Cellulose, 2020, 27, 2225-2236.	4.9	20
13	The influence of hydrocarbon, fluorinated and silicone surfactants on the adsorption, stability and electrokinetic properties of the l̂º-carrageenan/alumina system. Journal of Molecular Liquids, 2020, 314, 113669.	4.9	6
14	Stabilizing properties of fucoidan for the alumina suspension containing the cationic surfactant. Carbohydrate Polymers, 2020, 245, 116523.	10.2	8
15	Alginic acid as a stabilizer of zirconia suspensions in the presence of cationic surfactants. Carbohydrate Polymers, 2020, 246, 116634.	10.2	10
16	Changes in the CMC/ZrO2 system properties in the presence of hydrocarbon, fluorocarbon and silicone surfactants. Journal of Molecular Liquids, 2020, 303, 112699.	4.9	3
17	Interactions between fluorocarbon surfactants and polysaccharides. Journal of Molecular Liquids, 2019, 283, 81-90.	4.9	17
18	Complexes of fluorinated, silicone and hydrocarbon surfactants with carboxymethylcellulose and their influence on properties of the alumina suspension. Colloid and Polymer Science, 2019, 297, 677-687.	2.1	11

Elżbieta GrzÄ…dka

#	Article	IF	CITATIONS
19	Influence of Magnetic Field on Adsorption of Polyacrylic Acid (PAA) on SiO2. Colloid Journal, 2019, 81, 728-732.	1.3	0
20	Factors influencing the stability of the 2-hydroxyethyl cellulose/alumina system. Cellulose, 2018, 25, 2839-2847.	4.9	10
21	Stability, adsorption and electrokinetic properties of the chitosan/silica system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 245-252.	4.7	20
22	The effect of ionic and non-ionic surfactants and pH on the stability, adsorption and electrokinetic properties of the alginic acid/alumina system. Carbohydrate Polymers, 2017, 175, 192-198.	10.2	20
23	Factors influencing the stability of the polysucrose/alumina system. Colloid and Polymer Science, 2015, 293, 2845-2853.	2.1	7
24	Interactions between kappa-carrageenan and some surfactants in the bulk solution and at the surface of alumina. Carbohydrate Polymers, 2015, 123, 1-7.	10.2	14
25	Adsorption and electrokinetic properties in the system: Beta-cyclodextrin/alumina in the presence of ionic and non-ionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 261-268.	4.7	11
26	Study on the influence of surfactants on the adsorption and electrokinetic properties of the system: Cationic starch/alumina. Fluid Phase Equilibria, 2015, 401, 48-55.	2.5	7
27	Adsorption, Electrokinetic and Stabilizing Properties of the Guar Gum/Surfactant/Alumina System. Journal of Surfactants and Detergents, 2015, 18, 445-453.	2.1	9
28	Stability of manganese dioxide by guar gum in the absence or presence of surfactants. Cellulose, 2014, 21, 1641-1654.	4.9	10
29	Investigations of the properties of the manganese dioxide suspensions in the presence of guar gum and carboxymethylcellulose. Materials Chemistry and Physics, 2014, 144, 361-368.	4.0	5
30	Comparison of adsorption affinity of polyacrylic acid for surfaces of mixed silica–alumina. Colloid and Polymer Science, 2014, 292, 699-705.	2.1	98
31	Influence of the solid type on the adsorption mechanism of nonionic polymers in the metal oxide/water solution system—temperature effect. Powder Technology, 2013, 246, 682-688.	4.2	5
32	Influence of surfactants on the adsorption and elektrokinetic properties of the system: guar gum/manganese dioxide. Cellulose, 2013, 20, 1313-1328.	4.9	22
33	The Adsorption Layer in the System: Carboxymethylcellulose/Surfactants/NaCl/MnO ₂ . Journal of Surfactants and Detergents, 2012, 15, 513-521.	2.1	23
34	Adsorption and elektrokinetic properties of the system: carboxymethylcellulose/manganese oxide/surfactant. Cellulose, 2012, 19, 23-36.	4.9	27
35	Influence of surfactants on the structure of the adsorption layer in the system: Carboxymethylcellulose/alumina. Materials Chemistry and Physics, 2011, 126, 488-493.	4.0	18
36	Competitive adsorption in the system: carboxymethylcellulose/surfactant/electrolyte/Al2O3. Cellulose, 2011, 18, 291-308.	4.9	29

#	Article	IF	CITATIONS
37	Adsorption of polyethyleneimine and polymethacrylic acid onto synthesized hematite. Journal of Colloid and Interface Science, 2009, 329, 1-10.	9.4	35
38	Comparison of the influence of a kind of electrolyte and its ionic strength on the adsorption and electrokinetic properties of the interface: Polyacrylic acid/MnO2/electrolyte solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 326, 191-203.	4.7	19
39	Adsorption of commercial, filtrated and fractionated polyethylene oxide onto hematite. Materials Chemistry and Physics, 2005, 92, 519-525.	4.0	14
40	Influence of the ionic strength on the adsorption properties of the system dispersed aluminium oxide–polyacrylic acid. Materials Chemistry and Physics, 2005, 93, 262-271.	4.0	40
41	The effect of temperature on the adsorption and conformation of polyacrylic acid macromolecules at the ZrO2–polymer solution interface. Powder Technology, 2004, 141, 12-19.	4.2	30
42	Investigation of the Structure of Polyethylene Glycol (PEG) Layers Adsorbed at the Alumina-Polymer Solution Interface. Adsorption Science and Technology, 2004, 22, 385-392.	3.2	1