Joana Costa Antunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8155989/publications.pdf

Version: 2024-02-01

643344 591227 48 900 15 27 g-index citations h-index papers 49 49 49 1256 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields. Nanoscale Advances, 2022, 4, 421-436.	2.2	27
2	Inhibition of Escherichia Virus MS2, Surrogate of SARS-CoV-2, via Essential Oils-Loaded Electrospun Fibrous Mats: Increasing the Multifunctionality of Antivirus Protection Masks. Pharmaceutics, 2022, 14, 303.	2.0	13
3	Recent Trends in Protective Textiles against Biological Threats: A Focus on Biological Warfare Agents. Polymers, 2022, 14, 1599.	2.0	13
4	A Review on Flexible Electrochemical Biosensors to Monitor Alcohol in Sweat. Biosensors, 2022, 12, 252.	2.3	8
5	Tiger 17 and pexiganan as antimicrobial and hemostatic boosters of cellulose acetate-containing poly(vinyl alcohol) electrospun mats for potential wound care purposes. International Journal of Biological Macromolecules, 2022, 209, 1526-1541.	3.6	14
6	Antibacterial and hemostatic capacities of cellulose nanocrystalline-reinforced poly(vinyl alcohol) electrospun mats doped with Tiger 17 and pexiganan peptides for prospective wound healing applications., 2022, 137, 212830.		10
7	Extraction of Cellulose-Based Polymers from Textile Wastes. Polymers, 2022, 14, 2063.	2.0	0
8	Biodegradable wet-spun fibers modified with antimicrobial agents for potential applications in biomedical engineering. Journal of Physics: Conference Series, 2021, 1765, 012007.	0.3	4
9	Eugenol-Containing Essential Oils Loaded onto Chitosan/Polyvinyl Alcohol Blended Films and Their Ability to Eradicate Staphylococcus aureus or Pseudomonas aeruginosa from Infected Microenvironments. Pharmaceutics, 2021, 13, 195.	2.0	37
10	Functionalization of Crosslinked Sodium Alginate/Gelatin Wet-Spun Porous Fibers with Nisin Z for the Inhibition of Staphylococcus aureus-Induced Infections. International Journal of Molecular Sciences, 2021, 22, 1930.	1.8	14
11	P-selectin targeting polysaccharide-based nanogels for miRNA delivery. International Journal of Pharmaceutics, 2021, 597, 120302.	2.6	11
12	Recent Advances in Fiber–Hydrogel Composites for Wound Healing and Drug Delivery Systems. Antibiotics, 2021, 10, 248.	1.5	33
13	Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Marine Drugs, 2021, 19, 359.	2.2	23
14	Drug Targeting of Inflammatory Bowel Diseases by Biomolecules. Nanomaterials, 2021, 11, 2035.	1.9	14
15	Activity of Wet-Spun Fibers Chemically Modified with Active Biomolecules against Gram-Positive and Gram-Negative Bacteria. Materials Proceedings, 2021, 4, 85.	0.2	0
16	Physical, Thermal, and Antibacterial Effects of Active Essential Oils with Potential for Biomedical Applications Loaded onto Cellulose Acetate/Polycaprolactone Wet-Spun Microfibers. Biomolecules, 2020, 10, 1129.	1.8	24
17	USPIO–PEG nanoparticles functionalized with a highly specific collagen-binding peptide: a step towards MRI diagnosis of fibrosis. Journal of Materials Chemistry B, 2020, 8, 5515-5528.	2.9	11
18	Activity of Specialized Biomolecules against Gram-Positive and Gram-Negative Bacteria. Antibiotics, 2020, 9, 314.	1.5	77

#	Article	IF	Citations
19	Synthesis of cationic quaternized pullulan derivatives for miRNA delivery. International Journal of Pharmaceutics, 2020, 577, 119041.	2.6	24
20	Biofunctionalization of Natural Fiber-Reinforced Biocomposites for Biomedical Applications. Biomolecules, 2020, 10, 148.	1.8	91
21	Green Optimization of Glutaraldehyde Vapor-Based Crosslinking on Poly(Vinyl Alcohol)/Cellulose Acetate Electrospun Mats for Applications as Chronic Wound Dressings. Proceedings (mdpi), 2020, 69,	0.2	6
22	Controlled Release of Cinnamon Leaf Oil from Chitosan Microcapsules Embedded within a Sodium Alginate/Gelatin Hydrogel-Like Film for Pseudomonas aeruginosa Elimination., 2020, 69, .		1
23	Combinatory Action of Chitosan-Based Blended Films and Loaded Cajeput Oil against Staphylococcus aureus and Pseudomonas aeruginosa-Mediated Infections. , 2020, 69, .		0
24	Modification of Ca2+-Crosslinked Sodium Alginate/Gelatin Films with Propolis for an Improved Antimicrobial Action., 2020, 69,.		1
25	Core-Shell Polymer-Based Nanoparticles Deliver miR-155-5p to Endothelial Cells. Molecular Therapy - Nucleic Acids, 2019, 17, 210-222.	2.3	16
26	Fundamentals of protein and cell interactions in biomaterials. , 2018, , 1-27.		23
27	Poly(\hat{l}^3 -glutamic acid) and poly(\hat{l}^3 -glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc. Journal of Materials Science: Materials in Medicine, 2017, 28, 6.	1.7	20
28	Chitosan/Poly(\hat{l}^3 -glutamic acid) Polyelectrolyte Complexes: From Self- Assembly to Application in Biomolecules Delivery and Regenerative Medicine. Research & Reviews Journal of Material Sciences, 2016, 04, .	0.1	6
29	An interferon-Î ³ -delivery system based on chitosan/poly(Î ³ -glutamic acid) polyelectrolyte complexes modulates macrophage-derived stimulation of cancer cell invasion in vitro. Acta Biomaterialia, 2015, 23, 157-171.	4.1	45
30	Poly(\hat{l}^3 -Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Tissue Engineering - Part A, 2015, 21, 1869-1885.	1.6	11
31	Protein Adsorption Characterization. Methods in Molecular Biology, 2012, 811, 141-161.	0.4	16
32	Biosynthesis of highly pure poly-Î ³ -glutamic acid for biomedical applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 1583-1591.	1.7	32
33	Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(\hat{l}^3 -glutamic acid) polyelectrolyte complexes. , 2012, 23, 249-261.		46
34	Layer-by-Layer Self-Assembly of Chitosan and Poly(\hat{l}^3 -glutamic acid) into Polyelectrolyte Complexes. Biomacromolecules, 2011, 12, 4183-4195.	2.6	107
35	Three-Dimensional Scaffolds as a Model System for Neural and Endothelial †In Vitro†Culture. Journal of Biomaterials Applications, 2011, 26, 293-310.	1.2	6
36	Novel poly(<scp>L</scp> â€lactic acid)/hyaluronic acid macroporous hybrid scaffolds: Characterization and assessment of cytotoxicity. Journal of Biomedical Materials Research - Part A, 2010, 94A, 856-869.	2.1	35

#	ARTICLE	lF	CITATIONS
37	TERMIS EU 2008 Porto Meeting June 22–26, 2008 Porto Congress Center–Alfândega Portugal. Tissue Engineering - Part A, 2008, 14, 691-943.	1.6	6
38	Chitosan-Based Blended Films for Wound Dressing Applications. , 0, , .		0
39	Antibacterial Activity of Specialized Biomolecules. , 0, , .		O
40	Flexible, biodegradable LL37-anchored poly(vinyl alcohol)/cellulose acetate films for enhanced infection control. , 0, , .		O
41	Bactericidal action of cinnamon, clove and cajeput oils loaded onto CA/PCL wet-spun fibers for a localized, controlled biomolecule delivery. , 0, , .		O
42	Propolis loaded sodium alginate/gelatin films cross-linked with Ca ²⁺ for potential wound dressing and healing applications. , 0, , .		0
43	Chitosan-based blended films loaded with cajeput oil as enhancers of antibacterial action against & amp;lt;em>Staphylococcus aureus and & amp;lt;em>Pseudomonas aeruginosa., 0,,,.		O
44	Antibacterial activity of marine-derived chitosan and plant-derived cajeput oil as loaded blended films in & t;em>Staphylococcus aureus& t;/em> and & t;em>Pseudomonas aeruginosa& t;/em>-enriched settings., 0,,.		0
45	Irradication of Pseudomans aeruginosa via sodium alginate/gelatin films impregnated with chitosan microcapsules loaded with cinnamon leaf oil., 0,,.		O
46	Biodegradable wet-spun fibers as delivery platforms for the bactericidal effect of the natural-origin biomolecules, cinnamon, clove and cajeput essential oils., 0,,.		0
47	Optimization of the crosslinking process with glutaraldehyde vapor in PVA based electrospun membranes to wound dressings applications. , 0, , .		O
48	Bactericidal effect of cinnamon leaf oil loaded onto chitosan microcapsules-modified biodegradable hydrogel-like films: an alternative for treating Pseudomonas aeruginosa infections. , 0, , .		0