List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8155942/publications.pdf Version: 2024-02-01

MIKELKIDERV

#	Article	IF	CITATIONS
1	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	1.2	474
2	Testing a physically-based flood forecasting model (TOPMODEL) for three U.K. catchments. Journal of Hydrology, 1984, 69, 119-143.	2.3	398
3	A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms, 2002, 27, 269-288.	1.2	283
4	Environmental change in moorland landscapes. Earth-Science Reviews, 2007, 82, 75-100.	4.0	229
5	Sediment supply and climate change: implications for basin stratigraphy. Basin Research, 1998, 10, 7-18.	1.3	211
6	The PESERA coarse scale erosion model for Europe. I. – Model rationale and implementation. European Journal of Soil Science, 2008, 59, 1293-1306.	1.8	188
7	Hillslope runoff processes and models. Journal of Hydrology, 1988, 100, 315-339.	2.3	168
8	Indicators for pan-European assessment and monitoring of soil erosion by water. Environmental Science and Policy, 2004, 7, 25-38.	2.4	157
9	Sediment slugs: large-scale fluctuations in fluvial sediment transport rates and storage volumes. Progress in Physical Geography, 1995, 19, 500-519.	1.4	152
10	Gully processes and modelling. Progress in Physical Geography, 1997, 21, 354-374.	1.4	142
11	A network-index-based version of TOPMODEL for use with high-resolution digital topographic data. Hydrological Processes, 2004, 18, 191-201.	1.1	140
12	Gully processes and gully dynamics. Earth Surface Processes and Landforms, 2009, 34, 1841-1851.	1.2	131
13	The influence of land use, soils and topography on the delivery of hillslope runoff to channels in SE Spain. Earth Surface Processes and Landforms, 2002, 27, 1459-1473.	1.2	125
14	The impact of rainstorms on floods in ephemeral channels in southeast Spain. Catena, 2000, 38, 191-209.	2.2	98
15	Overland flow velocity and roughness properties in peatlands. Water Resources Research, 2008, 44, .	1.7	90
16	Farming Systems and Political Growth in Ancient Oaxaca: Physiographic features and water-control techniques contributed to the rise of Zapotec Indian civilization. Science, 1967, 158, 445-454.	6.0	89
17	Reconstructing flash flood magnitudes using â€ [~] Structure-from-Motion': A rapid assessment tool. Journal of Hydrology, 2014, 519, 1914-1927	2.3	86
18	A climatic index for soil erosion potential (CSEP) including seasonal and vegetation factors. Catena, 1995, 25, 333-352.	2.2	80

#	Article	IF	CITATIONS
19	The future of the uplands. Land Use Policy, 2009, 26, S204-S216.	2.5	80
20	Modelling the interactions between soil surface properties and water erosion. Catena, 2002, 46, 89-102.	2.2	77
21	Quantifying the rate and depth dependence of bioturbation based on opticallyâ€stimulated luminescence (OSL) dates and meteoric ¹⁰ Be. Earth Surface Processes and Landforms, 2014, 39, 1188-1196.	1.2	77
22	MEDALUS soil erosion models for global change. Geomorphology, 1998, 24, 35-49.	1.1	72
23	Comparison of scale and scaling issues in integrated land-use models for policy support. Agriculture, Ecosystems and Environment, 2011, 142, 18-28.	2.5	70
24	Anticipating and Managing Future Trade-offs and Complementarities between Ecosystem Services. Ecology and Society, 2013, 18, .	1.0	70
25	The importance of surface controls on overland flow connectivity in semiâ€arid environments: results from a numerical experimental approach. Hydrological Processes, 2014, 28, 2116-2128.	1.1	70
26	Towards sustainable management of Mediterranean river basins: policy recommendations on management aspects of temporary streams. Water Policy, 2013, 15, 830-849.	0.7	61
27	TOPMODEL: A personal view. Hydrological Processes, 1997, 11, 1087-1097.	1.1	60
28	Causal processes of soil salinization in Tunisia, Spain and Hungary. Land Degradation and Development, 2001, 12, 163-181.	1.8	59
29	Modelling the links between vegetation and landforms. Geomorphology, 1995, 13, 319-335.	1.1	58
30	The development of land quality indicators for soil degradation by water erosion. Agriculture, Ecosystems and Environment, 2000, 81, 125-135.	2.5	58
31	Observed and modelled distributions of channel and gully heads—with examples from SE Spain and Belgium. Catena, 2003, 50, 415-434.	2.2	56
32	Mitigating land degradation caused by wildfire: Application of the PESERA model to fire-affected sites in central Portugal. Geoderma, 2012, 191, 40-50.	2.3	55
33	Differences in hillslope runoff and sediment transport rates within two semi-arid catchments in southeast Spain. Geomorphology, 2005, 68, 183-200.	1.1	54
34	The influence of rainfall distribution and morphological factors on runoff delivery from dryland catchments in SE Spain. Catena, 2005, 62, 136-156.	2.2	54
35	A history of TOPMODEL. Hydrology and Earth System Sciences, 2021, 25, 527-549.	1.9	54
36	Some factors controlling gully growth in fine-grained sediments: a model applied in southeast Spain. Catena, 2000, 40, 127-146.	2.2	46

#	Article	IF	CITATIONS
37	The impact of landâ€cover change on flood peaks in peatland basins. Water Resources Research, 2016, 52, 3477-3492.	1.7	45
38	Hillslope erosion by rainstorms–a magnitude-frequency analysis. Earth Surface Processes and Landforms, 1991, 16, 399-409.	1.2	41
39	Distance, time and scale in soil erosion processes. Earth Surface Processes and Landforms, 2010, 35, 1621-1623.	1.2	34
40	Spatial and temporal evaluation of soil erosion in Turkey under climate change scenarios using the Pan-European Soil Erosion Risk Assessment (PESERA) model. Environmental Monitoring and Assessment, 2020, 192, 491.	1.3	32
41	An evaluation of the pesera soil erosion model and its application to a case study in Zakynthos, Greece. Soil Use and Management, 2005, 21, 377-385.	2.6	30
42	Evaluation of the PESERA model in two contrasting environments. Earth Surface Processes and Landforms, 2009, 34, 629-640.	1.2	28
43	Classifying low flow hydrological regimes at a regional scale. Hydrology and Earth System Sciences, 2011, 15, 3741-3750.	1.9	28
44	A distributed TOPMODEL for modelling impacts of land over change on river flow in upland peatland catchments. Hydrological Processes, 2015, 29, 2867-2879.	1.1	27
45	Seasonal vegetation and management influence overland flow velocity and roughness in upland grasslands. Hydrological Processes, 2020, 34, 3777-3791.	1.1	25
46	A Process Based Model of Faecal Bacterial Levels in Upland Catchments. Water Science and Technology, 1984, 16, 453-462.	1.2	25
47	Communicating geomorphology: global challenges for the twenty-first century. Earth Surface Processes and Landforms, 2014, 39, 476-486.	1.2	22
48	The effect of interactions between rainfall patterns and land-cover change on flood peaks in upland peatlands. Journal of Hydrology, 2018, 567, 546-559.	2.3	22
49	The hurst effect and its implications for extrapolating process rates. Earth Surface Processes and Landforms, 1987, 12, 57-67.	1.2	21
50	A model to estimate the impact of climatic change on hillslope and regolith form. Catena, 1989, 16, 321-341.	2.2	20
51	Modelling Across Scales: The Medalus Family of Models. , 1998, , 161-173.		20
52	Modelling impacts of agricultural practice on flood peaks in upland catchments: An application of the distributed <scp>TOPMODEL</scp> . Hydrological Processes, 2017, 31, 4206-4216.	1.1	18
53	A Model for Variations in Gelifluction Rates with Temperature and Topography: Implications for Global Change. Geografiska Annaler, Series A: Physical Geography, 1995, 77, 269-278.	0.6	16
54	MEDRUSH and the Catsop basin—the lessons learned. Catena, 1999, 37, 495-506.	2.2	14

#	Article	IF	CITATIONS
55	A conceptual model for physical and chemical soil profile evolution. Geoderma, 2018, 331, 121-130.	2.3	12
56	The impact of semiâ€natural broadleaf woodland and pasture on soil properties and flood discharge. Hydrological Processes, 2022, 36, e14453.	1.1	12
57	Ion-exchange resin samplers for the in situ measurement of major cations in soilwater solute flux. Journal of Hydrology, 1985, 80, 325-335.	2.3	11
58	Do not only connect: a model of infiltrationâ€excess overland flow based on simulation. Earth Surface Processes and Landforms, 2014, 39, 952-963.	1.2	11
59	Desertification and development: Some broader contexts. Journal of Arid Environments, 2021, 193, 104575.	1.2	9
60	Modelling the growth of cyanobacteria (GrowSCUM). Hydrological Processes, 1995, 9, 809-820.	1.1	7
61	Water in the critical zone: soil, water and life from profile to planet. Soil, 2016, 2, 631-645.	2.2	7
62	The use of simulation models in teaching geomorphology and hydrology. Journal of Geography in Higher Education, 1988, 12, 31-49.	1.4	6
63	Hillslope Form and Process: History 1960â^ 2000+. Geological Society Memoir, 0, , M58-2021-8.	0.9	6
64	Modelling the links between vegetation and landforms. , 1995, , 319-335.		5
65	Hill slopes and hollows. Nature, 1988, 336, 201-201.	13.7	4
66	Insights into biogeochemical cycling from a soil evolution model and long-term chronosequences. Biogeosciences, 2014, 11, 6873-6894.	1.3	4
67	The PESERA-DESMICE Modeling Framework for Spatial Assessment of the Physical Impact and Economic Viability of Land Degradation Mitigation Technologies. Frontiers in Environmental Science, 2016, 4, .	1.5	4
68	Overland flow velocity and soil properties in established semiâ€natural woodland and wood pasture in an upland catchment. Hydrological Processes, 0, , .	1.1	4
69	Pan-European Soil Erosion Assessment and Maps. , 2006, , 659-674.		3
70	Adaptive farming strategies for dynamic economic environment. , 2007, , .		3
71	World Soil Day and earth surface processes. Earth Surface Processes and Landforms, 2015, 40, 138-139.	1.2	3
72	Following the Curve? Reviewing the physical basis of the SCS curve number method for estimating storm runoff. Hydrological Processes, 2021, 35, e14404.	1.1	3

#	Article	IF	CITATIONS
73	Upland grassland management influences organoâ€mineral soil properties and their hydrological function. Ecohydrology, 2021, 14, e2336.	1.1	2
74	The continuity equation slope model and basal boundary conditions: A further comment. Earth Surface Processes and Landforms, 1983, 8, 287-288.	1.2	1
75	Editorial report. Earth Surface Processes and Landforms, 1991, 16, 687-687.	1.2	1
76	Editorial report for 2005. Earth Surface Processes and Landforms, 2005, 30, 1593-1595.	1.2	1
77	Some examples of spurious correlation in the literature. Hydrological Processes, 2021, 35, e14348.	1.1	1
78	C. E. Thorn 1988. An Introduction to Theoretical Geomorphology. xvi + 247 pp. Boston, London, Sydney, Wellington: Unwin Hyman. Price £30.00 (hardback); £11.95 (paperback). ISBN 0 04 551117 9 (hardback); 0 04 551118 7 (paperback) Geological Magazine, 1989, 126, 453-454.	0.9	0
79	Editorial report. Earth Surface Processes and Landforms, 1990, 15, 685-686.	1.2	0
80	Editorial report. Earth Surface Processes and Landforms, 1992, 17, 737-738.	1.2	0
81	Editorial report. Earth Surface Processes and Landforms, 1993, 18, 673-674.	1.2	0
82	Editorial report. Earth Surface Processes and Landforms, 1994, 19, 679-680.	1.2	0
83	Editorial report. Earth Surface Processes and Landforms, 1995, 20, 709-710.	1.2	0
84	Editorial report for 1998. , 1998, 23, 1055-1056.		0
85	Editorial report for 1999. Earth Surface Processes and Landforms, 1999, 24, 1171-1172.	1.2	0
86	Editorial Report for 2000. Earth Surface Processes and Landforms, 2000, 25, 1385-1386.	1.2	0
87	Editorial Report for 2001. Earth Surface Processes and Landforms, 2001, 26, 1365-1366.	1.2	0
88	Introduction: linkages and research priorities. Agriculture, Ecosystems and Environment, 2004, 104, 245-247.	2.5	0
89	Editorial report for 2004. Earth Surface Processes and Landforms, 2004, 29, 1587-1589.	1.2	0
90	Impacts of Environmental Changes on Soil Erosion Across Europe. , 2006, , 729-742.		0

Impacts of Environmental Changes on Soil Erosion Across Europe. , 2006, , 729-742. 90

6

#	Article	IF	CITATIONS
91	HP Volume to honor Keith Beven. Hydrological Processes, 2017, 31, 3762-3764.	1.1	0