Mercouri G Kanatzidis

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/8156542/mercouri-g-kanatzidis-publications-by-citations.pdf$

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

882 282 142 92,129 h-index g-index citations papers 12.6 106,283 8.72 929 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
882	Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. <i>Inorganic Chemistry</i> , 2013 , 52, 9019-38	5.1	3742
881	Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. <i>Nature</i> , 2014 , 508, 373-7	50.4	3074
880	High-performance bulk thermoelectrics with all-scale hierarchical architectures. <i>Nature</i> , 2012 , 489, 414	-8 50.4	3069
879	Liquid Exfoliation of Layered Materials. Science, 2013, 340, 1226419-1226419	33.3	2604
878	Cubic AgPb(m)SbTe(2+m): bulk thermoelectric materials with high figure of merit. <i>Science</i> , 2004 , 303, 818-21	33.3	2481
877	High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. <i>Nature</i> , 2016 , 536, 312-6	50.4	2161
876	Lead-free solid-state organicihorganic halide perovskite solar cells. <i>Nature Photonics</i> , 2014 , 8, 489-494	33.9	1966
875	New and old concepts in thermoelectric materials. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 8616-39	16.4	1634
874	2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7843-50	16.4	1464
873	All-solid-state dye-sensitized solar cells with high efficiency. <i>Nature</i> , 2012 , 485, 486-9	50.4	1392
872	Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. <i>Science</i> , 2016 , 351, 141-4	33.3	1237
871	Ruddlesden P opper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. <i>Chemistry of Materials</i> , 2016 , 28, 2852-2867	9.6	1166
870	Rationally Designing High-Performance Bulk Thermoelectric Materials. <i>Chemical Reviews</i> , 2016 , 116, 12123-12149	68.1	1155
869	Nanostructured thermoelectrics: big efficiency gains from small features. <i>Advanced Materials</i> , 2010 , 22, 3970-80	24	1085
868	Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8094-9	16.4	1010
867	Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. <i>Nature Materials</i> , 2011 , 10, 382-8	27	957
866	Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. <i>Crystal Growth and Design</i> , 2013 , 13, 2722-2727	3.5	927

865	Nanostructured Thermoelectrics: The New Paradigm? Chemistry of Materials, 2010, 22, 648-659	9.6	878
864	Strained endotaxial nanostructures with high thermoelectric figure of merit. <i>Nature Chemistry</i> , 2011 , 3, 160-6	17.6	794
863	Beyond fossil fuel-driven nitrogen transformations. <i>Science</i> , 2018 , 360,	33.3	772
862	CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications. <i>Science</i> , 2000 , 287, 1024-7	33.3	751
861	The panoscopic approach to high performance thermoelectrics. <i>Energy and Environmental Science</i> , 2014 , 7, 251-268	35.4	718
860	Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. <i>Nature Materials</i> , 2016 , 15, 197-203	27	683
859	CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8579-87	16.4	675
858	Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1171-1190	16.4	608
857	Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6804-19	16.4	528
856	Thinking Like a Chemist: Intuition in Thermoelectric Materials. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6826-41	16.4	478
855	The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. <i>Accounts of Chemical Research</i> , 2015 , 48, 2791-802	24.3	476
854	Metal Chalcogenides: A Rich Source of Nonlinear Optical Materials. <i>Chemistry of Materials</i> , 2014 , 26, 8	49 -86 9	463
853	Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11445-52	16.4	455
852	Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2858-66	16.4	427
851	Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15379-85	16.4	427
850	Hybrid Dion-Jacobson 2D Lead Iodide Perovskites. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3775-3783	16.4	426
849	High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7006-17	16.4	425
848	Prospects for low-toxicity lead-free perovskite solar cells. <i>Nature Communications</i> , 2019 , 10, 965	17.4	420

847	Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). <i>ACS Nano</i> , 2016 , 10, 7963-72	16.7	414
846	Light-induced lattice expansion leads to high-efficiency perovskite solar cells. <i>Science</i> , 2018 , 360, 67-70	33.3	413
845	The metal flux: a preparative tool for the exploration of intermetallic compounds. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 6996-7023	16.4	393
844	White-Light Emission and Structural Distortion in New Corrugated Two-Dimensional Lead Bromide Perovskites. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5210-5215	16.4	385
843	Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9780-8	16.4	385
842	Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe. <i>Nature Communications</i> , 2016 , 7, 12167	17.4	377
841	High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20476-87	16.4	377
840	Local Polar Fluctuations in Lead Halide Perovskite Crystals. <i>Physical Review Letters</i> , 2017 , 118, 136001	7.4	374
839	Hierarchical Nanoassembly of MoS/CoS/NiS/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10417-10430	16.4	359
838	Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. <i>ACS Nano</i> , 2018 , 12, 3477-3486	16.7	359
837	Layered metal sulfides capture uranium from seawater. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16441-6	16.4	351
836	Porous semiconducting gels and aerogels from chalcogenide clusters. <i>Science</i> , 2007 , 317, 490-3	33.3	346
835	Strong Electron P honon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). <i>Chemistry of Materials</i> , 2017 , 29, 4129-4145	9.6	344
834	High performance bulk thermoelectrics via a panoscopic approach. <i>Materials Today</i> , 2013 , 16, 166-176	21.8	344
833	Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2017 , 139, 836-842	16.4	340
832	Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16411-9	16.4	340
831	High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3835-9	16.4	319
830	Efficient uranium capture by polysulfide/layered double hydroxide composites. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3670-7	16.4	311

(2010-2005)

829	Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. <i>Journal of the American Chemical Society</i> , 2005 , 127, 9177-90	16.4	311
828	Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5100-12	16.4	310
827	SnSe: a remarkable new thermoelectric material. <i>Energy and Environmental Science</i> , 2016 , 9, 3044-3060	35.4	297
826	Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11507-16	16.4	289
825	High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16588-97	16.4	289
824	High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. <i>CheM</i> , 2017 , 2, 427-440	16.2	285
823	High thermoelectric performance via hierarchical compositionally alloyed nanostructures. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7364-70	16.4	281
822	Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. <i>Energy and Environmental Science</i> , 2015 , 8, 267-277	35.4	279
821	Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden Popper (CH3(CH2)3NH3)2(CH3NH3)n Snnl3n+1 Perovskites. <i>ACS Energy Letters</i> , 2017 , 2, 982-990	20.1	274
820	Microstructure-Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials. <i>Advanced Functional Materials</i> , 2010 , 20, 764-772	15.6	268
819	Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16327-36	16.4	264
818	Halide Perovskites: Poor Man's High-Performance Semiconductors. <i>Advanced Materials</i> , 2016 , 28, 5778-	9:34	263
817	Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. Journal of the American Chemical Society, 2014 , 136, 11412-9	16.4	259
816	Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI. <i>Science Advances</i> , 2017 , 3, e1701293	14.3	258
815	From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 159, 227-234	6.4	258
814	Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CHCHNH)PbBrCl. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11956-11963	16.4	254
813	Nanostructures boost the thermoelectric performance of PbS. <i>Journal of the American Chemical Society</i> , 2011 , 133, 3460-70	16.4	254
812	Entropically stabilized local dipole formation in lead chalcogenides. <i>Science</i> , 2010 , 330, 1660-3	33.3	254

811	New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH))(CHNH)PbI: Structure, Properties, and Photovoltaic Performance. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16297-16309	16.4	251
810	High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr single crystals. <i>Nature Communications</i> , 2018 , 9, 1609	17.4	246
809	Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric p-Type Polycrystalline SnSe. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8875-82	16.4	243
808	Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 776-82	6.4	242
807	Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?a). <i>APL Materials</i> , 2014 , 2, 091101	5.7	238
806	n-Type Bi2Te3-xSex Nanoplates with Enhanced Thermoelectric Efficiency Driven by Wide-Frequency Phonon Scatterings and Synergistic Carrier Scatterings. <i>ACS Nano</i> , 2016 , 10, 4719-27	16.7	235
805	Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. Journal of the American Chemical Society, 2015 , 137, 2030-4	16.4	232
804	Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesden P opper Perovskites for High-Efficiency Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1700	19 7 98	231
803	Efficient Removal and Recovery of Uranium by a Layered Organic-Inorganic Hybrid Thiostannate. Journal of the American Chemical Society, 2016 , 138, 12578-85	16.4	230
802	"Unleaded" Perovskites: Status Quo and Future Prospects of Tin-Based Perovskite Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e1803230	24	217
801	Performance Enhancement of Lead-Free Tin-Based Perovskite Solar Cells with Reducing Atmosphere-Assisted Dispersible Additive. <i>ACS Energy Letters</i> , 2017 , 2, 897-903	20.1	216
800	Exfoliated and Restacked MoS2 and WS2: Ionic or Neutral Species? Encapsulation and Ordering of Hard Electropositive Cations. <i>Journal of the American Chemical Society</i> , 1999 , 121, 11720-11732	16.4	216
799	Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. <i>Energy and Environmental Science</i> , 2016 , 9, 517-529	35.4	215
798	Structure of Restacked MoS2 and WS2 Elucidated by Electron Crystallography. <i>Journal of the American Chemical Society</i> , 1999 , 121, 638-643	16.4	214
797	Structural Diversity in White-Light-Emitting Hybrid Lead Bromide Perovskites. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13078-13088	16.4	214
796	Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2366-73	16.4	213
795	Stable Light-Emitting Diodes Using Phase-Pure Ruddlesden-Popper Layered Perovskites. <i>Advanced Materials</i> , 2018 , 30, 1704217	24	21 0
794	Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. <i>Energy and Environmental Science</i> , 2015 , 8, 3298-3312	35.4	209

(2016-2009)

793	Strong second harmonic generation from the tantalum thioarsenates A3Ta2AsS11 (A = K and Rb). Journal of the American Chemical Society, 2009 , 131, 75-7	16.4	207
792	Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2673-2686	16.4	206
791	Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17302-17306	13	201
790	High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3225-37	16.4	198
7 ⁸ 9	Imine-Linked Microporous Polymer Organic Frameworks. <i>Chemistry of Materials</i> , 2010 , 22, 4974-4979	9.6	198
788	Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7902-12	16.4	197
787	Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1707166	24	192
786	Selective Removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3 \blacksquare S6 (x = 0.5 \blacksquare) (KMS-2) Relevant to Nuclear Waste Remediation. <i>Chemistry of Materials</i> , 2013 , 25, 2116-2127	9.6	192
7 ⁸ 5	Coordination chemistry of heavy polychalcogenide ligands. <i>Coordination Chemistry Reviews</i> , 1994 , 130, 509-621	23.2	192
7 ⁸ 4	Soluble semiconductors AAsSe2 (A = Li, Na) with a direct-band-gap and strong second harmonic generation: a combined experimental and theoretical study. <i>Journal of the American Chemical Society</i> , 2010 , 132, 3484-95	16.4	190
783	Layered metal sulfides: exceptionally selective agents for radioactive strontium removal. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 3696-9	11.5	190
782	Thermoelectrics: From history, a window to the future. <i>Materials Science and Engineering Reports</i> , 2019 , 138, 100501	30.9	190
781	Role of Organic Counterion in Lead- and Tin-Based Two-Dimensional Semiconducting Iodide Perovskites and Application in Planar Solar Cells. <i>Chemistry of Materials</i> , 2016 , 28, 7781-7792	9.6	189
780	Metal sulfide ion exchangers: superior sorbents for the capture of toxic and nuclear waste-related metal ions. <i>Chemical Science</i> , 2016 , 7, 4804-4824	9.4	184
779	Transport Properties of Bi2S3 and the Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13. <i>Chemistry of Materials</i> , 1997 , 9, 1655-1658	9.6	181
778	Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14276-14283	13	178
777	On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8669-75	16.4	177
776	Carrier Diffusion Lengths of over 500 nm in Lead-Free Perovskite CHNHSnI Films. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14750-14755	16.4	174

775	Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14347-55	16.4	173
774	Controlling Metallurgical Phase Separation Reactions of the Ge0.87Pb0.13Te Alloy for High Thermoelectric Performance. <i>Advanced Energy Materials</i> , 2013 , 3, 815-820	21.8	172
773	TiO-ZnS Cascade Electron Transport Layer for Efficient Formamidinium Tin Iodide Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14998-15003	16.4	171
772	{Sn[Zn4Sn4S17]}6-: a robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10- clusters with ion-exchange properties. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 3552-5	16.4	171
771	The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. <i>Chemical Reviews</i> , 2021 , 121, 2230-2291	68.1	171
770	Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide. Nature Chemistry, 2010 , 2, 187-91	17.6	169
769	Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI Perovskites. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14800-14806	16.4	168
768	Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3. <i>Energy and Environmental Science</i> , 2015 , 8, 3700-3707	35.4	166
767	Highly efficient and rapid Cs+ uptake by the layered metal sulfide K(2x)Mn(x)Sn(3-x)S(6) (KMS-1). Journal of the American Chemical Society, 2009 , 131, 6599-607	16.4	166
766	Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5530-5	11.5	166
765	Enhanced Efficiency of Hot-Cast Large-Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. <i>Advanced Energy Materials</i> , 2017 , 7, 1601660	21.8	164
764	Predicting synthesizability. <i>Journal Physics D: Applied Physics</i> , 2019 , 52,	3	161
763	Optical-Vibrational Properties of the Cs2SnX6 (X = Cl, Br, I) Defect Perovskites and Hole-Transport Efficiency in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 11777-11785	3.8	161
762	Antagonism between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3503-9	6.4	160
761	Myths and reality of HPbI in halide perovskite solar cells. <i>Nature Communications</i> , 2018 , 9, 4785	17.4	159
760	Structure-Band Gap Relationships in Hexagonal Polytypes and Low-Dimensional Structures of Hybrid Tin Iodide Perovskites. <i>Inorganic Chemistry</i> , 2017 , 56, 56-73	5.1	158
759	Dynamic Stereochemical Activity of the Sn(2+) Lone Pair in Perovskite CsSnBr3. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11820-32	16.4	158
758	Superior thermoelectric performance in PbTe P bS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. <i>Energy and Environmental Science</i> , 2015 , 8, 2056-2068	35·4	157

757	Tellurium-Free Thermoelectric: The Anisotropic n-Type Semiconductor Bi2S3. <i>Advanced Energy Materials</i> , 2012 , 2, 634-638	21.8	157
756	A new thermoelectric material: CsBi4Te6. <i>Journal of the American Chemical Society</i> , 2004 , 126, 6414-28	16.4	157
755	High Thermoelectric Performance SnTelh2Te3 Solid Solutions Enabled by Resonant Levels and Strong Vacancy Phonon Scattering. <i>Chemistry of Materials</i> , 2015 , 27, 7801-7811	9.6	155
754	High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. <i>Energy and Environmental Science</i> , 2018 , 11, 1520-1535	35.4	155
753	Molten alkali-metal polychalcogenides as reagents and solvents for the synthesis of new chalcogenide materials. <i>Chemistry of Materials</i> , 1990 , 2, 353-363	9.6	155
75 ²	High thermoelectric figure of merit in nanostructured p-type PbTeMTe (M = Ca, Ba). <i>Energy and Environmental Science</i> , 2011 , 4, 4675	35.4	153
75 ¹	Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5227-35	16.4	153
75°	Soluble direct-band-gap semiconductors LiAsS2 and NaAsS2: large electronic structure effects from weak AsS interactions and strong nonlinear optical response. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7828-32	16.4	153
749	Structural and thermodynamic limits of layer thickness in 2D halide perovskites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 58-66	11.5	152
748	Compositional and Solvent Engineering in Dionlacobson 2D Perovskites Boosts Solar Cell Efficiency and Stability. <i>Advanced Energy Materials</i> , 2019 , 9, 1803384	21.8	149
747	Dimensional reduction: a design tool for new radiation detection materials. <i>Advanced Materials</i> , 2011 , 23, 4163-7	24	147
746	Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe-PbS. Journal of the American Chemical Society, 2011 , 133, 10920-7	16.4	146
745	Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, .betaCsBiS2, .gammaCsBiS2, and K2Bi8Se13. <i>Chemistry of Materials</i> , 1993 , 5, 331-340	9.6	144
744	Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7339-7344	13	143
743	K Sn S (= 0.65-1): a new metal sulfide for rapid and selective removal of Cs, Sr and UO ions. <i>Chemical Science</i> , 2016 , 7, 1121-1132	9.4	143
742	Varied pore organization in mesostructured semiconductors based on the [SnSe4](4-) anion. <i>Nature</i> , 2001 , 410, 671-5	50.4	143
741	Dopant-Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1600502	21.8	141
740	Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10280-10289	13	140

739	Nucleation-controlled growth of superior lead-free perovskite CsBiI single-crystals for high-performance X-ray detection. <i>Nature Communications</i> , 2020 , 11, 2304	17.4	139
738	A Elick-based porous organic polymer from tetrahedral building blocks. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1700		139
737	Two-Dimensional Halide Perovskites Incorporating Straight Chain Symmetric Diammonium Ions, (NHC HNH)(CHNH) Pb I (m = 4-9; n = 1-4). <i>Journal of the American Chemical Society</i> , 2018 , 140, 12226-1	22 ¹⁶ 8 ⁴	139
736	High Thermopower and Low Thermal Conductivity in Semiconducting Ternary K B iBe Compounds. Synthesis and Properties of K2Bi8Se13 and K2.5Bi8.5Se14 and Their Sb Analogues. <i>Chemistry of Materials</i> , 1997 , 9, 3060-3071	9.6	138
735	Two-Dimensional Dion-Jacobson Hybrid Lead Iodide Perovskites with Aromatic Diammonium Cations. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12880-12890	16.4	135
734	Dynamical Transformation of Two-Dimensional Perovskites with Alternating Cations in the Interlayer Space for High-Performance Photovoltaics. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2684-2694	16.4	135
733	Enhanced Structural Stability and Photo Responsiveness of CH NH SnI Perovskite via Pressure-Induced Amorphization and Recrystallization. <i>Advanced Materials</i> , 2016 , 28, 8663-8668	24	134
732	Uniaxial Expansion of the 2D Ruddlesden-Popper Perovskite Family for Improved Environmental Stability. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5518-5534	16.4	133
731	Selective capture of hexavalent chromium from an anion-exchange column of metal organic resin-alginic acid composite. <i>Chemical Science</i> , 2016 , 7, 2427-2436	9.4	131
730	Amorphous Infinite Coordination Polymer Microparticles: A New Class of Selective Hydrogen Storage Materials. <i>Advanced Materials</i> , 2008 , 20, 2105-2110	24	128
729	Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn[Zn4Sn4S17]. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8875-83	16.4	127
728	Integrating Band Structure Engineering with All-Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System. <i>Advanced Energy Materials</i> , 2017 , 7, 1601450	21.8	125
727	High-performance tellurium-free thermoelectrics: all-scale hierarchical structuring of p-type PbSe-MSe systems (M = Ca, Sr, Ba). <i>Journal of the American Chemical Society</i> , 2013 , 135, 5152-60	16.4	123
726	Structural evolution and phase homologies for "design" and prediction of solid-state compounds. <i>Accounts of Chemical Research</i> , 2005 , 38, 359-68	24.3	123
725	[Co(en)3]CoSb4S8: A Novel Non-Centrosymmetric Lamellar Heterometallic Sulfide with Large-Framework Holes. <i>Journal of the American Chemical Society</i> , 1996 , 118, 12226-12227	16.4	123
724	Chalcogen-based aerogels as sorbents for radionuclide remediation. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 7540-7	10.3	122
723	Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light- and heavy-hole valence bands. <i>Physical Review B</i> , 2010 , 82,	3.3	122
722	All in one porous material: exceptional sorption and selective sensing of hexavalent chromium by using a Zr4+ MOF. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 14707-14719	13	121

(2020-2007)

721	Heavy-metal-ion capture, ion-exchange, and exceptional acid stability of the open-framework chalcogenide (NH(4))(4)In(12)Se(20). <i>Chemistry - A European Journal</i> , 2007 , 13, 51-8	4.8	121
720	Chalcogenide Aerogels as Sorbents for Radioactive Iodine. <i>Chemistry of Materials</i> , 2015 , 27, 2619-2626	9.6	119
719	Surface Oxide Removal for Polycrystalline SnSe Reveals Near-Single-Crystal Thermoelectric Performance. <i>Joule</i> , 2019 , 3, 719-731	27.8	118
718	Dopant-Free Tetrakis-Triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2018 , 140, 388-393	16.4	118
717	Multichannel Interdiffusion Driven FASnI Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Lead-Free Perovskite Solar Cells. <i>Advanced Materials</i> , 2017 , 29, 1606964	24	117
716	SnTeAgBiTe2 as an efficient thermoelectric material with low thermal conductivity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20849-20854	13	117
715	High Thermoelectric Performance in Electron-Doped AgBiS with Ultralow Thermal Conductivity. Journal of the American Chemical Society, 2017 , 139, 6467-6473	16.4	115
714	Conjugated Organic Cations Enable Efficient Self-Healing FASnI3 Solar Cells. <i>Joule</i> , 2019 , 3, 3072-3087	27.8	115
713	Rapid Simultaneous Removal of Toxic Anions [HSeO], [SeO], and [SeO], and Metals Hg, Cu, and Cd by MoS Intercalated Layered Double Hydroxide. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12745-12757	16.4	115
712	Chapter 3 The role of solid-state chemistry in the discovery of new thermoelectric materials. Semiconductors and Semimetals, 2001 , 51-100	0.6	115
711	Synthesis and Thermoelectric Properties of the New Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13. <i>Chemistry of Materials</i> , 1996 , 8, 1465-1474	9.6	113
710	Functional Monolithic Polymeric Organic Framework Aerogel as Reducing and Hosting Media for Ag nanoparticles and Application in Capturing of Iodine Vapors. <i>Chemistry of Materials</i> , 2012 , 24, 1937-194	3 9.6	112
709	Strong phonon scattering by layer structured PbSnS(2) in PbTe based thermoelectric materials. <i>Advanced Materials</i> , 2012 , 24, 4440-4	24	111
708	Role of sodium doping in lead chalcogenide thermoelectrics. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4624-7	16.4	111
707	Sequestration of heavy metals from water with layered metal sulfides. <i>Chemistry - A European Journal</i> , 2009 , 15, 4779-84	4.8	111
706	CsPbICl, All-Inorganic Two-Dimensional Ruddlesden-Popper Mixed Halide Perovskite with Optoelectronic Response. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11085-11090	16.4	110
705	Synthesis in ionic liquids: [Bi2Te2Br](AlCl4), a direct gap semiconductor with a cationic framework. Journal of the American Chemical Society, 2010 , 132, 14760-2	16.4	110
704	Semiconductor physics of organic-inorganic 2D halide perovskites. <i>Nature Nanotechnology</i> , 2020 , 15, 969-985	28.7	110

703	Quaternary rubidium copper tin sulfides (Rb2Cu2SnS4, A2Cu2Sn2S6 (A = Na, K, Rb, Cs), A2Cu2Sn2Se6 (A = K, Rb), potassium gold tin sulfides, K2Au2SnS4, and K2Au2Sn2S6. Syntheses, structures, and properties of new solid-state chalcogenides based on tetrahedral [SnS4]4- units.	9.6	109
702	Chemistry of Materials, 1993, 5, 1561-1569 Excessively Doped PbTe with Ge-Induced Nanostructures Enables High-Efficiency Thermoelectric Modules. <i>Joule</i> , 2018, 2, 1339-1355	27.8	109
701	Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. <i>Nature Communications</i> , 2018 , 9, 2130	17.4	108
700	The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1\(\textbf{Z}\)ZnxFeS2 with In Situ Nanoprecipitates. <i>Advanced Energy Materials</i> , 2017 , 7, 1601299	21.8	107
699	Ion-Exchangeable Molybdenum Sulfide Porous Chalcogel: Gas Adsorption and Capture of Iodine and Mercury. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13943-8	16.4	105
698	Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11431-6	16.4	105
697	Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in p-type PbTe Doped with Na2Te. <i>Advanced Energy Materials</i> , 2012 , 2, 1117-1123	21.8	104
696	Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16875-16884	16.4	103
695	Highly Efficient Iodine Capture by Layered Double Hydroxides Intercalated with Polysulfides. <i>Chemistry of Materials</i> , 2014 , 26, 7114-7123	9.6	103
694	Helical polymer 1/infinity[P2Se6(2-)]: strong second harmonic generation response and phase-change properties of its K and Rb salts. <i>Journal of the American Chemical Society</i> , 2007 , 129, 149	99 6 -5 0 0	6 ¹⁰³
693	Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases. <i>Inorganic Chemistry</i> , 2017 , 56, 31	58 5 31173	3 102
692	Low-Dimensional Sulfoantimonates with Metal Complexes as Counterions. Hydrothermal Synthesis and Properties of [M(en)(3)]Sb(2)S(4) (M = Co, Ni) and [M(en)(3)]Sb(4)S(7) (M = Fe, Ni). <i>Inorganic Chemistry</i> , 1997 , 36, 6050-6057	5.1	102
691	A New Metastable Three-Dimensional Bismuth Sulfide with Large Tunnels: Synthesis, Structural Characterization, Ion-Exchange Properties, and Reactivity of KBi3S5. <i>Journal of the American Chemical Society</i> , 1995 , 117, 1294-1301	16.4	102
690	Thermal conductivity in BiSbTe and the role of dense dislocation arrays at grain boundaries. <i>Science</i>		102
	Advances, 2018 , 4, eaar 5606	14.3	
689	Advances, 2018, 4, eaar 5606 Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide. Angewandte Chemie - International Edition, 2016, 55, 15392-15396	14.3	101
689 688	Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite		101
	Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15392-15396 Efficient Removal of [UO], Cs, and Sr Ions by Radiation-Resistant Gallium Thioantimonates. <i>Journal</i>	16.4	101

(2018-2009)

(685	Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts. <i>Nature Chemistry</i> , 2009 , 1, 217-24	17.6	101
(684	H2xMnxSn3-xS6 (x = 0.11 0 .25): A Novel Reusable Sorbent for Highly Specific Mercury Capture Under Extreme pH Conditions. <i>Advanced Functional Materials</i> , 2009 , 19, 1087-1092	15.6	100
(683	Selective and Efficient Removal of Toxic Oxoanions of As(III), As(V), and Cr(VI) by Layered Double Hydroxide Intercalated with MoS42[I]Chemistry of Materials, 2017, 29, 3274-3284	9.6	99
(682	Unraveling the Chemical Nature of the 3D "Hollow" Hybrid Halide Perovskites. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5728-5742	16.4	98
(681	Thallium chalcohalides for X-ray and Fray detection. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10030-3	16.4	98
(68o	Synthesis in Molten Alkali Metal Polyselenophosphate Fluxes: A New Family of Transition Metal Selenophosphate Compounds, A2MP2Se6 (A = K, Rb, Cs; M = Mn, Fe) and A2M'2P2Se6 (A = K, Cs; M' = Cu, Ag). <i>Inorganic Chemistry</i> , 1995 , 34, 1257-1267	5.1	98
(679	New directions in synthetic solid state chemistry: chalcophosphate salt fluxes for discovery of new multinary solids. <i>Current Opinion in Solid State and Materials Science</i> , 1997 , 2, 139-149	12	97
(678	A Polar and Chiral Indium Telluride Featuring Supertetrahedral T2 Clusters and Nonlinear Optical Second Harmonic Generation. <i>Chemistry of Materials</i> , 2009 , 21, 12-14	9.6	96
(677	Phase relations in KxFe2DSe2 and the structure of superconducting KxFe2Se2 via high-resolution synchrotron diffraction. <i>Physical Review B</i> , 2012 , 86,	3.3	95
(676	Phonon Scattering and Thermal Conductivity in p-Type Nanostructured PbTe-BaTe Bulk Thermoelectric Materials. <i>Advanced Functional Materials</i> , 2012 , 22, 5175-5184	15.6	95
(675	In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. <i>Nano Letters</i> , 2010 , 10, 2825-31	11.5	95
(674	Multiple Converged Conduction Bands in KBiSe: A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16364-16371	16.4	95
(673	Composite Nature of Layered Hybrid Perovskites: Assessment on Quantum and Dielectric Confinements and Band Alignment. <i>ACS Nano</i> , 2018 , 12, 3321-3332	16.7	94
(672	Analysis of Nanostructuring in High Figure-of-Merit Ag1NPbmSbTe2+m Thermoelectric Materials. <i>Advanced Functional Materials</i> , 2009 , 19, 1254-1259	15.6	94
(671	Incorporation of A2Q into HgQ and Dimensional Reduction to A2Hg3Q4 and A2Hg6Q7 (A = K, Rb, Cs; Q = S, Se). Access of Li Ions in A2Hg6Q7 through Topotactic Ion-Exchange. <i>Journal of the American Chemical Society</i> , 1998 , 120, 124-136	16.4	94
(670	Combustion Synthesized Zinc Oxide Electron-Transport Layers for Efficient and Stable Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1900265	15.6	92
(669	Crystal Structure Evolution and Notable Thermal Expansion in Hybrid Perovskites Formamidinium Tin Iodide and Formamidinium Lead Bromide. <i>Inorganic Chemistry</i> , 2018 , 57, 695-701	5.1	92
(668	Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8076-8081	11.5	92

667	Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency. <i>Advanced Materials</i> , 2019 , 31, e1900108	24	91
666	Computational Prediction of High Thermoelectric Performance in Hole Doped Layered GeSe. <i>Chemistry of Materials</i> , 2016 , 28, 3218-3226	9.6	91
665	Inch-Size 0D-Structured Lead-Free Perovskite Single Crystals for Highly Sensitive Stable X-Ray Imaging. <i>Matter</i> , 2020 , 3, 180-196	12.7	90
664	High Thermoelectric Performance in SnTeAgSbTe2 Alloys from Lattice Softening, Giant PhononNacancy Scattering, and Valence Band Convergence. <i>ACS Energy Letters</i> , 2018 , 3, 705-712	20.1	90
663	High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. <i>Energy and Environmental Science</i> , 2017 , 10, 2638-2652	35.4	90
662	Square nets of tellurium: rare-earth dependent variation in the charge-density wave of RETe3 (RE = rare-earth element). <i>Journal of the American Chemical Society</i> , 2005 , 127, 6510-1	16.4	89
661	Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of N-Type PbTe to High Performance. <i>Advanced Energy Materials</i> , 2017 , 7, 1700099	21.8	88
660	Flexible polar nanowires of Cs5BiP4Se12 from weak interactions between coordination complexes: strong nonlinear optical second harmonic generation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2647-56	16.4	88
659	The Application of Polychalcogenide Salts to the Exploratory Synthesis of Solid State Multinary Chalcogenides at Intermediate Temperatures. <i>Progress in Inorganic Chemistry</i> , 2007 , 151-265		88
658	Syntheses, structures, and properties of six novel alkali metal tin sulfides: K2Sn2S8, .alphaRb2Sn2S8, .betaRb2Sn2S8, K2Sn2S5, Cs2Sn2S6, and Cs2SnS14. <i>Inorganic Chemistry</i> , 1993 , 32, 2453-2462	5.1	88
657	Electron doping in bottom-up engineered thermoelectric nanomaterials through HCl-mediated ligand displacement. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4046-9	16.4	87
656	In situ studies of a platform for metastable inorganic crystal growth and materials discovery. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10922-7	11.5	87
655	Structure and Thermoelectric Properties of Ba6Ge25¼, Ba6Ge23Sn2, and Ba6Ge22In3: Zintl Phases with a Chiral Clathrate Structure. <i>Journal of Solid State Chemistry</i> , 2000 , 153, 321-329	3.3	87
654	Chemistry in Molten Alkali Metal Polyselenophosphate Fluxes. Influence of Flux Composition on Dimensionality. Layers and Chains in APbPSe(4), A(4)Pb(PSe(4))(2) (A = Rb, Cs), and K(4)Eu(PSe(4))(2). <i>Inorganic Chemistry</i> , 1996 , 35, 840-844	5.1	85
653	Hydrothermal synthesis of K2PdSe10. Coexistence of two large interpenetrating three-dimensional frameworks of [Pd(Se4)2]2- and [Pd(Se6)2]2 <i>Journal of the American Chemical Society</i> , 1992 , 114, 4878	-4883	85
652	High Figure of Merit in Nanostructured n-Type KPbmSbTem+2 Thermoelectric Materials Chemistry of Materials, 2010 , 22, 1046-1053	9.6	84
651	Dimensional reduction in II-VI materials: A2Cd3Q4 (A = K, Q = S, Se, Te; A = Rb, Q = S, Se), novel ternary low-dimensional cadmium chalcogenides produced by incorporation of A2Q in CdQ. Chemistry - A European Journal, 1996, 2, 656-666	4.8	84
650	Seeing is believing: weak phonon scattering from nanostructures in alkali metal-doped lead telluride. <i>Nano Letters</i> , 2012 , 12, 343-7	11.5	83

649	Permeable Layers with Large Windows in [(CH3CH2CH2)2NH2]5In5Sb6S19[1.45 H2O: High Ion-Exchange Capacity, Size Discrimination, and Selectivity for Cs Ions. <i>Chemistry of Materials</i> , 2007 , 19, 3867-3869	9.6	83
648	The Origin of Lower Hole Carrier Concentration in Methylammonium Tin Halide Films Grown by a Vapor-Assisted Solution Process. <i>ACS Energy Letters</i> , 2017 , 2, 22-28	20.1	82
647	Dielectric and Thermodynamic Signatures of Low-Temperature Glassy Dynamics in the Hybrid Perovskites CH3NH3PbI3 and HC(NH2)2PbI3. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 376-81	6.4	81
646	Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials. <i>Journal of the American Chemical Society</i> , 2010 , 132, 384-9	16.4	81
645	Aerogels from metal chalcogenides and their emerging unique properties. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3628		81
644	Open-Framework Oxysulfide Based on the Supertetrahedral [In4Sn16O10S34](12-) Cluster and Efficient Sequestration of Heavy Metals. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5543-6	16.4	81
643	Diammonium Cations in the FASnI3 Perovskite Structure Lead to Lower Dark Currents and More Efficient Solar Cells. <i>ACS Energy Letters</i> , 2018 , 3, 1470-1476	20.1	81
642	Electron-acoustic phonon coupling in single crystal CHNHPbI perovskites revealed by coherent acoustic phonons. <i>Nature Communications</i> , 2017 , 8, 14398	17.4	8o
641	Direct observation of vast off-stoichiometric defects in single crystalline SnSe. <i>Nano Energy</i> , 2017 , 35, 321-330	17.1	8o
640	Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe P bS thermoelectric materials. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2010 , 170, 58-66	3.1	8o
639	Improved Environmental Stability and Solar Cell Efficiency of (MA,FA)PbI3 Perovskite Using a Wide-Band-Gap 1D Thiazolium Lead Iodide Capping Layer Strategy. <i>ACS Energy Letters</i> , 2019 , 4, 1763-17	,29 ^{.1}	79
638	Thallium Chalcogenide-Based Wide-Band-Gap Semiconductors: TlGaSe2 for Radiation Detectors. <i>Chemistry of Materials</i> , 2011 , 23, 3120-3128	9.6	79
637	"Design" in solid-state chemistry based on phase homologies. The concept of structural evolution and the new megaseries A(m)[M(1+l)Se(2+l)]2m[M(2l+n)Se(2+3l+n)]. Accounts of Chemical Research, 2003 , 36, 111-9	24.3	79
636	CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy Fays. <i>Nature Photonics</i> , 2021 , 15, 36-42	33.9	79
635	Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. <i>Nature Materials</i> , 2021 , 20, 1378-1384	27	79
634	Structural Stability, Vibrational Properties, and Photoluminescence in CsSnI Perovskite upon the Addition of SnF. <i>Inorganic Chemistry</i> , 2017 , 56, 84-91	5.1	78
633	Rapid, green and inexpensive synthesis of high quality UiO-66 amino-functionalized materials with exceptional capability for removal of hexavalent chromium from industrial waste. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 635-644	6.8	78
632	Ligand-Free, Quantum-Confined Cs2SnI6 Perovskite Nanocrystals. <i>Chemistry of Materials</i> , 2017 , 29, 790	1976907	77

631	Impurity clustering and impurity-induced bands in PbTe-, SnTe-, and GeTe-based bulk thermoelectrics. <i>Physical Review B</i> , 2010 , 81,	3.3	77
630	1/infinity [ZrPSe6-]: a soluble photoluminescent inorganic polymer and strong second harmonic generation response of its alkali salts. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12270-2	16.4	77
629	Layered ASnSI .25HO (A = Organic Cation) as Efficient Ion-Exchanger for Rare Earth Element Recovery. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4314-4317	16.4	76
628	Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. <i>Nature Communications</i> , 2014 , 5, 3640	17.4	76
627	Chalcogels: porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1495	1-196.4	76
626	n-Type SnSe2 Oriented-Nanoplate-Based Pellets for High Thermoelectric Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1702167	21.8	76
625	Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSetese. <i>Energy and Environmental Science</i> , 2018 , 11, 3220-3230	035.4	75
624	Weak Electron Phonon Coupling and Deep Level Impurity for High Thermoelectric Performance Pb1\(\text{BGaxTe}. \) Advanced Energy Materials, 2018 , 8, 1800659	21.8	75
623	From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: Dimensional Expansion Induces a Direct Band Gap but Enhances Electron Phonon Coupling. <i>Chemistry of Materials</i> , 2019 , 31, 2644-2650	9.6	72
622	Manipulating the Combustion Wave during Self-Propagating Synthesis for High Thermoelectric Performance of Layered Oxychalcogenide Bi1\(\text{NPbxCuSeO}. \) Chemistry of Materials, 2016 , 28, 4628-4640	9.6	71
621	Selective Surfaces: High-Surface-Area Zinc Tin Sulfide Chalcogels. <i>Chemistry of Materials</i> , 2011 , 23, 2447	'- 3.€ 56	71
620	Morphological Engineering of Winged Au@MoS Heterostructures for Electrocatalytic Hydrogen Evolution. <i>Nano Letters</i> , 2018 , 18, 7104-7110	11.5	71
619	Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography. <i>Science Advances</i> , 2015 , 1, e1400173	14.3	70
618	Thermoelectric power generation: from new materials to devices. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2019 , 377, 20180450	3	70
617	Polyacrylonitrile-chalcogel hybrid sorbents for radioiodine capture. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 5832-9	10.3	70
616	Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites. <i>Chemical Science</i> , 2017 , 8, 5628-5635	9.4	69
615	High Thermoelectric Performance in Supersaturated Solid Solutions and Nanostructured n-Type PbTe L eTe. <i>Advanced Functional Materials</i> , 2018 , 28, 1801617	15.6	69
614	Valence-band structure of highly efficient p-type thermoelectric PbTe-PbS alloys. <i>Physical Review B</i> , 2013 , 87,	3.3	69

(2017-2009)

613	Mesoporous germanium-rich chalcogenido frameworks with highly polarizable surfaces and relevance to gas separation. <i>Nature Materials</i> , 2009 , 8, 217-22	27	69	
612	K6Cd4Sn3Se13: A polar open-framework compound based on the partially destroyed supertetrahedral [Cd4Sn4Se17]10læluster. <i>Chemical Communications</i> , 2004 , 1170	5.8	69	
611	Soluble Polychalcogenides of the Late Transition and Main Group Elements. <i>Comments on Inorganic Chemistry</i> , 1990 , 10, 161-195	3.9	69	
610	Enhancing the thermoelectric performance of SnSe1⊠Tex nanoplates through band engineering. Journal of Materials Chemistry A, 2017 , 5, 10713-10721	13	68	
609	Ethylenediammonium-Based "Hollow" Pb/Sn Perovskites with Ideal Band Gap Yield Solar Cells with Higher Efficiency and Stability. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8627-8637	16.4	67	
608	Concept of Lattice Mismatch and Emergence of Surface States in Two-dimensional Hybrid Perovskite Quantum Wells. <i>Nano Letters</i> , 2018 , 18, 5603-5609	11.5	67	
607	Resolving the Energy of ERay Photons with MAPbI3 Single Crystals. ACS Photonics, 2018, 5, 4132-4138	6.3	67	
606	A unique framework in BaGa2Sb2: a new Zintl phase with large tunnels. <i>Inorganic Chemistry</i> , 2001 , 40, 3781-5	5.1	66	
605	New Quaternary Compounds Resulting from the Reaction of Copper and f-Block Metals in Molten Polychalcogenide Salts at Intermediate Temperatures. Valence Fluctuations in the Layered CsCuCeS3. <i>Chemistry of Materials</i> , 1996 , 8, 751-761	9.6	66	
604	Lead-Free Thermoelectrics: High Figure of Merit in p-type AgSnmSbTem+2. <i>Advanced Energy Materials</i> , 2012 , 2, 157-161	21.8	65	
603	Polychalcogenide synthesis in molten salts. Novel one-dimensional compounds in the potassium-copper-sulfur system containing exclusively S42- ligands. <i>Journal of the American Chemical Society</i> , 1989 , 111, 3767-3769	16.4	65	
602	All-Inorganic Halide Perovskites as Potential Thermoelectric Materials: Dynamic Cation off-Centering Induces Ultralow Thermal Conductivity. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9553-9563	16.4	64	
601	3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance. <i>Energy and Environmental Science</i> , 2019 , 12, 3106-3117	35.4	64	
600	Cs2MIIMIV3Q8 (Q = S, Se, Te): An Extensive Family of Layered Semiconductors with Diverse Band Gaps. <i>Chemistry of Materials</i> , 2013 , 25, 3344-3356	9.6	64	
599	Biomimetic multifunctional porous chalcogels as solar fuel catalysts. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7252-5	16.4	64	
598	High Thermoelectric Performance in Polycrystalline SnSe Via Dual-Doping with Ag/Na and Nanostructuring With Ag8SnSe6. <i>Advanced Energy Materials</i> , 2019 , 9, 1803072	21.8	64	
597	Triple-Cation and Mixed-Halide Perovskite Single Crystal for High-Performance X-ray Imaging. <i>Advanced Materials</i> , 2021 , 33, e2006010	24	64	
596	Two Regimes of Bandgap Red Shift and Partial Ambient Retention in Pressure-Treated Two-Dimensional Perovskites. <i>ACS Energy Letters</i> , 2017 , 2, 2518-2524	20.1	63	

595	Liquid Water- and Heat-Resistant Hybrid Perovskite Photovoltaics via an Inverted ALD Oxide Electron Extraction Layer Design. <i>Nano Letters</i> , 2016 , 16, 7786-7790	11.5	63
594	Piperazine Suppresses Self-Doping in CsSnI3 Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2018 , 1, 4221-4226	6.1	63
593	Nanocrystals of the Quaternary Thermoelectric Materials: AgPbmSbTem+2 (m = 1🛮8): Phase-Segregated or Solid Solutions?. <i>Advanced Materials</i> , 2008 , 20, 3638-3642	24	63
592	Acid-induced conversions in open-framework semiconductors: from [Cd4Sn3Se13]6- to [Cd15Sn12Se46]14-, a remarkable disassembly/reassembly process. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1397-401	16.4	63
591	Ba4In8Sb16: Thermoelectric Properties of a New Layered Zintl Phase with Infinite Zigzag Sb Chains and Pentagonal Tubes. <i>Chemistry of Materials</i> , 1999 , 11, 3154-3159	9.6	63
590	Divergence in the behavior of the charge density wave in RETe3 (RE = rare-earth element) with temperature and RE element. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12612-3	16.4	62
589	Light-Emitting Meso-Structured Sulfides with Hexagonal Symmetry: Supramolecular Assembly of [Ge4S10]4- Clusters with Trivalent Metal Ions and Cetylpyridinium Surfactant. <i>Journal of the American Chemical Society</i> , 2000 , 122, 10230-10231	16.4	62
588	All-Scale Hierarchically Structured p-Type PbSe Alloys with High Thermoelectric Performance Enabled by Improved Band Degeneracy. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4480-4486	16.4	62
587	⊞-Particle Detection and Charge Transport Characteristics in the A3M2I9 Defect Perovskites (A = Cs, Rb; M = Bi, Sb). <i>ACS Photonics</i> , 2018 , 5, 3748-3762	6.3	61
586	Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation. <i>Journal of the American Chemical Society</i> , 2012 , 134, 20733-44	16.4	61
585	Photocatalytic hydrogen evolution from FeMoS-based biomimetic chalcogels. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10353-6	16.4	61
584	Oligomerization Versus Polymerization of Texn- in the Polytelluride Compound BaBiTe3. Structural Characterization, Electronic Structure, and Thermoelectric Properties. <i>Journal of the American Chemical Society</i> , 1997 , 119, 2505-2515	16.4	61
583	Small Cyclic Diammonium Cation Templated (110)-Oriented 2D Halide (X = I, Br, Cl) Perovskites with White-Light Emission. <i>Chemistry of Materials</i> , 2019 , 31, 3582-3590	9.6	60
582	Direct Extraction of Ag+ and Hg2+ from Cyanide Complexes and Mode of Binding by the Layered K2MgSn2S6 (KMS-2). <i>Chemistry of Materials</i> , 2015 , 27, 1925-1928	9.6	60
581	Use of molten alkali-metal polythiophosphate fluxes for synthesis at intermediate temperatures. Isolation and structural characterization of ABiP2S7 (A = K, Rb). <i>Chemistry of Materials</i> , 1993 , 5, 1061-10	<mark>ദ്</mark> ര ⁶	60
580	Chemical Insights into PbSe- x%HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms. <i>Journal of the American Chemical Society</i> , 2018 , 140, 18115-18123	16.4	60
579	Efficient Hg Vapor Capture with Polysulfide Intercalated Layered Double Hydroxides. <i>Chemistry of Materials</i> , 2014 , 26, 5004-5011	9.6	58
578	Highly Efficient Separation of Trivalent Minor Actinides by a Layered Metal Sulfide (KInSnS) from Acidic Radioactive Waste. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16494-16497	16.4	58

577	Electrical, Thermal, and Mechanical Characterization of Novel Segmented-Leg Thermoelectric Modules. <i>Journal of Electronic Materials</i> , 2011 , 40, 2051-2062	1.9	58	
576	High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals. Journal of Materials Chemistry C, 2020 , 8, 1248-1256	7.1	58	
575	Enhanced average thermoelectric figure of merit of n-type PbTe1IdxMgTe. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10401-10408	7.1	57	
574	Conventional Solvent Oxidizes Sn(II) in Perovskite Inks. ACS Energy Letters, 2020 , 5, 1153-1155	20.1	57	
573	Delayed ignition of autocatalytic combustion precursors: low-temperature nanomaterial binder approach to electronically functional oxide films. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11583-93	16.4	57	
572	Nb-Nb interactions define the charge density wave structure of 2H-NbSe2. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1719-22	16.4	56	
571	Hydrothermal Assembly of Novel Covalent, Extended Structures Based on [AsxSy]n- Building Blocks Derived from Condensation of AsS33 Isolation of (Ph4P)2[InAs3S7] and (Me4N)2Rb[BiAs6S12]. <i>Inorganic Chemistry</i> , 1994 , 33, 1001-1002	5.1	56	
570	In Situ Synthesis of Highly Dispersed and Ultrafine Metal Nanoparticles from Chalcogels. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2900-2903	16.4	55	
569	Remarkable Acid Stability of Polypyrrole-MoS4: A Highly Selective and Efficient Scavenger of Heavy Metals Over a Wide pH Range. <i>Advanced Functional Materials</i> , 2018 , 28, 1800502	15.6	55	
568	Amphiphilic Porphyrin Nanocrystals: Morphology Tuning and Hierarchical Assembly. <i>Advanced Materials</i> , 2008 , 20, 3543-3549	24	55	
567	High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6. <i>Joule</i> , 2020 , 4, 159-175	27.8	55	
566	Alkaline Earth Metal Ion/Dihydroxy-Terephthalate MOFs: Structural Diversity and Unusual Luminescent Properties. <i>Inorganic Chemistry</i> , 2015 , 54, 5813-26	5.1	54	
565	Sulfosalts with alkaline earth metals. Centrosymmetric vs acentric interplay in Ba3Sb4.66S10 and Ba2.62Pb1.38Sb4S10 based on the Ba/Pb/Sb ratio. Phases related to arsenosulfide minerals of the rathite group and the novel polysulfide Sr6Sb6S17. <i>Inorganic Chemistry</i> , 2000 , 39, 5655-62	5.1	54	
564	Nanocomposites from Solution-Synthesized PbTe-BiSbTe Nanoheterostructure with Unity Figure of Merit at Low-Medium Temperatures (500-600 K). <i>Advanced Materials</i> , 2017 , 29, 1605140	24	53	
563	The underappreciated lone pair in halide perovskites underpins their unusual properties. <i>MRS Bulletin</i> , 2020 , 45, 467-477	3.2	53	
562	Hydrothermal synthesis of metal polychalcogenides. Structural characterization of [Mo12Se56]12 A cluster of clusters. <i>Journal of the American Chemical Society</i> , 1990 , 112, 7400-7402	16.4	53	
561	Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion-Jacobson Perovskites Boost the Performance of Solar Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15049-15057	16.4	53	
560	Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23388-23395	13	53	

559	Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. <i>Nature Communications</i> , 2018 , 9, 2019	17.4	53
558	Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23243-23251	13	52
557	Thermally induced migration of a polyoxometalate within a metal®rganic framework and its catalytic effects. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7389-7394	13	52
556	Stabilization of U5+ in Rb4U4P4Se26. An Actinide Compound with a Mixed Selenophosphate/Polyselenide Framework and Ion-Exchange Properties. <i>Journal of the American Chemical Society</i> , 1997 , 119, 2574-2575	16.4	52
555	Yb5In2Sb6: A New Rare Earth Zintl Phase with a Narrow Band Gap. <i>Journal of Solid State Chemistry</i> , 2000 , 155, 55-61	3.3	52
554	Hydrothermal polychalcogenide chemistry. Stabilization of selenidomolybdate, [Mo9Se40]8-, a cluster of clusters, and [Mo3Se18]n2n- a polymeric polyselenide. Novel phases based on trinuclear [Mo3Se7]4+ building blocks. <i>Inorganic Chemistry</i> , 1992 , 31, 431-439	5.1	52
553	Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 24310-4	9.5	52
552	The Thermoelectric Properties of SnSe Continue to Surprise: Extraordinary Electron and Phonon Transport. <i>Chemistry of Materials</i> , 2018 , 30, 7355-7367	9.6	52
551	In Situ Grazing-Incidence Wide-Angle Scattering Reveals Mechanisms for Phase Distribution and Disorientation in 2D Halide Perovskite Films. <i>Advanced Materials</i> , 2020 , 32, e2002812	24	51
550	Na2Ge2Se5: A highly nonlinear optical material. <i>Journal of Solid State Chemistry</i> , 2012 , 195, 161-165	3.3	51
549	Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2019 , 922, 217-221	1.2	51
548	CsHgInS3: a New Quaternary Semiconductor for Fray Detection. <i>Chemistry of Materials</i> , 2012 , 24, 4434-4	14/161	50
547	Ion-exchangeable cobalt polysulfide chalcogel. <i>Journal of the American Chemical Society</i> , 2011 , 133, 120	0 1-2 1.4	50
546	Candidates for topological insulators: Pb-based chalcogenide series. <i>Physical Review B</i> , 2011 , 83,	3.3	50
545	KThSb2Se6 and BaLaBi2Q6 (Q = S, Se) Adopt a New Structure Type Stabilized with Dichalcogenide Groups. <i>Inorganic Chemistry</i> , 1997 , 36, 3804-3805	5.1	50
544	Crystal Growth, Thermoelectric Properties, and Electronic Structure of AgBi3S5 and AgSbxBi3-xS5 (x = 0.3). Chemistry of Materials, 2005 , 17, 3606-3614	9.6	50
543	Morphology modulation of SiC nano-additives for mechanical robust high thermoelectric performance Mg2Si1Bn /SiC nano-composites. <i>Scripta Materialia</i> , 2017 , 126, 1-5	5.6	49
542	Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1193-1204	13	49

(2018-2020)

16.4	48	
	7-	
9.6	48	
9.6	48	
5.1	48	
3.6	47	
13	47	
9.6	47	
35.4	47	
9.5	46	
3.8	46	
9.6	46	
9.6	46	
9.6	46	
4-915	46	
16.4	46	
16.4	45	
9.6	45	
	9.6 5.1 3.6 13 9.6 35.4 9.5 3.8 9.6 9.6 4-915 16.4	9.6 48 5.1 48 3.6 47 13 47 9.6 47 35.4 47 9.5 46 3.8 46 9.6 46 9.6 46 9.6 46 16.4 46 16.4 45

523	Understanding fluxes as media for directed synthesis: in situ local structure of molten potassium polysulfides. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9456-63	16.4	45
522	Analysis of Phase Separation in High Performance PbTePbS Thermoelectric Materials. <i>Advanced Functional Materials</i> , 2013 , 23, 747-757	15.6	45
521	Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites. <i>Chemistry of Materials</i> , 2010 , 22, 869-875	9.6	45
520	First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides. <i>Physical Review B</i> , 2009 , 79,	3.3	45
519	High thermoelectric figure of merit and improved mechanical properties in melt quenched PbTeLie and PbTeLie1\(\mathbb{B}\) ix eutectic and hypereutectic composites. <i>Journal of Applied Physics</i> , 2009 , 105, 083718	2.5	45
518	APSe6 (A = K, Rb, and Cs): Polymeric selenophosphates with reversible phase-change properties. <i>Inorganic Chemistry</i> , 2004 , 43, 2762-4	5.1	45
517	Polytelluride compounds containing distorted nets of tellurium. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 3266-3281	3.6	45
516	Defect engineering in thermoelectric materials: what have we learned?. <i>Chemical Society Reviews</i> , 2021 , 50, 9022-9054	58.5	45
515	Thermoelectric transport properties of polycrystalline SnSe alloyed with PbSe. <i>Applied Physics Letters</i> , 2017 , 110, 053901	3.4	44
514	Seven-Layered 2D Hybrid Lead Iodide Perovskites. <i>CheM</i> , 2019 , 5, 2593-2604	16.2	44
513	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe-GeTe with Midgap States. Journal of the American Chemical Society, 2019 , 141, 16169-16177	16.4	44
512	Out-of-Plane Mechanical Properties of 2D Hybrid Organic-Inorganic Perovskites by Nanoindentation. <i>ACS Applied Materials & Description of the Properties of 2D Hybrid Organic Perovskites by Nanoindentation. ACS Applied Materials & Description of the Properties of 2D Hybrid Organic-Inorganic Perovskites by Nanoindentation. <i>ACS Applied Materials & Description of the Properties of 2D Hybrid Organic-Inorganic Perovskites by Nanoindentation. ACS Applied Materials & Description of the Properties of 2D Hybrid Organic-Inorganic Perovskites by Nanoindentation. <i>ACS Applied Materials & Description of the Properties of 2D Hybrid Organic-Inorganic Perovskites by Nanoindentation of the Properties of 2D Hybrid Organic-Inorganic Perovskites by Nanoindentation of the Properties of 2D Hybrid Organic-Inorganic Perovskites by Nanoindentation of the Properties of 2D Hybrid Organic-Inorganic Perovskites by Nanoindentation of the Properties of 2D Hybrid Organic-Inorganic Perovskites by Nanoindentation of the Properties of 2D Hybrid Organic Perovskites of 2D Hybr</i></i></i>	9.5	44
511	Low lattice thermal conductivity in Pb5Bi6Se14, Pb3Bi2S6, and PbBi2S4: promising thermoelectric materials in the cannizzarite, lillianite, and galenobismuthite homologous series. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20048-20058	13	44
510	Enhanced electrocatalytic reduction of CO2 with ternary Ni-Fe4S4 and Co-Fe4S4-based biomimetic chalcogels. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15854-7	16.4	44
509	Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature. <i>Materials Today Physics</i> , 2018 , 6, 83-88	8	44
508	Room Temperature Phase Transition in Methylammonium Lead Iodide Perovskite Thin Films Induced by Hydrohalic Acid Additives. <i>ChemSusChem</i> , 2016 , 9, 2656-2665	8.3	43
507	Understanding Nanostructuring Processes in Thermoelectrics and Their Effects on Lattice Thermal Conductivity. <i>Advanced Materials</i> , 2016 , 28, 2737-43	24	43
506	Copolymerization of terephthalaldehyde with pyrrole, indole and carbazole gives microporous POFs functionalized with unpaired electrons. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10465	13	43

(2016-2013)

505	Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection. <i>Inorganic Chemistry</i> , 2013 , 52, 7045-50	5.1	43	
504	Chemistry of Gold in Molten Alkali Metal Polychalcophosphate Fluxes. Synthesis and Characterization of the Low-Dimensional Compounds A3AuP2Se8 (A = K, Rb, Cs), A2Au2P2Se6 (A = K, Rb), A2AuPS4 (A = K, Rb, Cs), and AAuP2S7 (A = K, Rb). <i>Inorganic Chemistry</i> , 1997 , 36, 2623-2632	5.1	43	
503	On the lamellar compounds CuBiP(2)Se(6), AgBiP(2)Se(6) and AgBiP(2)S(6). Antiferroelectric phase transitions due to cooperative Cu(+) and Bi(3+) ion motion. <i>Inorganic Chemistry</i> , 2005 , 44, 5293-303	5.1	43	
502	CsMBi(3)Te(6) and CsM(2)Bi(3)Te(7) (M = Pb, Sn): new thermoelectric compounds with low-dimensional structures. <i>Journal of the American Chemical Society</i> , 2002 , 124, 2410-1	16.4	43	
501	Synthesis and Structure of the Cluster [NaAu12Se8]3🛘 An Inorganic Cryptand Complex. <i>Angewandte Chemie International Edition in English</i> , 1992 , 31, 787-789		43	
500	Intercalation of water-soluble polymers in V2O5 xerogel. <i>Advanced Materials</i> , 1993 , 5, 369-372	24	43	
499	Zero-Dimensional Cs2TeI6 Perovskite: Solution-Processed Thick Films with High X-ray Sensitivity. <i>ACS Photonics</i> , 2019 , 6, 196-203	6.3	43	
498	Time-Dependent Mechanical Response of APbX (A = Cs, CH NH; X = I, Br) Single Crystals. <i>Advanced Materials</i> , 2017 , 29, 1606556	24	42	
497	Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden-Popper Phases. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19705-19714	16.4	42	
496	Three-Dimensional Lead Iodide Perovskitoid Hybrids with High X-ray Photoresponse. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6625-6637	16.4	42	
495	High Thermoelectric Performance in PbSeNaSbSe2 Alloys from Valence Band Convergence and Low Thermal Conductivity. <i>Advanced Energy Materials</i> , 2019 , 9, 1901377	21.8	42	
494	Modular Construction of A1+xM4-2xM \square +xSe15 (A = K, Rb; M = Pb, Sn; M \square = Bi, Sb): A New Class of Solid State Quaternary Thermoelectric Compounds. <i>Chemistry of Materials</i> , 2001 , 13, 756-764	9.6	42	
493	Nanoscale Composites Formed by Encapsulation of Polymers in MoS2. From Conjugated Polymers to Plastics. Detection of Metal to Insulator Transition. <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 245, 249-254		42	
492	Toward High-Thermoelectric-Performance Large-Size Nanostructured BiSbTe Alloys via Optimization of Sintering-Temperature Distribution. <i>Advanced Energy Materials</i> , 2016 , 6, 1600595	21.8	42	
491	Analysis of Nanoprecipitates in a Na-Doped PbTe-SrTe Thermoelectric Material with a High Figure of Merit. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 21791-21797	9.5	41	
490	Giant Enhancement of Photoluminescence Emission in WS-Two-Dimensional Perovskite Heterostructures. <i>Nano Letters</i> , 2019 , 19, 4852-4860	11.5	41	
489	Negative Pressure Engineering with Large Cage Cations in 2D Halide Perovskites Causes Lattice Softening. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11486-11496	16.4	41	
488	Removal of TcO4Ifrom Representative Nuclear Waste Streams with Layered Potassium Metal Sulfide Materials. <i>Chemistry of Materials</i> , 2016 , 28, 3976-3983	9.6	41	

487	Optical Properties and Modeling of 2D Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700062	7.1	41
486	LiEuPSe4 and KEuPSe4: novel selenophosphates with the tetrahedral [PSe4]3- building block. <i>Inorganic Chemistry</i> , 2000 , 39, 1525-33	5.1	41
485	Synthesis and Structure of Li4GeS4a. <i>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences</i> , 1998 , 53, 23-30	1	41
484	Stretching and Breaking of Ultrathin 2D Hybrid Organic-Inorganic Perovskites. ACS Nano, 2018, 12, 103	47 <i>6</i> 1 9 3	5 <u>4</u> 1
483	Understanding the thermally activated charge transport in NaPbmSbQm+2 (Q = S, Se, Te) thermoelectrics: weak dielectric screening leads to grain boundary dominated charge carrier scattering. <i>Energy and Environmental Science</i> , 2020 , 13, 1509-1518	35.4	40
482	Optimization of the Electronic Band Structure and the Lattice Thermal Conductivity of Solid Solutions According to Simple Calculations: A Canonical Example of the Mg2Si1MJGexSny Ternary Solid Solution. <i>Chemistry of Materials</i> , 2016 , 28, 5538-5548	9.6	40
481	Lattice dynamics reveals a local symmetry breaking in the emergent dipole phase of PbTe. <i>Physical Review B</i> , 2012 , 86,	3.3	40
480	Crystal Growth and Characterization of the X-ray and Fray Detector Material Cs2Hg6S7. <i>Crystal Growth and Design</i> , 2012 , 12, 3250-3256	3.5	40
479	Coexistence of Large Thermopower and Degenerate Doping in the Nanostructured Material Ag0.85SnSb1.15Te3. <i>Chemistry of Materials</i> , 2006 , 18, 4719-4721	9.6	40
478	High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe by High-Entropy Engineering. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15187-15198	16.4	40
477	Ultrafast correlated charge and lattice motion in a hybrid metal halide perovskite. <i>Science Advances</i> , 2019 , 5, eaaw5558	14.3	39
476	Photoconductivity in Tl6SI4: A Novel Semiconductor for Hard Radiation Detection. <i>Chemistry of Materials</i> , 2013 , 25, 2868-2877	9.6	39
475	Anomalous thermal expansion in the square-net compounds RE4TGe8 (RE = Yb, Gd; T = Cr-Ni, Ag). Journal of the American Chemical Society, 2011 , 133, 13840-3	16.4	39
474	Eu10Mn6Sb13: a new ternary rare-Earth transition-metal Zintl phase. <i>Inorganic Chemistry</i> , 2003 , 42, 466	0 5 71	39
473	Highly anisotropic crystal growth and thermoelectric properties of K2Bi8\SbxSe13 solid solutions: Band gap anomaly at low x. <i>Journal of Applied Physics</i> , 2002 , 92, 965-975	2.5	39
472	A2Bi8Se13 (A = Rb, Cs), CsBi3.67Se6, and BaBi2Se4: New Ternary Semiconducting Bismuth Selenides. <i>Chemistry of Materials</i> , 2001 , 13, 622-633	9.6	39
471	Defect Antiperovskite Compounds HgQI (Q = S, Se, and Te) for Room-Temperature Hard Radiation Detection. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7939-7951	16.4	38
470	High-Performance PbTe Thermoelectric Films by Scalable and Low-Cost Printing. <i>ACS Energy Letters</i> , 2018 , 3, 818-822	20.1	38

(2013-2013)

469	Superconductivity in the narrow-gap semiconductor CsBi4Te6. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14540-3	16.4	38
468	Amorphous and Crystalline GeTe Nanocrystals. <i>Advanced Functional Materials</i> , 2011 , 21, 2737-2743	15.6	38
467	A2CuP3S9 (A = K, Rb), Cs2Cu2P2S6, and K3CuP2S7: New Phases from the Dissolution of Copper in Molten Polythiophosphate Fluxes. <i>Chemistry of Materials</i> , 1998 , 10, 3040-3049	9.6	38
466	Counterion Effects in Pd Polyselenides: Evolution from Molecular to Three-Dimensional Framework Structures. <i>Journal of the American Chemical Society</i> , 1998 , 120, 8124-8135	16.4	38
465	Panoscopic approach for high-performance Te-doped skutterudite. NPG Asia Materials, 2017 , 9, e352-e3	8 5 0.3	37
464	Nanoscale stabilization of new phases in the PbTe-Sb2Te3 system: Pb(m)Sb(2n)Te(m+3n) nanocrystals. <i>Journal of the American Chemical Society</i> , 2013 , 135, 768-74	16.4	37
463	Structure and thermoelectric properties of the new quaternary tin selenide K1 \(\text{\text{S}} \) Sh5 \(\text{\text{B}} \) Bi11 + xSe22. Journal of Materials Chemistry, 2000 , 10, 1667-1672		37
462	NaCu4S4, a Simple New Low-Dimensional, Metallic Copper Polychalcogenide, Structurally Related to CuS. <i>Journal of the American Chemical Society</i> , 1996 , 118, 693-694	16.4	37
461	Counterion Size Versus Structure in Metal-Chalcogenide Salts. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1994 , 93, 159-172	1	37
460	From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10661-10676	16.4	36
459	Heat capacity jump at Tc and pressure derivatives of superconducting transition temperature in the Ba1\(\text{M} KxFe2As2 \) (0.2\(\text{M} \text{1.0} \)) series. <i>Physical Review B</i> , 2013 , 87,	3.3	36
458	Intergrowth of two different layered networks in the metallic copper oxyselenide Na1.9Cu2Se2.cntdot.Cu2O. <i>Chemistry of Materials</i> , 1993 , 5, 8-10	9.6	36
457	Discordant nature of Cd in PbSe: off-centering and corelinell nanoscale CdSe precipitates lead to high thermoelectric performance. <i>Energy and Environmental Science</i> , 2020 , 13, 200-211	35.4	36
456	Thiazole-Induced Surface Passivation and Recrystallization of CHNHPbI Films for Perovskite Solar Cells with Ultrahigh Fill Factors. <i>ACS Applied Materials & Description of CHNHPbI Films for Perovskite Solar Cells with Ultrahigh Fill Factors.</i>	9.5	36
455	Trimethylsulfonium Lead Triiodide: An Air-Stable Hybrid Halide Perovskite. <i>Inorganic Chemistry</i> , 2017 , 56, 6302-6309	5.1	35
454	Multiphoton Absorption Order of CsPbBr As Determined by Wavelength-Dependent Nonlinear Optical Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4912-4917	6.4	35
453	Enhanced photochemical hydrogen evolution from Fe4S4-based biomimetic chalcogels containing M2+ (M = Pt, Zn, Co, Ni, Sn) centers. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13371-80	16.4	35
452	Tunable biomimetic chalcogels with Fe4S4 cores and [Sn(n)S(2n+2)](4-)(n = 1, 2, 4) building blocks for solar fuel catalysis. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2330-7	16.4	35

45 ¹	Extraordinary selectivity of CoMo(3)S(13) chalcogel for C(2)H(6) and CO(2) adsorption. <i>Advanced Materials</i> , 2011 , 23, 4857-60	24	35
450	Palladium Chemistry in Molten Alkali Metal Polychalcophosphate Fluxes. Synthesis and Characterization of K(4)Pd(PS(4))(2), Cs(4)Pd(PSe(4))(2), Cs(10)Pd(PSe(4))(4), KPdPS(4), K(2)PdP(2)S(6), and Cs(2)PdP(2)Se(6). <i>Inorganic Chemistry</i> , 1997 , 36, 5859-5868	5.1	35
449	Hyperbolic Dispersion Arising from Anisotropic Excitons in Two-Dimensional Perovskites. <i>Physical Review Letters</i> , 2018 , 121, 127401	7.4	35
448	Amphoteric Indium Enables Carrier Engineering to Enhance the Power Factor and Thermoelectric Performance in n-Type AgnPb100InnTe100+2n (LIST). <i>Advanced Energy Materials</i> , 2019 , 9, 1900414	21.8	34
447	The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating. <i>Journal of Materials Science</i> , 2013 , 48, 6233-6244	4.3	34
446	Second Harmonic Generation Response Optimized at Various Optical Wavelength Ranges through a Series of Cubic Chalcogenides Ba6Ag2.67+48n4.33816\(\text{BS} \) Sex. <i>Chemistry of Materials</i> , 2015 , 27, 1316-132	28 ^{.6}	34
445	Changes in charge density vs changes in formal oxidation states: The case of Sn halide perovskites and their ordered vacancy analogues. <i>Physical Review Materials</i> , 2017 , 1,	3.2	34
444	Probing Strain-Induced Band Gap Modulation in 2D Hybrid OrganicIhorganic Perovskites. <i>ACS Energy Letters</i> , 2019 , 4, 796-802	20.1	34
443	Enhanced Photocurrent of All-Inorganic Two-Dimensional Perovskite CsPbICl via Pressure-Regulated Excitonic Features. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2545-2551	16.4	34
442	Large Thermal Conductivity Drops in the Diamondoid Lattice of CuFeS by Discordant Atom Doping. Journal of the American Chemical Society, 2019 , 141, 18900-18909	16.4	33
441	Distorted Square Nets of Tellurium in the Novel Quaternary Polytelluride K0.33Ba0.67AgTe2. Journal of the American Chemical Society, 1995 , 117, 10513-10520	16.4	33
440	Porous Amorphous Chalcogenides as Selective Adsorbents for Heavy Metals. <i>Chemistry of Materials</i> , 2015 , 27, 6189-6192	9.6	32
439	Advances in thermoelectrics: From single phases to hierarchical nanostructures and back. <i>MRS Bulletin</i> , 2015 , 40, 687-695	3.2	32
438	Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24110-24115	13	32
437	Quantitative nanostructure characterization using atomic pair distribution functions obtained from laboratory electron microscopes. <i>Zeitschrift Fil Kristallographie</i> , 2012 , 227, 248-256		32
436	KCuCeTe4: A New Intergrowth Rare Earth Telluride with an Incommensurate Superstructure Associated with a Distorted Square Net of Tellurium. <i>Chemistry of Materials</i> , 1998 , 10, 695-697	9.6	32
435	Low valent phosphorus in the molecular anions [P5Se12]5- and beta-[P6Se12]4-: phase change behavior and near infrared second harmonic generation. <i>Chemical Communications</i> , 2007 , 4998-5000	5.8	32
434	Reactivity of Copper in Molten Polytelluride Salts. K4Cu8Te11, A3Cu8Te10 (A = Rb, Cs), AA'2Cu8Te10 (A, A' = K, Rb, Cs), and A2BaCu8Te10 (A = K, Rb, Cs): Novel Solids Based on Endohedrally Occupied [Cu8Te12] Dodecahedral Cage-Clusters. <i>Journal of the American Chemical</i>	16.4	32

(2015-2019)

433	Negative Thermal Expansion and Intrinsically Low Thermal Conductivity. <i>Advanced Functional Materials</i> , 2019 , 29, 1806534	15.6	32	
432	Exceptional TcO4Isorption capacity and highly efficient ReO4Iluminescence sensing by Zr4+ MOFs. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20813-20821	13	32	
431	Regulating off-centering distortion maximizes photoluminescence in halide perovskites. <i>National Science Review</i> , 2021 , 8, nwaa288	10.8	31	
430	Water-Stable 1D Hybrid Tin(II) Iodide Emits Broad Light with 36% Photoluminescence Quantum Efficiency. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9028-9038	16.4	31	
429	AEuAsS3 (A = Li, K, Rb, and Cs): New As3+ species from an arsenic-rich polysulfide flux. <i>Inorganic Chemistry</i> , 2008 , 47, 7068-70	5.1	31	
428	Cu0.66EuTe2, KCu2EuTe4 and Na0.2Ag2.8EuTe4: compounds with modulated square Te nets. Journal of Materials Chemistry, 1999 , 9, 2293-2296		31	
427	Insight on the Stability of Thick Layers in 2D Ruddlesden-Popper and Dion-Jacobson Lead Iodide Perovskites. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2523-2536	16.4	31	
426	TlSn2I5, a Robust Halide Antiperovskite Semiconductor for ERay Detection at Room Temperature. <i>ACS Photonics</i> , 2017 , 4, 1805-1813	6.3	30	
425	Polar Fluctuations in Metal Halide Perovskites Uncovered by Acoustic Phonon Anomalies. <i>ACS Energy Letters</i> , 2017 , 2, 2463-2469	20.1	30	
424	Crystal Growth of Tl4CdI6: A Wide Band Gap Semiconductor for Hard Radiation Detection. <i>Crystal Growth and Design</i> , 2014 , 14, 2401-2410	3.5	30	
423	High-temperature elastic moduli of thermoelectric SnTe1⊞x ြy SiC nanoparticulate composites. Journal of Materials Science, 2013 , 48, 8244-8258	4.3	30	
422	First Quaternary APbBiQ (A = K, Rb, Cs; Q = S, Se) Compounds: Synthesis, Structure, and Properties of \oplus - and \oplus CsPbBi3Se6, APbBi3Se6, (A = K, Rb), and APbBi3S6 (A = Rb, Cs). Chemistry of Materials, 1999 , 11, 1352-1362	9.6	30	
421	High-performance thermoelectrics and challenges for practical devices. Nature Materials, 2021,	27	30	
420	Expression of interfacial Seebeck coefficient through grain boundary engineering with multi-layer graphene nanoplatelets. <i>Energy and Environmental Science</i> , 2020 , 13, 4114-4121	35.4	30	
419	Dual Alloying Strategy to Achieve a High Thermoelectric Figure of Merit and Lattice Hardening in p-Type Nanostructured PbTe. <i>ACS Energy Letters</i> , 2018 , 3, 2593-2601	20.1	30	
418	Origin of Intrinsically Low Thermal Conductivity in Talnakhite CuFeS Thermoelectric Material: Correlations between Lattice Dynamics and Thermal Transport. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10905-10914	16.4	29	
417	(4NPEA)PbI (4NPEA = 4-Nitrophenylethylammonium): Structural, NMR, and Optical Properties of a 3 B Corrugated 2D Hybrid Perovskite. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4521-4525	16.4	29	
416	Understanding the role and interplay of heavy-hole and light-hole valence bands in the thermoelectric properties of PbSe. <i>Physical Review B</i> , 2015 , 91,	3.3	29	

415	Solution-Processed Air-Stable Mesoscopic Selenium Solar Cells. ACS Energy Letters, 2016, 1, 469-473	20.1	29
414	Benzodithiophene Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1905393	15.6	28
413	Detection of Rashba spin splitting in 2D organic-inorganic perovskite via precessional carrier spin relaxation. <i>APL Materials</i> , 2019 , 7, 081116	5.7	28
412	Dopant Distributions in PbTe-Based Thermoelectric Materials. <i>Journal of Electronic Materials</i> , 2012 , 41, 1583-1588	1.9	28
411	Yb9Zn4Bi9: extension of the Zintl concept to the mixed-valent spectator cations. <i>Journal of the American Chemical Society</i> , 2001 , 123, 12704-5	16.4	28
410	Organic Cation Alloying on Intralayer A and Interlayer A' sites in 2D Hybrid Dion-Jacobson Lead Bromide Perovskites (A')(A)PbBr. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8342-8351	16.4	28
409	Computational strategies for design and discovery of nanostructured thermoelectrics. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	27
408	Nonmagnetic In Substituted CuFe1NInxS2 Solid Solution Thermoelectric. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27895-27902	3.8	27
407	High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials. <i>Nano Energy</i> , 2019 , 66, 104193	17.1	27
406	Charge density waves in the square nets of tellurium of AMRETe4 (A = K, Na; M = Cu, Ag; RE = La, Ce). <i>Journal of the American Chemical Society</i> , 2007 , 129, 10675-7	16.4	27
405	K(2)Ag(3)CeTe(4): A Semiconducting Tunnel Framework Made from the Covalent "Link-Up" of [Ag(2)CeTe(4)](3)(-) Layers with Ag. <i>Inorganic Chemistry</i> , 1998 , 37, 6562-6563	5.1	27
404	Modern Processing and Insights on Selenium Solar Cells: The World's First Photovoltaic Device. <i>Advanced Energy Materials</i> , 2019 , 9, 1802766	21.8	27
403	Single Crystal Growth and Study of the Ferromagnetic Superconductor RbEuFe4As4. <i>Crystal Growth and Design</i> , 2018 , 18, 3517-3523	3.5	26
402	Ultrafast Imaging of Carrier Cooling in Metal Halide Perovskite Thin Films. <i>Nano Letters</i> , 2018 , 18, 1044-	-1048	26
401	Impressive structural diversity and polymorphism in the modular compounds ABi3Q5 (A = Rb, Cs; Q = S, Se, Te). <i>Journal of the American Chemical Society</i> , 2003 , 125, 13741-52	16.4	26
400	#KMP2Se6 (M = Sb, Bi): Kinetically Accessible Phases Obtained from Rapid Crystallization of Amorphous Precursors. <i>Journal of the American Chemical Society</i> , 2000 , 122, 7839-7840	16.4	26
399	ALn1\text{\textit{H}}xS8(A=K,Rb;Ln=La,Ce,Pr,Nd): New Semiconducting Quaternary Bismuth Sulfides. Journal of Solid State Chemistry, 1999 , 143, 151-162	3.3	26
398	Powerful Templating Effect in Rb/Pd/SexPromoted by Crown Ether-like [Rb(Se8)]+Coordination. Formation of Rb2[Pd(Se4)2]	16.4	26

(1989-1995)

397	Encapsulation of Cyclooctasulfur Molecules in an Open Metal-Sulfide Framework. Isolation of the Host-Guest Complex Cs2Sn3S7.cntdot.1/2S8 from Molten Cesium Polysulfide Fluxes. <i>Chemistry of Materials</i> , 1995 , 7, 1915-1921	9.6	26
396	Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. <i>Science Advances</i> , 2021 , 7,	14.3	26
395	Defect Perovskites under Pressure: Structural Evolution of Cs2SnX6 (X = Cl, Br, I). <i>Journal of Physical Chemistry C</i> , 2018 , 122, 24004-24013	3.8	26
394	Transient Sub-Band-Gap States at Grain Boundaries of CH3NH3PbI3 Perovskite Act as Fast Temperature Relaxation Centers. <i>ACS Energy Letters</i> , 2019 , 4, 1741-1747	20.1	25
393	Magnetizing lead-free halide double perovskites. Science Advances, 2020, 6,	14.3	25
392	Hard Radiation Detection from the Selenophosphate Pb2P2Se6. <i>Advanced Functional Materials</i> , 2015 , 25, 4874-4881	15.6	25
391	Sb and Se Substitution in CsBi4Te6: The Semiconductors CsM4Q6(M = Bi, Sb; Q = Te, Se), Cs2Bi10Q15, and CsBi5Q8. <i>Chemistry of Materials</i> , 2012 , 24, 1854-1863	9.6	25
390	Superconductivity and strong intrinsic defects in LaPd1\(\mathbb{B}\)Bi2. Physical Review B, 2013 , 88,	3.3	25
389	Crystal Structure and Properties of Yb5Ni4Ge10. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 3963-3968	2.3	25
388	Coexistence and coupling of two distinct charge density waves in Sm2Te5. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3310-2	16.4	25
387	Correlated local dipoles in PbTe. Physical Review Materials, 2018, 2,	3.2	25
386	Polypyrrole-MoS: An Efficient Sorbent for the Capture of Hg and Highly Selective Extraction of Ag over Cu. <i>Journal of the American Chemical Society</i> , 2020 , 142, 1574-1583	16.4	25
385	Semiconducting Properties and Phase-Matching Nonlinear Optical Response of the One-Dimensional Selenophosphates ANb2PSe10 (A = K, Rb, and Cs). <i>Chemistry of Materials</i> , 2015 , 27, 255-265	9.6	24
384	Self-Passivation of 2D Ruddlesden-Popper Perovskite by Polytypic Surface PbI Encapsulation. <i>Nano Letters</i> , 2019 , 19, 6109-6117	11.5	24
383	Oxidation state of uranium in A6Cu12U2S15 (A = K, Rb, Cs) compounds. <i>Inorganic Chemistry</i> , 2012 , 51, 6153-63	5.1	24
382	Stabilization of Uranyl Cations in Molten Sodium Polysulfide and Formation of the Novel Solid Oxysulfide Na4(UO2)Cu2S4. <i>Journal of the American Chemical Society</i> , 1997 , 119, 7901-7902	16.4	24
381	Laminated TaS2/Polymer Nanocomposites through Encapsulative Precipitation of Exfoliated Layers. <i>Chemistry of Materials</i> , 2001 , 13, 3717-3727	9.6	24
380	Counterion Dependent Structural Diversity in Silver Polyselenides; Structures of the New Complex Anions [Ag(Se4)], [Ag(Se5)] and [Ag4(Se4)3]2?. <i>Angewandte Chemie International Edition in English</i> , 1989, 28, 1513-1514		24

379	Nanotechnology for catalysis and solar energy conversion. <i>Nanotechnology</i> , 2021 , 32, 042003	3.4	24
378	Systematic over-estimation of lattice thermal conductivity in materials with electrically-resistive grain boundaries. <i>Energy and Environmental Science</i> , 2020 , 13, 1250-1258	35.4	23
377	A Three-Dimensional Framework with Accessible Nanopores: RbCuSb Se ?H O. <i>Angewandte Chemie - International Edition</i> , 1998 , 37, 342-344	16.4	23
376	Hexagonal mesostructured chalcogenide frameworks formed by linking [Ge4Q10]4 $\mathbb{I}(Q = S, Se)$ clusters with Sb3+ and Sn4+. Chemical Communications, 2001 , 809-810	5.8	23
375	Research Update: Prediction of high figure of merit plateau in SnS and solid solution of (Pb,Sn)S. <i>APL Materials</i> , 2016 , 4, 104505	5.7	23
374	One-Dimensional Molybdenum Thiochlorides and Their Use in High Surface Area MoSx Chalcogels. <i>Chemistry of Materials</i> , 2014 , 26, 5151-5160	9.6	22
373	Mechanical properties of low-cost, earth-abundant chalcogenide thermoelectric materials, PbSe and PbS, with additions of 0½ % CdS or ZnS. <i>Journal of Materials Science</i> , 2015 , 50, 1770-1782	4.3	22
372	ThSi2 Type Ytterbium Disilicide and its Analogues YbTxSi2 \mathbb{Z} (T = Cr, Fe, Co). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012 , 638, 287-293	1.3	22
371	Understanding Nanostructures in Thermoelectric Materials: An Electron Microscopy Study of AgPb18SbSe20 Crystals. <i>Chemistry of Materials</i> , 2010 , 22, 5630-5635	9.6	22
370	Intermetallic compounds with near Zintl phase behavior: RE2Zn3Ge6 (RE = La, Ce, Pr, Nd) grown from liquid indium. <i>Inorganic Chemistry</i> , 2005 , 44, 8670-9	5.1	22
369	[P6Se12]4-: a phosphorus-rich selenophosphate with low-valent P centers. <i>Inorganic Chemistry</i> , 2006 , 45, 2785-7	5.1	22
368	Structure and thermoelectric properties of the new quaternary bismuth selenides $A(1-x)M(4-x)Bi(11+x)Se21$ (A = K and Rb and Cs; M = Sn and Pb)members of the grand homologous series $Km(M6Se8)m(M(5+n)Se(9+n))$. Chemistry - A European Journal, 2001 , 7, 1915-26	4.8	22
367	CsAg5Te3: a new metal-rich telluride with a unique tunnel structure. <i>Journal of Alloys and Compounds</i> , 1995 , 218, 1-4	5.7	22
366	Exploring the Factors Affecting the Mechanical Properties of 2D Hybrid Organic-Inorganic Perovskites. <i>ACS Applied Materials & Acs Acs Acc Acc Acc Acc Acc Acc Acc Acc</i>	9.5	22
365	Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. <i>Nature Photonics</i> , 2022 , 16, 14-26	33.9	22
364	Contrasting SnTe-NaSbTe and SnTe-NaBiTe Thermoelectric Alloys: High Performance Facilitated by Increased Cation Vacancies and Lattice Softening. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12524-12535	16.4	21
363	Direct thermal neutron detection by the 2D semiconductor LiInPSe. <i>Nature</i> , 2020 , 577, 346-349	50.4	21
362	Denken wie ein Chemiker: Thermoelektrika intuitiv. <i>Angewandte Chemie</i> , 2016 , 128, 6938-6954	3.6	21

361	Slow thermal equilibration in methylammonium lead iodide revealed by transient mid-infrared spectroscopy. <i>Nature Communications</i> , 2018 , 9, 2792	17.4	21
360	Ba2HgS5a molecular trisulfide salt with dumbbell-like (HgS2)2- ions. <i>Inorganic Chemistry</i> , 2014 , 53, 469) §. 704	21
359	Introducing Perovskite Solar Cells to Undergraduates. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 251	-6 .4	21
358	Thermoelectric Properties of the Compounds AgPbmLaTem+2[] Chemistry of Materials, 2010, 22, 876-88	8 2 .6	21
357	Cooling of melts: kinetic stabilization and polymorphic transitions in the KInSnSe 4 system. <i>Inorganic Chemistry</i> , 2004 , 43, 2237-9	5.1	21
356	Structure of Restacked and Pillared WS2: An X-ray Absorption Study. <i>Chemistry of Materials</i> , 2003 , 15, 412-418	9.6	21
355	Transient Sub-bandgap States in Halide Perovskite Thin Films. <i>Nano Letters</i> , 2018 , 18, 827-831	11.5	20
354	Halide Perovskite High-k Field Effect Transistors with Dynamically Reconfigurable Ambipolarity 2019 , 1, 633-640		20
353	Panoramic Synthesis as an Effective Materials Discovery Tool: The System Cs/Sn/P/Se as a Test Case. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10814-10821	16.4	20
352	Heat capacity jump at Tc and pressure derivatives of superconducting transition temperature in the Ba1\(\mathbb{U}\)NaxFe2As2 (0.1\(\mathbb{U}\)0.9) series. <i>Physical Review B</i> , 2014 , 89,	3.3	20
351	Phase-change materials exhibiting tristability: interconverting forms of crystalline ⊞-, ৠ and glassy K2ZnSn3S8. <i>Inorganic Chemistry</i> , 2012 , 51, 7963-5	5.1	20
350	Quaternary selenostannates Na2\(\mathbb{Q}\)a2\(\mathbb{S}\)oling of melts. Kinetics versus thermodynamics in the polymorphism of AGaSnSe4. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 3640-3649	3.3	20
349	Thermoelectric Properties and Site-Selective Rb+/K+ Distribution in the K2-xRbxBi8Se13 Series. <i>Chemistry of Materials</i> , 2003 , 15, 3035-3040	9.6	20
348	CsPb3Bi3Te8 and CsPb4Bi3Te9: low-dimensional compounds and the homologous series CsPbmBi3Te5 + m. <i>Chemical Communications</i> , 2002 , 1380-1	5.8	20
347	An overview of advanced thermoelectric materials. <i>Journal of Materiomics</i> , 2016 , 2, 101-103	6.7	20
346	Lattice thermal transport in group II-alloyed PbTe. Applied Physics Letters, 2018, 112, 181906	3.4	20
345	Charge Density Wave in the New Polymorphs of RERuGe (RE = Pr, Sm, Dy). <i>Journal of the American Chemical Society</i> , 2017 , 139, 4130-4143	16.4	19
344	Low-Frequency Carrier Kinetics in Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 14166-14174	9.5	19

343	Selective Capture of Ba2+, Ni2+, and Co2+ by a Robust Layered Metal Sulfide. <i>Chemistry of Materials</i> , 2020 , 32, 1957-1963	9.6	19
342	Polycrystalline ZrTe5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance. <i>Physical Review Applied</i> , 2018 , 9,	4.3	19
341	Effect of an Internal Electric Field on the Redox Energies of ALnTiO4 (A = Na or Li, Ln = Y or Rare-Earth). <i>Chemistry of Materials</i> , 2013 , 25, 3852-3857	9.6	19
340	Increase in the Figure of Merit by Cd-Substitution in Sn1\(\text{NPbxTe} and Effect of Pb/Sn Ratio on Thermoelectric Properties. \(Advanced Energy Materials, \text{2012}, 2, 1218-1225 \)	21.8	19
339	Thallous chalcogenide (Tl6I4Se) for radiation detection at X-ray and Fray energies. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2011 , 659, 333-335	1.2	19
338	Rb4Sn5P4Se20: a semimetallic selenophosphate. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8834-8	16.4	19
337	Effect of secondary substituent on the physical properties, crystal structures, and nanoparticle morphologies of (porphyrin)Sn(OH)2: diversity enabled via synthetic manipulations. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3640		19
336	New members of the homologous series $A(m)[M(6)Se(8)](m)[M(5+n)Se(9+n)]$: The quaternary phases $A(1-x)M'(3-x)Bi(11+x)Se(20)$ and $A(1+x)M'(3-2x)Bi(7+x)Se(14)$ ($A = K$, Rb , Cs ; $M' = Sn$, Pb). Inorganic Chemistry, 2001 , 40, 6204-11	5.1	19
335	[P8Se18]6-: A New Oligomeric Selenophosphate Anion with P4+ and P3+ Centers and Pyramidal [PSe3] Fragments. <i>Inorganic Chemistry</i> , 1998 , 37, 2582-2584	5.1	19
334	Ln Al Si (Ln=Ho, Er, Tm): New Silicides from Molten Aluminum-Determination of the Al/Si Distribution with Neutron Crystallography and Metamagnetic Transitions. <i>Angewandte Chemie -</i> <i>International Edition</i> , 1999 , 38, 693-696	16.4	19
333	Ultralow thermal conductivity in diamondoid lattices: high thermoelectric performance in chalcopyrite Cu0.8+yAg0.2In1IITe2. <i>Energy and Environmental Science</i> , 2020 , 13, 3693-3705	35.4	19
332	Distance Dependence of Ffster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length. <i>Journal of the American Chemical Society</i> , 2021 , 143, 4244-4252	16.4	19
331	Absence of Nanostructuring in NaPb SbTe: Solid Solutions with High Thermoelectric Performance in the Intermediate Temperature Regime. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7021-70	3 ^{16.4}	19
330	Highly tunable properties in pressure-treated two-dimensional Dion-Jacobson perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16121-16126	6 ^{11.5}	18
329	Superconductivity in the Narrow Gap Semiconductor RbBiTe. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14694-14698	16.4	18
328	Perovskites with a Twist: Strong In1+ Off-Centering in the Mixed-Valent CsInX3 (X = Cl, Br). <i>Chemistry of Materials</i> , 2019 , 31, 9554-9566	9.6	18
327	Group 10 and Group 12 One-Dimensional Selenodiphosphates:A2MP2Se6(A=K, Rb, Cs;M=Pd, Zn, Cd, Hg). <i>Journal of Solid State Chemistry</i> , 1998 , 138, 321-328	3.3	18
326	Temperature-induced abrupt volume inflation in the mixed-valence ternary Zintl phase Yb8Ge3Sb5. <i>Chemical Communications</i> , 2005 , 5754-6	5.8	18

325	The One-dimensional Polyselenide Compound CsGaSe3. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2003 , 629, 621-624	1.3	18	
324	Si extraction from silica in a basic polychalcogenide flux. Stabilization of Ba4SiSb2Se11, a novel mixed selenosilicate/selenoantimonate with a polar structure. <i>Inorganic Chemistry</i> , 2001 , 40, 101-4	5.1	18	
323	(Ph4P)4[Pd7As10S22]:□A Sulfosalt with a Large Cluster Anion Whose Structure Resembles a Gondola. <i>Inorganic Chemistry</i> , 1998 , 37, 1670-1671	5.1	18	
322	Superheated Solvent Media for Organometallic (Poly)Chalcogenide Cluster Synthesis. <i>Comments on Inorganic Chemistry</i> , 1999 , 21, 29-51	3.9	18	
321	A2AuP2Se6 (A = K, Rb): Mixed-Valent Compounds with All Possible Coordination Geometries for Gold. <i>Inorganic Chemistry</i> , 1996 , 35, 3451-3452	5.1	18	
320	Memory Seeds Enable High Structural Phase Purity in 2D Perovskite Films for High-Efficiency Devices. <i>Advanced Materials</i> , 2021 , 33, e2007176	24	18	
319	Demonstration of Energy-Resolved ERay Detection at Room Temperature by the CsPbCl Perovskite Semiconductor. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2068-2077	16.4	18	
318	-Phenylenediammonium as a New Spacer for Dion-Jacobson Two-Dimensional Perovskites. <i>Journal of the American Chemical Society</i> , 2021 , 143, 12063-12073	16.4	18	
317	A New Three-Dimensional Subsulfide IrlnS with Dirac Semimetal Behavior. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19130-19137	16.4	17	
316	NaCu6Se4: a layered compound with mixed valency and metallic properties. <i>Inorganic Chemistry</i> , 2014 , 53, 12191-8	5.1	17	
315	Metal inorganic frameworks: dynamic flexible architecture with extended pore order built from [Se(3)](2-) linkers and [Re(6)Se(6)Br(8)](2-) clusters. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6728-34	16.4	17	
314	GdCo(1-x)Ga3Ge: charge density wave in a Ga square net. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3082-3	16.4	17	
313	Structure inhomogeneities, shallow defects, and charge transport in the series of thermoelectric materials K2Bi8\(\text{B}\)SbxSe13. <i>Journal of Applied Physics</i> , 2006 , 100, 123704	2.5	17	
312	RE5Co4Si14(RE = Ho, Er, Tm, Yb): Silicides Grown from Ga Flux Showing Exceptional Resistance to Chemical and Thermal Attack. <i>Chemistry of Materials</i> , 2005 , 17, 1636-1645	9.6	17	
311	A new chalcogenide homologous series $A2[M(5+n)Se(9+n)]$ (A = Rb, Cs; M = Bi, Ag, Cd). Chemical Communications, 2006, 1628-30	5.8	17	
310	Molten Gallium as a Non-Reactive Solvent: Synthesis of the Silicides RE2Ni3+xSi5-x (RE = Sm, Gd and Tb). <i>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences</i> , 2003 , 58, 649-657	1	17	
309	Tropochemical cell-twinning in the new quaternary bismuth selenides KxSn(6-2x)Bi(2+x)Se9 and KSn5Bi5Se13. <i>Inorganic Chemistry</i> , 2003 , 42, 7200-6	5.1	17	
308	Synthese und Struktur des Clusters [NaAu12Se8]3[Jeines anorganischen Cryptand-Komplexes. <i>Angewandte Chemie</i> , 1992 , 104, 799-801	3.6	17	

307	Dynamic Disorder, Band Gap Widening, and Persistent Near-IR Photoluminescence up to At Least 523 K in ASnI3 Perovskites (A = Cs+, CH3NH3+ and NH2IIH?NH2+). <i>Journal of Physical Chemistry C</i> , 2018 , 122, 26353-26361	3.8	17
306	Emphanitic anharmonicity in PbSe at high temperature and anomalous electronic properties in the PbQ(Q=S,Se,Te) system. <i>Physical Review B</i> , 2018 , 98,	3.3	17
305	K[BiMnS], Design of a Highly Selective Ion Exchange Material and Direct Gap 2D Semiconductor. Journal of the American Chemical Society, 2019 , 141, 16903-16914	16.4	16
304	Morphology of X-ray detector Cs2TeI6 perovskite thick films grown by electrospray method. Journal of Materials Chemistry C, 2019 , 7, 8712-8719	7.1	16
303	Size as a Parameter to Stabilize New Phases: Rock Salt Phases of Pb(m)Sb(2n)Se(m+3n). <i>Journal of the American Chemical Society</i> , 2015 , 137, 9937-42	16.4	16
302	Anomalously Large Seebeck Coefficient of CuFeS2 Derives from Large Asymmetry in the Energy Dependence of Carrier Relaxation Time. <i>Chemistry of Materials</i> , 2020 , 32, 2639-2646	9.6	16
301	Direct Gap Semiconductors Pb2BiS2I3, Sn2BiS2I3, and Sn2BiSI5. Chemistry of Materials, 2016, 28, 7332-7	'3 4 63	16
300	LiPbSb3S6: a semiconducting sulfosalt with very low thermal conductivity. <i>Inorganic Chemistry</i> , 2014 , 53, 673-5	5.1	16
299	Homologous Series of 2D Chalcogenides Cs-Ag-Bi-Q (Q = S, Se) with Ion-Exchange Properties. Journal of the American Chemical Society, 2017 , 139, 12601-12609	16.4	16
298	A double charge density wave in the single tellurium square net in Cu0.63EuTe2?. <i>Journal of the American Chemical Society</i> , 2009 , 131, 6896-7	16.4	16
297	Yb8Ge3Sb5, a metallic mixed-valent Zintl phase containing the polymeric 1 infinity[Ge3 4-] anions. Journal of the American Chemical Society, 2004 , 126, 4474-5	16.4	16
296	KCeSe4: A New Solid-State Lanthanide Polychalcogenide. <i>Angewandte Chemie International Edition in English</i> , 1992 , 31, 1594-1596		16
295	Chalcogenide Aerogels as Sorbents for Noble Gases (Xe, Kr). <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 33389-33394	9.5	15
294	Highly Selective Radioactive 137Cs+ Capture in an Open-Framework Oxysulfide Based on Supertetrahedral Cluster. <i>Chemistry of Materials</i> , 2019 , 31, 1628-1634	9.6	15
293	Nanoscale Huclear magnetic resonance depth imaging of topological insulators. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E3645-50	11.5	15
292	Nonlinear Band Gap Tunability in Selenium lellurium Alloys and Its Utilization in Solar Cells. <i>ACS Energy Letters</i> , 2019 , 4, 2137-2143	20.1	15
291	Ultralow Thermal Conductivity and High-Temperature Thermoelectric Performance in n-Type K2.5Bi8.5Se14. <i>Chemistry of Materials</i> , 2019 , 31, 5943-5952	9.6	15
290	Cs2Hg3S4: A Low-Dimensional Direct Bandgap Semiconductor. <i>Chemistry of Materials</i> , 2015 , 27, 370-378	89.6	15

289	Arsenic-containing chalcophosphate molecular anions. <i>Inorganic Chemistry</i> , 2010 , 49, 9049-54	5.1	15
288	The tellurophosphate K(4)P(8)Te(4): phase-change properties, exfoliation, photoluminescence in solution and nanospheres. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16303-12	16.4	15
287	Von cyclo-Te8 zu TexnEschichten: Sind nichtklassische Polytelluride klassischer, als wir dachten?. <i>Angewandte Chemie</i> , 1995 , 107, 2281-2283	3.6	15
286	Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells. Nature Nanotechnology, 2021,	28.7	15
285	Static Rashba Effect by Surface Reconstruction and Photon Recycling in the Dynamic Indirect Gap of APbBr (A = Cs, CHNH) Single Crystals. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21059-2106	67 ^{.4}	15
284	Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (CuAg)(InGa)Te. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5978-5989	16.4	15
283	Phase Transition, Conformational Exchange, and Nonlinear Optical Third Harmonic Generation of ACsP2Se8 (A = K, Rb, Cs). <i>Chemistry of Materials</i> , 2016 , 28, 2374-2383	9.6	15
282	High-Surface-Area Antimony Sulfide Chalcogels. <i>Chemistry of Materials</i> , 2016 , 28, 7744-7749	9.6	15
281	Concerted Rattling in CsAg5Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. <i>Angewandte Chemie</i> , 2016 , 128, 11603-11608	3.6	15
280	The Two-Dimensional ACdBiQ (A = K, Rb, Cs; Q = S, Se): Direct Bandgap Semiconductors and Ion-Exchange Materials. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6978-6987	16.4	14
279	Ultralow Thermal Conductivity and Thermoelectric Properties of Rb2Bi8Se13. <i>Chemistry of Materials</i> , 2020 , 32, 3561-3569	9.6	14
278	HalogenNH2+ Interaction, Temperature-Induced Phase Transition, and Ordering in (NH2CHNH2)PbX3 (X = Cl, Br, I) Hybrid Perovskites. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 8479-848	7 .8	14
277	Unique [MnBi] Nanowires in KMnBi: A Quasi-One-Dimensional Antiferromagnetic Metal. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4391-4400	16.4	14
276	First Examples of Gold Thiocadmates: A2Au2Cd2S4 (A=Rb, Cs) and K2Au4CdS4: Bright Photoluminescence from New Alkali Metal/Gold Thiocadmates. <i>Chemistry - A European Journal</i> , 1998 , 4, 2435-2441	4.8	14
275	Mechanical Characterization of PbTe-based Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1044, 1		14
274	Cubic AgMnSbTe Semiconductor with a High Thermoelectric Performance. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13990-13998	16.4	14
273	Charge Transport and Observation of Persistent Photoconductivity in TlSeI Single Crystals. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1538-1544	6.4	13
272	Infrared-pump electronic-probe of methylammonium lead iodide reveals electronically decoupled organic and inorganic sublattices. <i>Nature Communications</i> , 2019 , 10, 482	17.4	13

271	An Unusual Crystal Growth Method of the Chalcohalide Semiconductor, #Hg3S2Cl2: A New Candidate for Hard Radiation Detection. <i>Crystal Growth and Design</i> , 2016 , 16, 2678-2684	3.5	13
270	New layered tin(II) thiophosphates ASnPS4 (A = K, Rb, Cs): synthesis, structure, glass formation, and the modulated CsSnPS4. <i>Inorganic Chemistry</i> , 2012 , 51, 11562-73	5.1	13
269	Stabilization of Sn2+ in K10Sn3(P2Se6)4 and Cs2SnP2Se6 derived from a basic flux. <i>Inorganic Chemistry</i> , 2011 , 50, 412-4	5.1	13
268	Distortion and charge density wave in the Ga square net coupled to the site occupancy wave in YCo0.88Ga3Ge. <i>Inorganic Chemistry</i> , 2008 , 47, 7243-8	5.1	13
267	Cubic Gyroid Frameworks in Mesostructured Metal Selenides Created from Tetrahedral Zn2+, Cd2+, and In3+ Ions and the [SbSe4]3- Precursor. <i>Chemistry of Materials</i> , 2006 , 18, 4690-4699	9.6	13
266	Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit <i>ChemInform</i> , 2004 , 35, no		13
265	Lattice thermal conductivity of K2(Bi1⊠Sbz)8Se13 solid solutions. <i>Journal of Applied Physics</i> , 2004 , 95, 4140-4146	2.5	13
264	Alpha-Na6Pb3(PS4)4, a noncentrosymmetric thiophosphate with the novel, saucer-shaped [Pb3(PS4)4]6- cluster, and its metastable, 3-dimensionally polymerized allotrope beta-Na6Pb3(PS4)4. <i>Inorganic Chemistry</i> , 2001 , 40, 2938-9	5.1	13
263	Tunable Broad Light Emission from 3D "Hollow" Bromide Perovskites through Defect Engineering. Journal of the American Chemical Society, 2021 , 143, 7069-7080	16.4	13
262	Mercury Chalcohalide Semiconductor Hg3Se2Br2 for Hard Radiation Detection. <i>Crystal Growth and Design</i> , 2016 , 16, 6446-6453	3.5	13
261	Six Quaternary Chalcogenides of the Pavonite Homologous Series with Ultralow Lattice Thermal Conductivity. <i>Chemistry of Materials</i> , 2019 , 31, 3430-3439	9.6	12
260	Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide. <i>Angewandte Chemie</i> , 2016 , 128, 15618-15622	3.6	12
259	Superconductivity in the intermetallic pnictide compound Ca11Bi10⊠. <i>Physical Review B</i> , 2014 , 89,	3.3	12
258	Spectroscopic signature of moment-dependent electronphonon coupling in 2H-TaS2. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 11310-11316	7.1	12
257	NaBa2Cu3S5: a doped p-type degenerate semiconductor. <i>Inorganic Chemistry</i> , 2013 , 52, 7210-7	5.1	12
256	Chemical ordering rather than random alloying in SbAs. <i>Physical Review B</i> , 2013 , 87,	3.3	12
255	REAu4Al8Si: the end member of a new homologous series of intermetallics featuring thick AuAl2 layers. <i>Chemical Communications</i> , 2003 , 2340	5.8	12
254	Crystal Growth of Ternary and Quaternary Alkali Metal Bismuth Chalcogenides Using Bridgman Technique. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 626, 881		12

253	Novel quaternary lanthanum bismuth sulfides Pb(2)La(x)Bi(8-x)(S(14)), Sr(2)La(x)Bi(8-x)S(14), and Cs(2)La(x)Bi(10-x)S(16) with complex structures. <i>Inorganic Chemistry</i> , 2001 , 40, 1878-87	5.1	12
252	Extraordinary role of Zn in enhancing thermoelectric performance of Ga-doped n-type PbTe. <i>Energy and Environmental Science</i> , 2022 , 15, 368-375	35.4	12
251	Incorporated Guanidinium Expands the CHNHPbI Lattice and Enhances Photovoltaic Performance. <i>ACS Applied Materials & District Action (Control of the CHNHPbI Lattice and Enhances Photovoltaic Performance)</i> 12, 43885-43891	9.5	12
250	Mixed-Valent NaCu4Se3: A Two-Dimensional Metal. <i>Inorganic Chemistry</i> , 2016 , 55, 4884-90	5.1	12
249	Tuning Ionic and Electronic Conductivities in the Hollow Perovskite (en) MAPbI3. <i>Chemistry of Materials</i> , 2021 , 33, 719-726	9.6	12
248	Nonequilibrium dynamics of spontaneous symmetry breaking into a hidden state of charge-density wave. <i>Nature Communications</i> , 2021 , 12, 566	17.4	12
247	Design Strategy for High-Performance Thermoelectric Materials: The Prediction of Electron-Doped KZrCuSe3. <i>Chemistry of Materials</i> , 2019 , 31, 3018-3024	9.6	11
246	TlHgInS3: An Indirect-Band-Gap Semiconductor with X-ray Photoconductivity Response. <i>Chemistry of Materials</i> , 2015 , 27, 5417-5424	9.6	11
245	CulSe: A Metal-Inorganic Framework Wide-Bandgap Semiconductor for Photon Detection at Room Temperature. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1894-1899	16.4	11
244	Magnetic structure of NiS2⊠Sex. <i>Physical Review B</i> , 2016 , 93,	3.3	11
243	Ni and Se co-doping increases the power factor and thermoelectric performance of CoSbS. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15123-15131	13	11
242	Semiconducting Pavonites CdMBi4Se8 (M = Sn and Pb) and Their Thermoelectric Properties. <i>Chemistry of Materials</i> , 2017 , 29, 8494-8503	9.6	11
241	Charge Density Wave and Narrow Energy Gap at Room Temperature in 2D PbSbSTe with Square Te Sheets. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11271-11276	16.4	11
240	Site-Specific Contributions to the Band Inversion in a Topological Crystalline Insulator. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500117	6.4	11
239	Two-dimensional mineral [Pb2BiS3][AuTe2]: high-mobility charge carriers in single-atom-thick layers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2311-7	16.4	11
238	Role of K/Bi disorder in the electronic structure of 歌2Bi8Se13. <i>Physical Review B</i> , 2009 , 80,	3.3	11
237	Synthesis, Crystallographic Studies, and Characterization of K2Bi8Se13\(\text{MSx} \) Solid Solutions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003 , 629, 2222-2228	1.3	11
236	[Cu4Mn4(SiC3H7)12S]2[Ja Novel Octanuclear Heterometallic Complex Consisting of a Metal Cube with an Interstitial A-Sulfide Ion and Edge-Bridging Thiolate Ligands. <i>Angewandte Chemie International Edition in English</i> 1996, 35, 2135-2137		11

235	High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3. <i>Advanced Energy Materials</i> , 2021 , 11, 2100661	21.8	11
234	Charge-carrier-mediated lattice softening contributes to high zT in thermoelectric semiconductors. <i>Joule</i> , 2021 , 5, 1168-1182	27.8	11
233	A low-temperature study of manganese-induced ferromagnetism and valence band convergence in telluride. <i>Applied Physics Letters</i> , 2016 , 108, 182101	3.4	11
232	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 268-273	16.4	11
231	Dissociation of GaSb in n-Type PbTe: off-Centered Gallium Atom and Weak Electron P honon Coupling Provide High Thermoelectric Performance. <i>Chemistry of Materials</i> , 2021 , 33, 1842-1851	9.6	11
230	Role of Stoichiometry in the Growth of Large Pb2P2Se6 Crystals for Nuclear Radiation Detection. <i>ACS Photonics</i> , 2018 , 5, 566-573	6.3	11
229	Directional Negative Thermal Expansion and Large Poisson Ratio in CHNHPbI Perovskite Revealed by Strong Coherent Shear Phonon Generation. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3161-3166	6.4	11
228	The New Semiconductor Cs4Cu3Bi9S17. <i>Chemistry of Materials</i> , 2017 , 29, 1744-1751	9.6	10
227	Resonant Bonding, Multiband Thermoelectric Transport, and Native Defects in n-Type BaBiTe3 \blacksquare Sex (x = 0, 0.05, and 0.1). <i>Chemistry of Materials</i> , 2018 , 30, 174-184	9.6	10
226	Zhao et al. reply. <i>Nature</i> , 2016 , 539, E2-E3	50.4	10
226	Zhao et al. reply. <i>Nature</i> , 2016 , 539, E2-E3 Investigation of Semi-Insulating Cs2Hg6S7 and Cs2Hg6-xCdxS7 Alloy for Hard Radiation Detection. <i>Crystal Growth and Design</i> , 2014 , 14, 5949-5956	50.4 3.5	10
	Investigation of Semi-Insulating Cs2Hg6S7 and Cs2Hg6-xCdxS7 Alloy for Hard Radiation Detection.		10
225	Investigation of Semi-Insulating Cs2Hg6S7 and Cs2Hg6-xCdxS7 Alloy for Hard Radiation Detection. Crystal Growth and Design, 2014, 14, 5949-5956 The new phase [TlBbBe¶SnBbBe] a naturally formed semiconducting heterostructure with	3.5	10
225	Investigation of Semi-Insulating Cs2Hg6S7 and Cs2Hg6-xCdxS7 Alloy for Hard Radiation Detection. Crystal Growth and Design, 2014, 14, 5949-5956 The new phase [TlBbBeffSnBbBeff a naturally formed semiconducting heterostructure with two-dimensional conductance. Journal of the American Chemical Society, 2014, 136, 11079-84 Antiferromagnetic Kondo lattice in the layered compound CePd1Bi2 and comparison to the	3.5	10
225 224 223	Investigation of Semi-Insulating Cs2Hg6S7 and Cs2Hg6-xCdxS7 Alloy for Hard Radiation Detection. Crystal Growth and Design, 2014, 14, 5949-5956 The new phase [TlBbBe¶SnBbBe¶ a naturally formed semiconducting heterostructure with two-dimensional conductance. Journal of the American Chemical Society, 2014, 136, 11079-84 Antiferromagnetic Kondo lattice in the layered compound CePd1\(\mathbb{B}\) Bi2 and comparison to the superconductor LaPd1\(\mathbb{B}\) Bi2. Physical Review B, 2015, 92, Formation of native defects in the Fray detector material Cs2Hg6S7. Applied Physics Letters, 2012,	3·5 16.4 3·3	10 10 10
225 224 223 222	Investigation of Semi-Insulating Cs2Hg6S7 and Cs2Hg6-xCdxS7 Alloy for Hard Radiation Detection. Crystal Growth and Design, 2014, 14, 5949-5956 The new phase [TlBbBellsnBbBell a naturally formed semiconducting heterostructure with two-dimensional conductance. Journal of the American Chemical Society, 2014, 136, 11079-84 Antiferromagnetic Kondo lattice in the layered compound CePd1\(\text{B}i2 \) and comparison to the superconductor LaPd1\(\text{B}i2 \). Physical Review B, 2015, 92, Formation of native defects in the Fay detector material Cs2Hg6S7. Applied Physics Letters, 2012, 101, 202103 Searching for New Thermoelectrics in Chemically and Structurally Complex Bismuth Chalcogenides.	3·5 16.4 3·3	10 10 10
225 224 223 222 221	Investigation of Semi-Insulating Cs2Hg6S7 and Cs2Hg6-xCdxS7 Alloy for Hard Radiation Detection. Crystal Growth and Design, 2014, 14, 5949-5956 The new phase [Tl\Bb\Be\Is\Sigma\Bb\Be\Is\sigma\Bb\Be\Is\sigma\si\	3·5 16.4 3·3	10 10 10 10 10

217	Mechanics-coupled stability of metal-halide perovskites. <i>Matter</i> , 2021 , 4, 2765-2809	12.7	10
216	Understanding Instability in Formamidinium Lead Halide Perovskites: Kinetics of Transformative Reactions at Grain and Subgrain Boundaries. <i>ACS Energy Letters</i> , 2022 , 7, 1534-1543	20.1	10
215	Impurity-induced deep centers in Tl6SI4. Journal of Applied Physics, 2017, 121, 145102	2.5	9
214	Stoichiometric Effects on the Photoelectric Properties of LiInSe2 Crystals for Neutron Detection. <i>Crystal Growth and Design</i> , 2018 , 18, 2864-2870	3.5	9
213	Three-Dimensional Atom-Probe Tomographic Analyses of Lead-Telluride Based Thermoelectric Materials. <i>Jom</i> , 2014 , 66, 2288-2297	2.1	9
212	Flux Crystal Growth of the RERuGe (RE = La, Ce, Nd, Gd, Tb) Series and Their Magnetic and Metamagnetic Transitions. <i>Inorganic Chemistry</i> , 2017 , 56, 14584-14595	5.1	9
211	Cs1-xSn1-xBi9+Se15 and Cs1.5-3xBi9.5+xSe15: members of the homologous superseries $Am[M1+lSe2+l]2m[M1+2l+nSe3+3l+n]$ (A = alkali metal, M = Sn and Bi) allowing structural evolution in three different dimensions. <i>Chemical Communications</i> , 2001 , 1648-9	5.8	9
2 10	Solid State Chemistry Approach to Advanced Thermoelectrics. Ternary and Quaternary Alkali Metal Bismuth Chalcogenides as Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 545, 233		9
209	Edge States Drive Exciton Dissociation in Ruddlesden P opper Lead Halide Perovskite Thin Films 2020 , 2, 1360-1367		9
208	Shedding Light on the Stability and Structure P roperty Relationships of Two-Dimensional Hybrid Lead Bromide Perovskites. <i>Chemistry of Materials</i> , 2021 , 33, 5085-5107	9.6	9
207	Employing the Dynamics of the Electrochemical Interface in Aqueous Zinc-Ion Battery Cathodes. <i>Advanced Functional Materials</i> , 2021 , 31, 2102135	15.6	9
206	Refined Synthesis and Crystal Growth of Pb2P2Se6 for Hard Radiation Detectors. <i>Crystal Growth and Design</i> , 2016 , 16, 5100-5109	3.5	9
205	High Hole Mobility and Nonsaturating Giant Magnetoresistance in the New 2D Metal NaCuSe Synthesized by a Unique Pathway. <i>Journal of the American Chemical Society</i> , 2019 , 141, 635-642	16.4	9
204	Highly efficient photoelectric effect in halide perovskites for regenerative electron sources. <i>Nature Communications</i> , 2021 , 12, 673	17.4	9
203	Enhancement of Thermoelectric Performance in CuSbSe Nanoplate-Based Pellets by Texture Engineering and Carrier Concentration Optimization. <i>Small</i> , 2018 , 14, e1803092	11	9
202	Copper Vacancies and Heavy Holes in the Two-Dimensional Semiconductor KCu3\(\mathbb{\textit{USe2}}\). Chemistry of Materials, 2017 , 29, 6114-6121	9.6	8
201	TlSbS2: a Semiconductor for Hard Radiation Detection. <i>ACS Photonics</i> , 2017 , 4, 2891-2898	6.3	8
200	Direct Observation of Bandgap Oscillations Induced by Optical Phonons in Hybrid Lead Iodide Perovskites. <i>Advanced Functional Materials</i> , 2020 , 30, 1907982	15.6	8

199	Orbital-flop Induced Magnetoresistance Anisotropy in Rare Earth Monopnictide CeSb. <i>Nature Communications</i> , 2019 , 10, 2875	17.4	8
198	Interplay of topological surface and bulk electronic states in Bi2Se3. <i>Physical Review B</i> , 2013 , 87,	3.3	8
197	Ordering Phenomena in Complex Chalcogenides I the Showcase of A2In12Q19 (A = K, Tl, NH4; Q = Se, Te) and Pseudobinary In2Q3. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 367-378	2.3	8
196	Atom Probe Tomography Analysis of Ag Doping in 2D Layered Material (PbSe)(BiSe). <i>Nano Letters</i> , 2016 , 16, 6064-6069	11.5	8
195	PS Reactive Flux Method for the Rapid Synthesis of Mono- and Bimetallic 2D Thiophosphates MM'PS. <i>Inorganic Chemistry</i> , 2021 , 60, 3502-3513	5.1	8
194	Pressure-Induced Superconductivity and Flattened Se Rings in the Wide Band Gap Semiconductor CulSe. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15174-15182	16.4	7
193	Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of Balr2In9. <i>Inorganic Chemistry</i> , 2015 , 54, 8794-9	5.1	7
192	An Effective Purification Process for the Nuclear Radiation Detector Tl6SeI4. <i>Crystal Growth and Design</i> , 2018 , 18, 3484-3493	3.5	7
191	Quaternary Pavonites ASnBiS (A = Li, Na): Site Occupancy Disorder Defines Electronic Structure. <i>Inorganic Chemistry</i> , 2018 , 57, 2260-2268	5.1	7
190	Synthesis, Structure, and Complex Magnetism of MIr2In8 (M = Eu, Sr). <i>Inorganic Chemistry</i> , 2016 , 55, 31	28 35	7
189	AgSe to KAgSe: Suppressing Order-Disorder Transitions via Reduced Dimensionality. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9193-9202	16.4	7
188	Quaternary Chalcogenide Semiconductors with 2D Structures: RbZnBiSe and CsCdBiTe. <i>Inorganic Chemistry</i> , 2018 , 57, 9403-9411	5.1	7
187	Superconductivity and Structural Conversion with Na and K Doping of the Narrow-Gap Semiconductor CsBi4Te6. <i>Chemistry of Materials</i> , 2018 , 30, 5293-5304	9.6	7
186	A unique microporous copper trimesate selenite with high selectivity for CO2. <i>CrystEngComm</i> , 2014 , 16, 3483-3486	3.3	7
185	Fracture mode, microstructure and temperature-dependent elastic moduli for thermoelectric composites of PbTePbS with SiC nanoparticle additions. <i>Philosophical Magazine</i> , 2013 , 93, 4412-4439	1.6	7
184	Strongly Nonlinear Optical Chalcogenide Thin Films of APSe6 (A=K, Rb) from Spin-Coating. Angewandte Chemie, 2011 , 123, 11059-11062	3.6	7
183	Rb4Sn2Ag4(P2Se6)3: First Example of a Quinary Selenophosphate and an Unusual SnAg s2f110Interaction. <i>Inorganic Chemistry</i> , 1998 , 37, 2848-2849	5.1	7
182	beta-Bi(4)(P(2)Se(6))(3): A New Ternary Selenophosphate Obtained in a P(2)Se(5) Flux. <i>Inorganic Chemistry</i> , 1999 , 38, 4795-4800	5.1	7

181	Gold Inorganic Rings Based on Polychalcogenide Chains. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1992 , 64, 153-160	1	7
180	Polychalcogenide Complexes as Low Temperature Precursors for Quantum Size and Bulk Binary and Ternary Semiconductors. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 204, 163		7
179	Layered V205 Xerogels: Host-Guest Chemistry and Conductive-Polymers. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 210, 429		7
178	Thermoelectric Performance of the 2D BiSiTe Semiconductor <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	7
177	Signatures of Coherent Phonon Transport in Ultralow Thermal Conductivity Two-Dimensional Ruddlesden-Popper Phase Perovskites. <i>ACS Nano</i> , 2021 , 15, 4165-4172	16.7	7
176	Accelerated discovery of a large family of quaternary chalcogenides with very low lattice thermal conductivity. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	7
175	Bismuth/Silver-Based Two-Dimensional Iodide Double and One-Dimensional Bi Perovskites: Interplay between Structural and Electronic Dimensions. <i>Chemistry of Materials</i> , 2021 , 33, 6206-6216	9.6	7
174	Inorganic Halide Perovskitoid TlPbI3 for Ionizing Radiation Detection. <i>Advanced Functional Materials</i> , 2021 , 31, 2006635	15.6	7
173	Two-Dimensional CsAg5Te3\(\text{\text{BS}}\)X Semiconductors: Multi-anion Chalcogenides with Dynamic Disorder and Ultralow Thermal Conductivity. <i>Chemistry of Materials</i> , 2018 , 30, 7245-7254	9.6	7
172	Sensitivity and Detection Limit of Spectroscopic-Grade Perovskite CsPbBr 3 Crystal for Hard X-Ray Detection. <i>Advanced Functional Materials</i> ,2112925	15.6	7
171	Improved Crystal Growth of Tl6SeI4 for ERay Detection Material by Oxide Impurity Removal. <i>Crystal Growth and Design</i> , 2017 , 17, 6096-6104	3.5	6
170	Ion Beam Induced Artifacts in Lead-Based Chalcogenides. <i>Microscopy and Microanalysis</i> , 2019 , 25, 831-8	39 .5	6
169	A Natural 2D Heterostructure [PbSbS][Au Te] with Large Transverse Nonsaturating Negative Magnetoresistance and High Electron Mobility. <i>Journal of the American Chemical Society</i> , 2019 , 141, 754	14-7 5 5	3 ⁶
168	Scanning tunneling microscopy of superconducting topological surface states in Bi2Se3. <i>Physical Review B</i> , 2016 , 93,	3.3	6
167	La(1-x)Bi(1+x)S3 (x 🛈 .08): An n-Type Semiconductor. <i>Inorganic Chemistry</i> , 2016 , 55, 3547-52	5.1	6
166	Multistates and Polyamorphism in Phase-Change KSbSe. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9261-9268	16.4	6
165	Four High-Temperature Ferromagnets in the HfBeBn System. <i>Chemistry of Materials</i> , 2014 , 26, 6827-683	37 3.6	6
164	Mercury and antimony chalcohalide semiconductors as new candidates for radiation detection applications at room temperature 2012 ,		6

163	V2O5 Xerogels as Hosts For Conductive Polymers. Intercalative Polymerization of Aniline, Pyrrole and 2,2EBithiophene <i>Materials Research Society Symposia Proceedings</i> , 1989 , 173, 317		6
162	Achieving Enhanced Thermoelectric Performance in Multiphase Materials. <i>Accounts of Materials Research</i> ,	7.5	6
161	IrInS, a polar, metal-rich semiconducting subchalcogenide. <i>Chemical Science</i> , 2019 , 11, 870-878	9.4	6
160	In Quest of Environmentally Stable Perovskite Solar Cells: A Perspective. <i>Helvetica Chimica Acta</i> , 2021 , 104,	2	6
159	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. <i>Angewandte Chemie</i> , 2021 , 133, 272-277	3.6	6
158	Role of the A-Site Cation in Low-Temperature Optical Behaviors of APbBr (A = Cs, CHNH). <i>Journal of the American Chemical Society</i> , 2021 , 143, 2340-2347	16.4	6
157	Metal cation s lone-pairs increase octahedral tilting instabilities in halide perovskites. <i>Materials Advances</i> , 2021 , 2, 4610-4616	3.3	6
156	Conversion of Single Crystal (NH4)2Mo3S13IH2O to Isomorphic Pseudocrystals of MoS2Nanoparticles. <i>Chemistry of Materials</i> , 2018 , 30, 3847-3853	9.6	6
155	Accelerated Discovery and Design of Ultralow Lattice Thermal Conductivity Materials Using Chemical Bonding Principles. <i>Advanced Functional Materials</i> , 2022 , 32, 2108532	15.6	6
154	Interstitial Nature of Mn Doping in 2D Perovskites. ACS Nano, 2021,	16.7	6
153	Antiferromagnetic Semiconductor BaFMnTe with Unique Mn Ordering and Red Photoluminescence. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17421-17430	16.4	5
152	Controlling the Vapor Transport Crystal Growth of Hg3Se2I2 Hard Radiation Detector Using Organic Polymer. <i>Crystal Growth and Design</i> , 2019 , 19, 2074-2080	3.5	5
151	Pressure-temperature phase diagram of the EuRbFe4As4 superconductor. <i>Physical Review B</i> , 2019 , 99,	3.3	5
150	Flux Crystal Growth of the Ternary Polygermanide LaPtGe2, a p-Type Metal. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 2164-2172	2.3	5
149	Hybridization Gap and Dresselhaus Spin Splitting in EuIr4In2Ge4. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9186-91	16.4	5
148	Crystal Growth, Structures, and Properties of the Complex Borides, LaOs2Al2B and La2Os2AlB2. <i>Inorganic Chemistry</i> , 2015 , 54, 8049-57	5.1	5
147	Electrical Properties and Figures of Merit for New Chalcogenide-Based Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 478, 327		5
146	Transport Behavior and Thermal Conductivity Reduction in the Composite System PbTe-Pb-Sb. Materials Research Society Symposia Proceedings, 2007, 1044, 1		5

145	High Temperature Measurement System Design for Thermoelectric Materials In Power Generation Application. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 410		5	
144	Anisotropy in Thermoelectric Properties of CsBi4Te6. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 206		5	
143	Synthesis and Thermoelectric Properties of Cs2 Bi7.33 Se12, A2 Bi8 Se13 (A = Rb, Cs), Ba4-x Bi6+2/3x Se13, and Ba3∃x Pb3∃x Bi6 Se15. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 545, 189		5	
142	Expanding the Cage of 2D Bromide Perovskites by Large A-Site Cations. <i>Chemistry of Materials</i> , 2022 , 34, 1132-1142	9.6	5	
141	High-phase purity two-dimensional perovskites with 17.3% efficiency enabled by interface engineering of hole transport layer. <i>Cell Reports Physical Science</i> , 2021 , 2, 100601	6.1	5	
140	Charge Transport Mechanisms in a Pb2P2Se6 Semiconductor. <i>ACS Photonics</i> , 2016 , 3, 1877-1887	6.3	5	
139	One-Dimensional Zinc Selenophosphates: A2ZnP2Se6 (A = K, Rb, Cs). <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2016 , 642, 1120-1125	1.3	5	
138	Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe. <i>Advanced Materials</i> , 2021 , 33, e2104908	24	5	
137	Preface for the Halide Perovskites Forum. <i>Inorganic Chemistry</i> , 2017 , 56, 1-2	5.1	4	
136	The Subchalcogenides IrInQ (Q = S, Se, Te): Dirac Semimetal Candidates with Re-entrant Structural Modulation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6312-6323	16.4	4	
135	Pressure-Induced Superconductivity in the Wide-Band-Gap Semiconductor Cu2Br2Se6 with a Robust Framework. <i>Chemistry of Materials</i> , 2020 , 32, 6237-6246	9.6	4	
134	Nanostructure-Assisted Phonon Scattering in Lead-Free Thermoelectric Materials: A TEM Investigation of the SnTe System. <i>Microscopy and Microanalysis</i> , 2014 , 20, 438-439	0.5	4	
133	(NH4)AgMoS4: Synthesis, Structure and Catalytic Activity. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2012 , 638, 2594-2597	1.3	4	
132	Synthesis of Ternary Chalcogenides in Molten Polychalcogenide Salts: ⊞-KCuQ4, KAuS5, NaBiS2, KFeQ2 (Q = S, Se). <i>Inorganic Syntheses</i> , 2007 , 88-95		4	
131	Synthesis and Thermoelectric Properties of AgBi3S5. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 377		4	
130	Ternary Bismuth Chalcogenides for Thermoelectric Applications. Synthesis and Charge Transport Properties of New Compounds in the K-Bi-S System <i>Materials Research Society Symposia Proceedings</i> , 1995 , 410, 37		4	
129	Superconductivity in Y7Ru4InGe12. Physical Review Materials, 2019, 3,	3.2	4	
128	MoOxSy/Ni3S2 Microspheres on Ni Foam as Highly Efficient, Durable Electrocatalysts for Hydrogen Evolution Reaction. <i>Chemistry of Materials</i> ,	9.6	4	

127	Mixed-Valent Copper Chalcogenides: Tuning Structures and Electronic Properties Using Multiple Anions. <i>Chemistry of Materials</i> , 2020 , 32, 10146-10154	9.6	4
126	Efficient Removal of Cs and Sr Ions by Granulous (MeNH)(MeNH)SnSII.25HO/Polyacrylonitrile Composite. <i>ACS Applied Materials & Menuscopies & Menuscopie</i>	9.5	4
125	Polaron Plasma in Equilibrium with Bright Excitons in 2D and 3D Hybrid Perovskites. <i>Advanced Optical Materials</i> , 2021 , 9, 2100295	8.1	4
124	In-Plane Mechanical Properties of Two-Dimensional Hybrid Organic-Inorganic Perovskite Nanosheets: Structure-Property Relationships. <i>ACS Applied Materials & Districture Action Section</i> , 13, 31642.	- 3 1849	4
123	Noise sources and their limitations on the performance of compound semiconductor hard radiation detectors. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2019 , 916, 133-140	1.2	4
122	Anisotropic Transient Disordering of Colloidal, Two-Dimensional CdSe Nanoplatelets upon Optical Excitation. <i>Nano Letters</i> , 2021 , 21, 1288-1294	11.5	4
121	Lithium Thiostannate Spinels: Air-Stable Cubic Semiconductors. <i>Chemistry of Materials</i> , 2021 , 33, 2080-2	2089	4
120	2,3-Diphenylthieno[3,4-b]pyrazines as Hole-Transporting Materials for Stable, High-Performance Perovskite Solar Cells. <i>ACS Energy Letters</i> ,2118-2127	20.1	4
119	Eu-Eu valence transition in double, Eu-, and Na-doped PbSe from transport, magnetic, and electronic structure studies. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 9606-9616	3.6	3
118	Electronic defects in the halide antiperovskite semiconductor Hg3Se2I2. <i>Physical Review B</i> , 2017 , 96,	3.3	3
117	Unconventional Defects in a Quasi-One-Dimensional KMnBi. Nano Letters, 2019, 19, 7476-7486	11.5	3
116	AuPbl: A Narrow Bandgap Au lodide Semiconductor. <i>Inorganic Chemistry</i> , 2018 , 57, 804-810	5.1	3
115	Carrier Mapping in Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1543, 171-176		3
114	Dimensionally reduced heavy atom semiconductors as candidate materials for y-ray detection: the case of Cs2Hg6S7. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1341, 1		3
113	Preparation of Exfoliated Bi2Te3 Thin Films 2011 ,		3
112	Phase Segregation and Thermoelectric Properties of AgPbmSbTem+2 m=2, 4, 6, and 8. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		3
111	⊞ -RuCl3: A New Host for Polymer Intercalation. Lamellar Polymer/⊞ -RuCl3 Nanocomposites <i>Materials Research Society Symposia Proceedings</i> , 1998 , 519, 257		3
110	Flux Synthesis of New Multinary Bismuth Chalcogenides and their Thermoelectric Properties. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 545, 65		3

109	Transport Properties Of Doped CsBi4 Te6 Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 545, 75		3
108	Ln2Al3Si2 (Ln = Ho, Er, Tm): neue Silicide aus Aluminiumschmelzen ßestimmung der Al/Si-Verteilung mit Neutronenkristallographie und metamagnetische Bergßge. <i>Angewandte Chemie</i> , 1999 , 111, 695-698	3.6	3
107	Die neuartigen Kupfer-Polytelluride NaBa6Cu3Te14 und (K0.60Ba0.40)Ba6Cu2.58Te14: diskrete Cluster oder ausgedehnte Festkliper?. <i>Angewandte Chemie</i> , 1995 , 107, 117-120	3.6	3
106	Nanocrystalline Binary, Ternary and Dilute Magnetic Semiconductors from Polychalcogenide Complexes. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 272, 27		3
105	Giant Non-Resonant Infrared Second Order Nonlinearity in BNaAsSe 2. Advanced Optical Materials, 2101	78.9	3
104	Broad Photoluminescence and Second-Harmonic Generation in the Noncentrosymmetric OrganicIhorganic Hybrid Halide (C6H5(CH2)4NH3)4MX7 $\!$ H2O (M = Bi, In, X = Br or I). <i>Chemistry of Materials</i> , 2021 , 33, 8106-8111	9.6	3
103	Structure Tuning, Strong Second Harmonic Generation Response, and High Optical Stability of the Polar Semiconductors NaKAs. <i>Journal of the American Chemical Society</i> , 2021 , 143, 18204-18215	16.4	3
102	Global Analysis for Time and Spectrally Resolved Multidimensional Microscopy: Application to CHNHPbI Perovskite Thin Films. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 4837-4847	2.8	3
101	Implications of doping on microstructure, processing, and thermoelectric performance: The case of PbSe. <i>Journal of Materials Research</i> , 2021 , 36, 1272-1284	2.5	3
100	Selective Capture Mechanism of Radioactive Thorium from Highly Acidic Solution by a Layered Metal Sulfide. <i>ACS Applied Materials & Acs Applied & Acs Ap</i>	9.5	3
99	Two-dimensional bismuth-rich nanosheets through the evaporative thinning of Se-doped Bi2Te3. Journal of Crystal Growth, 2016 , 436, 138-144	1.6	3
98	Scandium Selenophosphates: Structure and Properties of K4Sc2(PSe4)2(P2Se6). <i>Inorganic Chemistry</i> , 2016 , 55, 4664-8	5.1	3
97	Study of the Coincidence Time Resolution of New Perovskite Bulk Crystals 2019,		3
96	Magnetization-governed magnetoresistance anisotropy in the topological semimetal CeBi. <i>Physical Review B</i> , 2019 , 100,	3.3	3
95	Coherent charge-phonon correlations and exciton dynamics in orthorhombic CHNHPbI measured by ultrafast multi-THz spectroscopy. <i>Journal of Chemical Physics</i> , 2019 , 151, 214201	3.9	3
94	Mechanistic insight of KBiQ (Q = S, Se) using panoramic synthesis towards synthesis-by-design. <i>Chemical Science</i> , 2020 , 12, 1378-1391	9.4	3
93	Sn4 B 12Se12[Qx], Q = Se, Te, a B12 Cluster Tunnel Framework Hosting Neutral Chalcogen Chains. <i>Chemistry of Materials</i> , 2021 , 33, 1723-1730	9.6	3
92	Vast Structural and Polymorphic Varieties of Semiconductors AMM?Q4 (A = K, Rb, Cs, Tl; M = Ga, In; M? = Ge, Sn; Q = S, Se). <i>Chemistry of Materials</i> , 2021 , 33, 6572-6583	9.6	3

91	Photothermal behaviour of titanium nitride nanoparticles evaluated by transient X-ray diffraction. <i>Nanoscale</i> , 2021 , 13, 2658-2664	7.7	3
90	Superconductivity in the 2-Dimensional Homologous Series AM Bi Q (m=1, 2) (A=Rb, Cs; M=Pb, Sn; Q=Se, Te). <i>Chemistry - A European Journal</i> , 2018 , 24, 7118-7122	4.8	2
89	Measuring nano-scale thermal conductivity. <i>National Science Review</i> , 2018 , 5, 2-2	10.8	2
88	KCuP: A Two-Dimensional Noncentrosymmetric Metallic Pnictide. <i>Inorganic Chemistry</i> , 2019 , 58, 10201-	1 <u>9.</u> 208	2
87	Semiconducting BaSnSb and Metallic BaSnSb ($x = 0.4$, $y = 0.6$) Zintl Phases. <i>Inorganic Chemistry</i> , 2017 , 56, 14251-14259	5.1	2
86	Hybridization Gap and Dresselhaus Spin Splitting in EuIr4In2Ge4. <i>Angewandte Chemie</i> , 2015 , 127, 9318-	93,83	2
85	Thermoelectric Materials: Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in p-type PbTe Doped with Na2Te (Adv. Energy Mater. 9/2012). <i>Advanced Energy Materials</i> , 2012 , 2, 1038-1038	21.8	2
84	Investigation of the valence band structure of PbSe by optical and transport measurement. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1490, 75-81		2
83	Investigation of Solid-State Immiscibility and Thermoelectric Properties of the System PbTe IPbS. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1166, 7		2
82	Infrared Studies of the (1-x) PbTe [x) PbSnS2 System. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1325, 143		2
81	Synthesis, Crystal Structure And Thermoelectric Properties of 跃2Bi8Se13 Solid Solutions. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 395		2
80	Nanostructuring and its Influence on the Thermoelectric Properties of the AgSbTe2-SnTe Quaternary System. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		2
79	Weak-Bonding Elements Lead to High Thermoelectric Performance in BaSnS3 and SrSnS3: A First-Principles Study. <i>Chemistry of Materials</i> , 2022 , 34, 1289-1301	9.6	2
78	Photoluminescence spectroscopy of excitonic emission in CsPbCl3 perovskite single crystals. <i>Journal of Luminescence</i> , 2022 , 243, 118661	3.8	2
77	Structure-Property Relationships and Idiosyncrasies of Bulk, 2D Hybrid Lead Bromide Perovskites. <i>Israel Journal of Chemistry</i> ,	3.4	2
76	Mixed Metal Thiophosphate FeCoPS: Role of Structural Evolution and Anisotropy. <i>Inorganic Chemistry</i> , 2021 , 60, 17268-17275	5.1	2
75	Mo S Intercalated Layered Double Hydroxide: Highly Selective Removal of Heavy Metals and Simultaneous Reduction of Ag Ions to Metallic Ag Ribbons. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	2
74	A Noncentrosymmetric Polymorph of LuRuGe. <i>Inorganic Chemistry</i> , 2021 , 60, 7827-7833	5.1	2

73	Photoluminescent Re6Q8I2 (Q = S, Se) Semiconducting Cluster Compounds. <i>Chemistry of Materials</i> , 2021 , 33, 5780-5789	9.6	2
72	From complex magnetism ordering to simple ferromagnetism in two-dimensional LaCrSb3 by hole doping. <i>Physical Review B</i> , 2016 , 94,	3.3	2
71	Scalable nanomanufacturing of chalcogenide inks: a case study on thermoelectric VV nanoplates. <i>Journal of Materials Chemistry A</i> ,	13	2
70	Thermoelectric Performance: Enhancement of Thermoelectric Performance in CuSbSe2 Nanoplate-Based Pellets by Texture Engineering and Carrier Concentration Optimization (Small 50/2018). <i>Small</i> , 2018 , 14, 1870241	11	2
69	Deep Level and Near-Band-Edge Recombination in Semiconducting Antiperovskite Hg3Se2I2 Single Crystals. <i>Advanced Optical Materials</i> , 2018 , 6, 1800328	8.1	2
68	Hidden Complexity in the Chemistry of Ammonolysis-Derived EMo2NEAn Overlooked Oxynitride Hydride. <i>Chemistry of Materials</i> , 2021 , 33, 6671-6684	9.6	2
67	Excitons in CsPbBr Halide Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 9301-9307	6.4	2
66	On the Origin of Room-Temperature Amplified Spontaneous Emission in CsPbBr3 Single Crystals. <i>Chemistry of Materials</i> , 2021 , 33, 7185-7193	9.6	2
65	Hidden Local Symmetry Breaking in Silver Diamondoid Compounds is Root Cause of Ultralow Thermal Conductivity <i>Advanced Materials</i> , 2022 , e2202255	24	2
64	Monte Carlo simulation of transport properties in wide gap Hg3Se2I2. <i>Semiconductor Science and Technology</i> , 2019 , 34, 115003	1.8	1
63	Purification and Improved Nuclear Radiation Detection of Tl6SI4 Semiconductor. <i>Crystal Growth and Design</i> , 2019 , 19, 4738-4744	3.5	1
62	Hybridization Gap in the Semiconducting Compound SrIrInGe. <i>Inorganic Chemistry</i> , 2016 , 55, 12477-124	18 5 .1	1
61	All-scale Architecturing of Microstructure in Chalcogenide Thermoelectric Materials. <i>Microscopy and Microanalysis</i> , 2019 , 25, 2236-2237	0.5	1
60	Ion Beam Induced Artifacts in Lead Based Chalcogenides. <i>Microscopy and Microanalysis</i> , 2019 , 25, 2262	-2863	1
59	Electron-beam activated thermal sputtering of thermoelectric materials. <i>Journal of Applied Physics</i> , 2011 , 110, 044325	2.5	1
58	Rb4Sn5P4Se20: A Semimetallic Selenophosphate. <i>Angewandte Chemie</i> , 2011 , 123, 8996-9000	3.6	1
57	High thermoelectric efficiency in co-doped degenerate p-type PbTe. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1267, 1		1
56	IP3Se4 ein neuartiges Polyanion in K3RuP5Se10 und die Bildung von Ru-P-Bindungen in einer Polyselenophosphatschmelze. <i>Angewandte Chemie</i> , 1997 , 109, 1382-1383	3.6	1

55	Hall Effect Measurements on New Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 344		1
54	Thermoelectric Properties of the cubic AgPb10SbTe12. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 220		1
53	Substitutions in the Homologous Family CsPbmBi3Te5+m and Preliminary Thermoelectric Results. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		1
52	Surfactant Templated Assembly of Cubic Mesostructured Semiconductors Based on [Sn2Se6] 4-and Pt2+ in Single-Crystal Form <i>Materials Research Society Symposia Proceedings</i> , 2002 , 755, 1		1
51	Characterization of New Materials in A Four-Sample Thermoelectric Measurement System. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 626, 861		1
50	Thermoelectric Properties of K2Bi8\SbxSe13 Solid Solutions and Se Doping. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 691, 1		1
49	Thermoelectric Module For Low Temperature Applications. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 691, 1		1
48	Structure and Thermoelectric Properties of New Layered Compounds in the Quaternary System Cs-Pb-Bi-Te. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 691, 1		1
47	Compositional And Structural Modifications In Ternary Bismuth Chalcogenides And Their Thermoelectric Properties. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 626, 741		1
46	Enormous electron-electron scattering in the filled-cage cubic compound Ba10Ti24Bi39. <i>Physical Review Materials</i> , 2019 , 3,	3.2	1
45	Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFeS2-based thermoelectric materials. <i>Physical Review Materials</i> , 2020 , 4,	3.2	1
44	Quasi-Two-Dimensional Heterostructures (KM1IkTe)(LaTe3) (M = Mn and Zn) with Charge Density Waves. <i>Chemistry of Materials</i> , 2021 , 33, 2155-2164	9.6	1
43	Amorphous to Crystal Phase Change Memory Effect with Two-Fold Bandgap Difference in Semiconducting KBiSe. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6221-6228	16.4	1
42	Local Distortions and Metal Bemiconductor Metal Transition in Quasi-One-Dimensional Nanowire Compounds AV3Q3O $\mathbb{I}(A = K, Rb, Cs \text{ and } Q = Se, Te)$. Chemistry of Materials, 2021 , 33, 2611-2623	9.6	1
41	A two-dimensional type I superionic conductor. <i>Nature Materials</i> , 2021 , 20, 1683-1688	27	1
40	Anharmonicity and Disorder in the Black Phases of CsPbI3 used for Stable Inorganic Perovskite Solar Cells 2018 ,		1
39	Abrupt Thermal Shock of (NH)MoS Leads to Ultrafast Synthesis of Porous Ensembles of MoS Nanocrystals for High Gain Photodetectors. <i>ACS Applied Materials & District Research</i> , 10, 38193-38	286	1
38	Mechanistic Studies of Two Divergent Synthesis Routes Forming the Heteroanionic BiOCuSe. Journal of the American Chemical Society, 2021 , 143, 12090-12099	16.4	1

37	New Compounds and Phase Selection of Nickel Sulfides via Oxidation State Control in Molten Hydroxides. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13646-13654	16.4	1
36	Superconductivity in Y4RuGe8 with a Vacancy-Ordered CeNiSi2-Type Superstructure. <i>Chemistry of Materials</i> ,	9.6	1
35	Synthesis of the One-dimensional Compound (Ph4P)[In(P2Se6)] in a Ph4P+-Containing Selenophosphate Flux, and Structure of [In(P2Se6)2]5 Discrete Molecular Fragment of the [In(P2Se6)]nn Chain 1998, 624, 975		1
34	First Examples of Gold Thiocadmates: A2Au2Cd2S4 (A=Rb, Cs) and K2Au4CdS4: Bright Photoluminescence from New Alkali Metal/Gold Thiocadmates 1998 , 4, 2435		1
33	Study of Annihilation Photon Pair Coincidence Time Resolution Using Prompt Photon Emissions in New Perovskite Bulk Crystals. <i>IEEE Transactions on Radiation and Plasma Medical Sciences</i> , 2022 , 1-1	4.2	Ο
32	Structural and chemical analysis of mixed cation antiferromagnetic layered metal chalcophosphate FeCoP2S6. <i>Microscopy and Microanalysis</i> , 2021 , 27, 140-143	0.5	Ο
31	Pressure-induced ferroelectric-like transition creates a polar metal in defect antiperovskites HgTeX (X = Cl, Br). <i>Nature Communications</i> , 2021 , 12, 1509	17.4	0
30	Structural characterization of the high thermoelectric performance PbTe - PbSnS2 system and implications of its structural complexity in low lattice thermal conductivity 2016 , 275-276		
29	Multiscale Microstructural Features in Thermoelectric Materials. <i>Microscopy and Microanalysis</i> , 2018 , 24, 384-385	0.5	
28	The Effect of Spark Plasma Sintering on Microstructure Evolution in Thermoelectric Materials. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1494-1495	0.5	
27	Dynamic Surface Reconstruction of 2D Ruddlesden-Popper Halide Perovskite under e-Beam Irradiation. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1490-1491	0.5	
26	Metal Thio/Selenophosphates: A Novel Two-Dimensional Materials System. <i>Microscopy and Microanalysis</i> , 2019 , 25, 978-979	0.5	
25	Thermoelectric Properties of Pulsed Electric Current Sintered Samples of AgPb m SbSe17 (m = 16 or 17). <i>Journal of Electronic Materials</i> , 2012 , 41, 1579-1582	1.9	
24	Understanding Electrical Transport and the Large Power Factor Enhancements in Co-Nanostructured PbTe. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1166, 1		
23	Investigation of Cubic PbS/AgSbS2 System for Thermoelectric Applications. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1044, 1		
22	Zintl Phase as Thermoelectric Materials: Synthesis, Structure and Properties of Yb5Al2Sb6. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1044, 1		
21	Investigation of Thermoelectric Materials: Substitution effect of Bi on the Ag1-xPb18MTe20 (M = Sb, Bi) (x = 0, 0.14, 0.3). Materials Research Society Symposia Proceedings, 2007, 1044, 1		
20	Mechanical Alloying Synthesis of K2Bi8Se13Itype Solid Solutions. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1044, 1		

19	New Information on the Na-Ti-Se Ternary System. <i>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences</i> , 2001 , 56, 49-56	1
18	Investigations of Solid Solutions of CsBi4Te6. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 626, 351	
17	Initial Assessment of the Thermoelectric Properties for the Mixed System K2\(\mathbb{R}\)Bi8Se13. Materials Research Society Symposia Proceedings, 2001 , 691, 1	
16	Doping and Alloying Trends in New Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 691, 1	
15	Search for New Thermoelectric Materials through Exploratory Solid State Chemistry. The Quaternary Phases A1+xM3\(\tilde{U}\)xBi7+xSe14, A1\(\tilde{U}\)M3\(\tilde{U}\)Bi11+xSe20, A1\(\tilde{U}\)M4\(\tilde{U}\)Bi11+xSe21 and A1\(\tilde{U}\)M5\(\tilde{U}\)Bi11+xSe22 (A = K, Rb, Cs, M = Sn, Pb) and the Homologous Series	
14	Surfactant Templated Assembly of Hexagonal Mesostructured Semiconductors Based on [Ge4Q10]4- (Q=S, Se) and Pd2+ and Pt2+ ions. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 703, 1	
13	Surfactant Templated Assembly of Hexagonal Mesostructured Semiconductors Based on [Ge4Q10]4- (Q=S, Se) and Pd2+ and Pt2+ ions <i>Materials Research Society Symposia Proceedings</i> , 2001 , 707, 871	
12	Structure and Thermoelectric Properties of SrBiTe3; 12-Fold Superstructure Caused by Distortion of the Two-Dimensional Te-Nets. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 545, 117	
11	Thermoelectric Properties and Electronic Structure of BaBiTe3. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 453, 15	
10	[Cu4Mn4(SiC3H7)12S]2[Jein neuartiger achtkerniger Heterodimetallkomplex aus einem MetallwEfel mit eingeschlossenem A-Sulfidion und kantenverbrEkenden Thiolatoliganden. Angewandte Chemie, 1996 , 108, 2257-2259	3.6
9	Poly(3',4'-DibutylTerthiophene-Phenylene-Vinylene), and Poly(3',4'-Dibutyl-a-Terthiophene-Phenylene-Imine): Synthesis and Properties of Two New Isoelectronic Soluble Conjugated Polymers <i>Materials Research Society Symposia Proceedings</i> , 1995 ,	
8	413, 483 Controllable Nonclassical Conductance Switching in Nanoscale Phase-Separated (PbI) (BiI) Layered Crystals. <i>Advanced Materials</i> , 2021 , 33, e2103098	24
7	Structure and Thermoelectric Properties of New Quaternary Tin and Lead Bismuth Selenides, K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1+xSn5-xBi11+xSe22. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 626, 841	
6	Doping Studies of n-Type CsBi4Te6 Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 626, 751	
5	Novel Core-shell Nanoscale Precipitates in High Performance PbSe-CdSe Thermoelectric Materials. <i>Microscopy and Microanalysis</i> , 2020 , 26, 34-36	0.5
4	Role of Advanced Electron Microscopy in Unraveling Complex Microstructure in Nanostructured Thermoelectric Materials. <i>Microscopy and Microanalysis</i> , 2020 , 26, 266-268	0.5
3	Microstructure Evolution in Nanostructured High-Performance Thermoelectrics: The case of p-type Pb 1-x Na x Te-SrTe. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1268-1269	0.5
2	Materials development and module fabrication in highly efficient lead tellurides 2021 , 247-267	

Role of Anomalous Channeling on HAADF in a Quasi-ID KMn6Bis Structure. *Microscopy and Microanalysis*, **2018**, 24, 1704-1705

0.5