George A Calin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/815559/publications.pdf

Version: 2024-02-01

564 papers 107,846 citations

138 h-index 318 g-index

585 all docs

585 docs citations

585 times ranked 75092 citing authors

#	Article	IF	CITATIONS
1	MicroRNA signatures in human cancers. Nature Reviews Cancer, 2006, 6, 857-866.	28.4	7,008
2	A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2257-2261.	7.1	5,220
3	Frequent deletions and down-regulation of micro-RNA genes <i>miR15</i> and <i>miR16</i> at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15524-15529.	7.1	4,641
4	Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2999-3004.	7.1	3,753
5	MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Research, 2005, 65, 7065-7070.	0.9	3,719
6	<i>miR-15</i> and <i>miR-16</i> induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13944-13949.	7.1	3,287
7	Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 2006, 9, 189-198.	16.8	2,870
8	A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2005, 353, 1793-1801.	27.0	2,255
9	MicroRNAs in Cancer. Annual Review of Medicine, 2009, 60, 167-179.	12.2	1,702
10	MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15805-15810.	7.1	1,538
11	MicroRNA Expression Profiles Associated With Prognosis and Therapeutic Outcome in Colon Adenocarcinoma. JAMA - Journal of the American Medical Association, 2008, 299, 425-36.	7.4	1,386
12	MicroRNA Signatures in Human Ovarian Cancer. Cancer Research, 2007, 67, 8699-8707.	0.9	1,356
13	Cancer Exosomes Perform Cell-Independent MicroRNA Biogenesis and Promote Tumorigenesis. Cancer Cell, 2014, 26, 707-721.	16.8	1,293
14	MicroRNAs in body fluidsâ€"the mix of hormones and biomarkers. Nature Reviews Clinical Oncology, 2011, 8, 467-477.	27.6	1,290
15	miRNAs, Cancer, and Stem Cell Division. Cell, 2005, 122, 6-7.	28.9	1,271
16	MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11755-11760.	7.1	1,238
17	MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature Reviews Drug Discovery, 2013, 12, 847-865.	46.4	1,234
18	Modulation of miR-155 and miR-125b Levels following Lipopolysaccharide/TNF-α Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock. Journal of Immunology, 2007, 179, 5082-5089.	0.8	1,229

#	Article	IF	Citations
19	The role of microRNA genes in papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19075-19080.	7.1	1,137
20	A MicroRNA Signature of Hypoxia. Molecular and Cellular Biology, 2007, 27, 1859-1867.	2.3	990
21	A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13556-13561.	7.1	990
22	MicroRNA-Cancer Connection: The Beginning of a New Tale. Cancer Research, 2006, 66, 7390-7394.	0.9	974
23	Clinical relevance of circulating cell-free microRNAs in cancer. Nature Reviews Clinical Oncology, 2014, 11, 145-156.	27.6	915
24	Long non-coding RNAs and cancer: a new frontier of translational research?. Oncogene, 2012, 31, 4577-4587.	5.9	910
25	An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9740-9744.	7.1	906
26	Cyclin G1 Is a Target of miR-122a, a MicroRNA Frequently Down-regulated in Human Hepatocellular Carcinoma. Cancer Research, 2007, 67, 6092-6099.	0.9	782
27	MicroRNA Expression Abnormalities in Pancreatic Endocrine and Acinar Tumors Are Associated With Distinctive Pathologic Features and Clinical Behavior. Journal of Clinical Oncology, 2006, 24, 4677-4684.	1.6	752
28	Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncology, The, 2010, 11, 136-146.	10.7	752
29	Noncoding RNA therapeutics â€" challenges and potential solutions. Nature Reviews Drug Discovery, 2021, 20, 629-651.	46.4	749
30	MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18081-18086.	7.1	747
31	MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5166-5171.	7.1	741
32	MicroRNAs â€" the micro steering wheel of tumour metastases. Nature Reviews Cancer, 2009, 9, 293-302.	28.4	740
33	RNA interference in the clinic: challenges and future directions. Nature Reviews Cancer, 2011, 11, 59-67.	28.4	729
34	MicroRNA expression and function in cancer. Trends in Molecular Medicine, 2006, 12, 580-587.	6.7	699
35	Ultraconserved Regions Encoding ncRNAs Are Altered in Human Leukemias and Carcinomas. Cancer Cell, 2007, 12, 215-229.	16.8	681
36	Genomic Profiling of MicroRNA and Messenger RNA Reveals Deregulated MicroRNA Expression in Prostate Cancer. Cancer Research, 2008, 68, 6162-6170.	0.9	661

#	Article	IF	Citations
37	MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 2008, 27, 5651-5661.	5.9	619
38	Long Noncoding RNA in Prostate, Bladder, and Kidney Cancer. European Urology, 2014, 65, 1140-1151.	1.9	601
39	MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood, 2008, 111, 3183-3189.	1.4	575
40	miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death and Differentiation, 2010, 17, 215-220.	11.2	569
41	Tcl1 Expression in Chronic Lymphocytic Leukemia Is Regulated by <i>miR-29</i> and <i>miR-181</i> Cancer Research, 2006, 66, 11590-11593.	0.9	568
42	Micro-RNA profiling in kidney and bladder cancers. Urologic Oncology: Seminars and Original Investigations, 2007, 25, 387-392.	1.6	566
43	Human chronic lymphocytic leukemia modeled in mouse by targeted <i>TCL1 </i> expression. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6955-6960.	7.1	557
44	miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discovery, 2016, 6, 235-246.	9.4	554
45	<i>CCAT2</i> , a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Research, 2013, 23, 1446-1461.	5.5	526
46	miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts. Cell, 2010, 140, 652-665.	28.9	514
47	Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7004-7009.	7.1	491
48	PDL1 Regulation by p53 via miR-34. Journal of the National Cancer Institute, 2016, 108, .	6.3	475
49	CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2750-2755.	7.1	473
50	PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncology, 2016, 18, 195-205.	1.2	463
51	Genetic and Epigenetic Silencing of MicroRNA-203 Enhances ABL1 and BCR-ABL1 OncogeneÂExpression. Cancer Cell, 2008, 13, 496-506.	16.8	459
52	MicroRNAome genome: A treasure for cancer diagnosis and therapy. Ca-A Cancer Journal for Clinicians, 2014, 64, 311-336.	329.8	428
53	MicroRNA 29b functions in acute myeloid leukemia. Blood, 2009, 114, 5331-5341.	1.4	412
54	The multiMiR R package and database: integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Research, 2014, 42, e133-e133.	14.5	409

#	Article	IF	CITATIONS
55	MicroRNA fingerprints during human megakaryocytopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5078-5083.	7.1	403
56	Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB Journal, 2009, 23, 806-812.	0.5	399
57	MiR-199a-3p Regulates mTOR and c-Met to Influence the Doxorubicin Sensitivity of Human Hepatocarcinoma Cells. Cancer Research, 2010, 70, 5184-5193.	0.9	389
58	miR-200 Expression Regulates Epithelial-to-Mesenchymal Transition in Bladder Cancer Cells and Reverses Resistance to Epidermal Growth Factor Receptor Therapy. Clinical Cancer Research, 2009, 15, 5060-5072.	7.0	386
59	Data Normalization Strategies for MicroRNA Quantification. Clinical Chemistry, 2015, 61, 1333-1342.	3.2	384
60	MiR-122/Cyclin G1 Interaction Modulates p53 Activity and Affects Doxorubicin Sensitivity of Human Hepatocarcinoma Cells. Cancer Research, 2009, 69, 5761-5767.	0.9	380
61	Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1106-15.	7.1	376
62	Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene, 2007, 26, 7590-7595.	5.9	373
63	MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opinion on Biological Therapy, 2009, 9, 703-711.	3.1	372
64	Single-Nucleotide Polymorphisms Inside MicroRNA Target Sites Influence Tumor Susceptibility. Cancer Research, 2010, 70, 2789-2798.	0.9	365
65	Tumour angiogenesis regulation by the miR-200 family. Nature Communications, 2013, 4, 2427.	12.8	363
66	microRNA Therapeutics in Cancer â€" An Emerging Concept. EBioMedicine, 2016, 12, 34-42.	6.1	360
67	A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genetics, 2009, 41, 365-370.	21.4	355
68	Clinical utility of circulating non-coding RNAs â€" an update. Nature Reviews Clinical Oncology, 2018, 15, 541-563.	27.6	353
69	MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene, 2007, 26, 4148-4157.	5.9	351
70	MicroRNA history: Discovery, recent applications, and next frontiers. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 717, 1-8.	1.0	351
71	Regulation of Tumor Angiogenesis by EZH2. Cancer Cell, 2010, 18, 185-197.	16.8	346
72	MicroRNA Microarray Identifies <i>Let-7i</i> as a Novel Biomarker and Therapeutic Target in Human Epithelial Ovarian Cancer. Cancer Research, 2008, 68, 10307-10314.	0.9	343

#	Article	IF	CITATIONS
73	Reprogramming of miRNA networks in cancer and leukemia. Genome Research, 2010, 20, 589-599.	5.5	331
74	Mammalian microRNAs: a small world for fine-tuning gene expression. Mammalian Genome, 2006, 17, 189-202.	2.2	329
75	MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Molecular Aspects of Medicine, 2019, 70, 3-20.	6.4	307
76	A Genetic Defect in Exportin-5 Traps Precursor MicroRNAs in the Nucleus of Cancer Cells. Cancer Cell, 2010, 18, 303-315.	16.8	299
77	MicroRNA-221 Targets Bmf in Hepatocellular Carcinoma and Correlates with Tumor Multifocality. Clinical Cancer Research, 2009, 15, 5073-5081.	7.0	298
78	Exosome-Mediated Transfer of microRNAs Within the Tumor Microenvironment and Neuroblastoma Resistance to Chemotherapy. Journal of the National Cancer Institute, 2015, 107, .	6.3	298
79	Mechanisms of microRNA deregulation in human cancer. Cell Cycle, 2008, 7, 2643-2646.	2.6	293
80	Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene, 2015, 34, 5003-5011.	5.9	293
81	<i>Parkin</i> , a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25–q27. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5956-5961.	7.1	283
82	MicroRNA Fingerprints Identify miR-150 as a Plasma Prognostic Marker in Patients with Sepsis. PLoS ONE, 2009, 4, e7405.	2.5	273
83	Cellâ€toâ€eell communication: microRNAs as hormones. Molecular Oncology, 2017, 11, 1673-1686.	4.6	267
84	Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer, 2012, 118, 2603-2614.	4.1	265
85	MicroRNA expression profiling using microarrays. Nature Protocols, 2008, 3, 563-578.	12.0	264
86	A microRNA component of the hypoxic response. Cell Death and Differentiation, 2008, 15, 667-671.	11.2	263
87	Association of a MicroRNA/TP53 Feedback Circuitry With Pathogenesis and Outcome of B-Cell Chronic Lymphocytic Leukemia. JAMA - Journal of the American Medical Association, 2011, 305, 59.	7.4	256
88	Exosomes as divine messengers: are they the Hermes of modern molecular oncology?. Cell Death and Differentiation, 2015, 22, 34-45.	11,2	254
89	An Integrated Approach for Experimental Target Identification of Hypoxia-induced miR-210. Journal of Biological Chemistry, 2009, 284, 35134-35143.	3.4	248
90	MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene, 2006, 25, 6202-6210.	5.9	244

#	Article	IF	Citations
91	The Potential of MicroRNAs as Prostate Cancer Biomarkers. European Urology, 2016, 70, 312-322.	1.9	243
92	Loss of p53 drives neuron reprogramming in head and neck cancer. Nature, 2020, 578, 449-454.	27.8	241
93	mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Molecular Cancer, 2007, 6, 54.	19.2	240
94	Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis, 2008, 29, 1306-1311.	2.8	235
95	miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-α in human breast cancer cells. Cell Death and Differentiation, 2010, 17, 246-254.	11.2	231
96	MiR-15a and MiR-16 Control Bmi-1 Expression in Ovarian Cancer. Cancer Research, 2009, 69, 9090-9095.	0.9	229
97	PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA <i>PCA3 </i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8403-8408.	7.1	226
98	SnapShot: MicroRNAs in Cancer. Cell, 2009, 137, 586-586.e1.	28.9	223
99	miR-124 Inhibits STAT3 Signaling to Enhance T Cell–Mediated Immune Clearance of Glioma. Cancer Research, 2013, 73, 3913-3926.	0.9	223
100	Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4394-4399.	7.1	222
101	MicroRNAs and cancerâ€"new paradigms in molecular oncology. Current Opinion in Cell Biology, 2009, 21, 470-479.	5.4	219
102	RNAi Therapies: Drugging the Undruggable. Science Translational Medicine, 2014, 6, 240ps7.	12.4	215
103	Low frequency of alterations of the \hat{l}_{\pm} (PPP2R1A) and \hat{l}_{\pm} (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene, 2000, 19, 1191-1195.	5.9	206
104	Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nature Cell Biology, 2015, 17, 311-321.	10.3	205
105	Identification of differentially expressed microRNAs by microarray: A possible role for microRNA genes in pituitary adenomas. Journal of Cellular Physiology, 2007, 210, 370-377.	4.1	203
106	microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood, 2010, 116, 945-952.	1.4	200
107	The fusion of two worlds: Non-coding RNAs and extracellular vesicles - diagnostic and therapeutic implications (Review). International Journal of Oncology, 2015, 46, 17-27.	3.3	192
108	A Serum MicroRNA Signature Predicts Tumor Relapse and Survival in Triple-Negative Breast Cancer Patients. Clinical Cancer Research, 2015, 21, 1207-1214.	7.0	191

#	Article	IF	Citations
109	Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood, 2013, 122, 1891-1899.	1.4	184
110	MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. British Journal of Cancer, 2015, 113, 569-573.	6.4	184
111	CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene, 2010, 29, 6390-6401.	5.9	183
112	MicroRNAs and cancer: Profile, profile, profile. International Journal of Cancer, 2008, 122, 969-977.	5.1	182
113	Strand-Specific miR-28-5p and miR-28-3p Have Distinct Effects in Colorectal Cancer Cells. Gastroenterology, 2012, 142, 886-896.e9.	1.3	174
114	Therapeutic Delivery of miR-200c Enhances Radiosensitivity in Lung Cancer. Molecular Therapy, 2014, 22, 1494-1503.	8.2	172
115	MicroRNAs. Cancer Journal (Sudbury, Mass), 2008, 14, 1-6.	2.0	171
116	<i>CCAT2</i> , a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget, 2013, 4, 1748-1762.	1.8	169
117	Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587. Cancer Research, 2017, 77, 5808-5819.	0.9	169
118	Progresses towards safe and efficient gene therapy vectors. Oncotarget, 2015, 6, 30675-30703.	1.8	163
119	MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood, 2014, 124, 546-554.	1.4	162
120	p63–microRNA feedback in keratinocyte senescence. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1133-1138.	7.1	161
121	MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro-Oncology, 2016, 18, 639-648.	1.2	161
122	Epigenetics and miRNAs in Human Cancer. Advances in Genetics, 2010, 70, 87-99.	1.8	160
123	Targeting microRNAs as key modulators of tumor immune response. Journal of Experimental and Clinical Cancer Research, 2016, 35, 103.	8.6	160
124	Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine, 2018, 38, 100-112.	6.1	159
125	Prooncogenic Factors miR-23b and miR-27b Are Regulated by Her2/ <i>Neu</i> , EGF, and TNF-α in Breast Cancer. Cancer Research, 2013, 73, 2884-2896.	0.9	158
126	Cell-to-cell miRNA transfer: From body homeostasis to therapy. , 2012, 136, 169-174.		156

#	Article	IF	Citations
127	miRâ€203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase. Molecular Oncology, 2014, 8, 83-92.	4.6	156
128	Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. FASEB Journal, 2009, 23, 3243-3250.	0.5	155
129	Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO Journal, 2013, 32, 2672-2684.	7.8	152
130	The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell, 2019, 177, 231-242.	28.9	152
131	Non-coding RNAs in GI cancers: from cancer hallmarks to clinical utility. Gut, 2020, 69, 748-763.	12.1	152
132	Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nature Communications, 2014, 5, 5202.	12.8	151
133	Chromosomal rearrangements and microRNAs: a new cancer link with clinical implications. Journal of Clinical Investigation, 2007, 117, 2059-2066.	8.2	151
134	Regulatory mechanisms of microRNAs involvement in cancer. Expert Opinion on Biological Therapy, 2007, 7, 1009-1019.	3.1	150
135	MicroRNA profiling in cancer. Clinical Science, 2011, 121, 141-158.	4.3	150
136	MicroRNA Processing and Human Cancer. Journal of Clinical Medicine, 2015, 4, 1651-1667.	2.4	150
137	Exosomal IncRNAs as new players in cell-to-cell communication. Translational Cancer Research, 2018, 7, S243-S252.	1.0	150
138	Targeting MicroRNAs With Small Molecules: From Dream to Reality. Clinical Pharmacology and Therapeutics, 2010, 87, 754-758.	4.7	148
139	CCAT1 and CCAT2 long noncoding RNAs, located within the 8q.24.21 †gene desert', serve as important prognostic biomarkers in colorectal cancer. Annals of Oncology, 2017, 28, 1882-1888.	1.2	143
140	MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia, 2008, 22, 1095-1105.	7.2	142
141	Small molecule compounds targeting miRNAs for cancer therapy. Advanced Drug Delivery Reviews, 2015, 81, 104-116.	13.7	142
142	Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2. Molecular Cell, 2016, 61, 520-534.	9.7	142
143	Genomics of Chronic Lymphocytic Leukemia MicroRNAs as New Players With Clinical Significance. Seminars in Oncology, 2006, 33, 167-173.	2.2	141
144	Therapeutic Synergy between microRNA and siRNA in Ovarian Cancer Treatment. Cancer Discovery, 2013, 3, 1302-1315.	9.4	140

#	Article	IF	CITATIONS
145	MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8017-8022.	7.1	138
146	Regulation of pri-miRNA Processing by a Long Noncoding RNA Transcribed from an Ultraconserved Region. Molecular Cell, 2014, 55, 138-147.	9.7	137
147	Cancer Hallmarks and MicroRNAs: The Therapeutic Connection. Advances in Cancer Research, 2017, 135, 119-149.	5.0	135
148	MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget, 2015, 6, 37269-37280.	1.8	135
149	Expression of microRNAs and proteinâ€coding genes associated with perineural invasion in prostate cancer. Prostate, 2008, 68, 1152-1164.	2.3	134
150	Regulation of microRNA Expression: the Hypoxic Component. Cell Cycle, 2007, 6, 1425-1430.	2.6	132
151	Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood, 2009, 113, 5568-5574.	1.4	129
152	<i>miRâ€29b</i> and <i>miRâ€125a</i> regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes and Cancer, 2010, 49, 981-990.	2.8	125
153	Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics, 2010, 5, 656-663.	2.7	125
154	RNAi-based therapeutics and tumor targeted delivery in cancer. Advanced Drug Delivery Reviews, 2022, 182, 114113.	13.7	123
155	miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Review of Molecular Diagnostics, 2013, 13, 183-204.	3.1	122
156	Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers. Clinical Cancer Research, 2017, 23, 2891-2904.	7.0	122
157	Unique MicroRNA Profile in End-stage Heart Failure Indicates Alterations in Specific Cardiovascular Signaling Networks. Journal of Biological Chemistry, 2009, 284, 27487-27499.	3.4	121
158	A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO Journal, 2013, 32, 2833-2847.	7.8	120
159	The Clinical Relevance of Long Non-Coding RNAs in Cancer. Cancers, 2015, 7, 2169-2182.	3.7	120
160	Familial Cancer Associated with a Polymorphism in <i>ARLTS1</i> . New England Journal of Medicine, 2005, 352, 1667-1676.	27.0	119
161	Ubiquitous Release of Exosomal Tumor Suppressor miR-6126 from Ovarian Cancer Cells. Cancer Research, 2016, 76, 7194-7207.	0.9	118
162	Trastuzumab upregulates PD-L1 as a potential mechanism of trastuzumab resistance through engagement of immune effector cells and stimulation of IFNÎ ³ secretion. Cancer Letters, 2018, 430, 47-56.	7.2	117

#	Article	IF	Citations
163	Circular RNAs in Cancer – Lessons Learned From microRNAs. Frontiers in Oncology, 2018, 8, 179.	2.8	115
164	Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduction and Targeted Therapy, 2022, 7, 121.	17.1	114
165	Effect of miR-142-3p on the M2 Macrophage and Therapeutic Efficacy Against Murine Glioblastoma. Journal of the National Cancer Institute, 2014, 106, .	6.3	112
166	The clinical and biological significance of MIR-224 expression in colorectal cancer metastasis. Gut, 2016, 65, 977-989.	12.1	111
167	MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients. British Journal of Cancer, 2014, 110, 1614-1621.	6.4	109
168	An miR-502–Binding Site Single-Nucleotide Polymorphism in the 3′-Untranslated Region of the ⟨i>SET8⟨ i> Gene Is Associated with Early Age of Breast Cancer Onset. Clinical Cancer Research, 2009, 15, 6292-6300.	7.0	106
169	H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-Î ² -Catenin Signaling in Colorectal Cancer. EBioMedicine, 2016, 13, 113-124.	6.1	106
170	Alterations of the Tumor Suppressor Gene Parkin in Non-Small Cell Lung Cancer. Clinical Cancer Research, 2004, 10, 2720-2724.	7.0	105
171	Long Noncoding RNA Ceruloplasmin Promotes Cancer Growth by Altering Glycolysis. Cell Reports, 2015, 13, 2395-2402.	6.4	105
172	Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes and Cancer, 2019, 58, 244-253.	2.8	105
173	MiR-155 Is a Liposarcoma Oncogene That Targets Casein Kinase-1α and Enhances β-Catenin Signaling. Cancer Research, 2012, 72, 1751-1762.	0.9	104
174	Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Scientific Reports, 2013, 3, 2687.	3.3	104
175	The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Critical Reviews in Clinical Laboratory Sciences, 2014, 51, 344-357.	6.1	103
176	HypoxamiRs and Cancer: From Biology to Targeted Therapy. Antioxidants and Redox Signaling, 2014, 21, 1220-1238.	5.4	102
177	Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: A study of the TGR PRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes. International Journal of Cancer, 2000, 89, 230-235.	5.1	101
178	Circulating microRNAs let-7a and miR-16 predict progression-free survival and overall survival in patients with myelodysplastic syndrome. Blood, 2011, 118, 413-415.	1.4	101
179	Soy Isoflavone Genistein-Mediated Downregulation of miR-155 Contributes to the Anticancer Effects of Genistein. Nutrition and Cancer, 2016, 68, 154-164.	2.0	101
180	Chronic lymphocytic leukemia: interplay between noncoding RNAs and protein-coding genes. Blood, 2009, 114, 4761-4770.	1.4	100

#	Article	IF	Citations
181	Chemoprevention of Cigarette Smoke–Induced Alterations of MicroRNA Expression in Rat Lungs. Cancer Prevention Research, 2010, 3, 62-72.	1.5	100
182	HINCUTs in cancer: hypoxia-induced noncoding ultraconserved transcripts. Cell Death and Differentiation, 2013, 20, 1675-1687.	11.2	99
183	Molecular Pathways: microRNAs, Cancer Cells, and Microenvironment. Clinical Cancer Research, 2014, 20, 6247-6253.	7.0	99
184	Noncoding <scp>RNA</scp> s and immune checkpointsâ€"clinical implications as cancer therapeutics. FEBS Journal, 2017, 284, 1952-1966.	4.7	99
185	N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration. Genome Biology, 2017, 18, 98.	8.8	97
186	Frequent Aberrant Methylation of the CDH4 Gene Promoter in Human Colorectal and Gastric Cancer. Cancer Research, 2004, 64, 8156-8159.	0.9	96
187	The Interaction Between Two Worlds: MicroRNAs and Toll-Like Receptors. Frontiers in Immunology, 2019, 10, 1053.	4.8	95
188	Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut, 2020, 69, 18-31.	12.1	94
189	Classical and noncanonical functions of miRNAs in cancers. Trends in Genetics, 2022, 38, 379-394.	6.7	94
190	Decrypting noncoding RNA interactions, structures, and functional networks. Genome Research, 2019, 29, 1377-1388.	5.5	93
191	Expression, Tissue Distribution and Function of miR-21 in Esophageal Squamous Cell Carcinoma. PLoS ONE, 2013, 8, e73009.	2.5	93
192	MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Medicine, 2011, 3, 56.	8.2	92
193	MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint. Hepatology, 2011, 54, 2089-2098.	7.3	91
194	High Serum miR-19a Levels Are Associated with Inflammatory Breast Cancer and Are Predictive of Favorable Clinical Outcome in Patients with Metastatic HER2+ Inflammatory Breast Cancer. PLoS ONE, 2014, 9, e83113.	2.5	91
195	MicroRNA Involvement in Brain Tumors: From Bench to Bedside. Brain Pathology, 2008, 18, 122-129.	4.1	90
196	Clinically Relevant microRNAs in Ovarian Cancer. Molecular Cancer Research, 2015, 13, 393-401.	3.4	90
197	RNA-Binding Proteins as Important Regulators of Long Non-Coding RNAs in Cancer. International Journal of Molecular Sciences, 2020, 21, 2969.	4.1	89
198	The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Practice and Research in Clinical Haematology, 2007, 20, 425-437.	1.7	87

#	Article	IF	CITATIONS
199	Non-coding RNAs regulation of macrophage polarization in cancer. Molecular Cancer, 2021, 20, 24.	19.2	86
200	Regulation of microRNA expression: the hypoxic component. Cell Cycle, 2007, 6, 1426-31.	2.6	86
201	Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood, 2009, 113, 3744-3753.	1.4	85
202	The Roles of MicroRNAs in the Cancer Invasion-Metastasis Cascade. Cancer Microenvironment, 2010, 3, 137-147.	3.1	85
203	Cancer-Associated Neurogenesis and Nerve-Cancer Cross-talk. Cancer Research, 2021, 81, 1431-1440.	0.9	84
204	Hypoxia-upregulated microRNA-630 targets Dicer, leading to increased tumor progression. Oncogene, 2016, 35, 4312-4320.	5.9	83
205	miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget, 2016, 7, 7-22.	1.8	83
206	Expression and function of micro RNAs in immune cells during normal or disease state. International Journal of Medical Sciences, 2008, 5, 73-79.	2.5	82
207	MicroRNA Regulation of Ionizing Radiation-Induced Premature Senescence. International Journal of Radiation Oncology Biology Physics, 2011, 81, 839-848.	0.8	82
208	Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene, 2015, 34, 1619-1628.	5.9	82
209	Gain of imprinting at chromosome 11p15: A pathogenetic mechanism identified in human hepatocarcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5445-5449.	7.1	81
210	MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase. Oncotarget, 2017, 8, 11641-11658.	1.8	81
211	MicroRNA based theranostics for brain cancer: basic principles. Journal of Experimental and Clinical Cancer Research, 2019, 38, 231.	8.6	81
212	GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cellular Signalling, 2020, 68, 109539.	3.6	81
213	<scp>MicroRNAs</scp> as therapeutic targets in human cancers. Wiley Interdisciplinary Reviews RNA, 2014, 5, 537-548.	6.4	80
214	Therapeutic potential of FLANC, a novel primate-specific long non-coding RNA in colorectal cancer. Gut, 2020, 69, 1818-1831.	12.1	80
215	Epigenetic Regulation of miRNAs in Cancer. Advances in Experimental Medicine and Biology, 2013, 754, 137-148.	1.6	79
216	Cross Talk Between MicroRNA and Coding Cancer Genes. Cancer Journal (Sudbury, Mass), 2012, 18, 223-231.	2.0	77

#	Article	IF	CITATIONS
217	Current Insights into Long Non-Coding RNAs (LncRNAs) in Prostate Cancer. International Journal of Molecular Sciences, 2017, 18, 473.	4.1	77
218	Wnt Signaling Regulates the Lineage Differentiation Potential of Mouse Embryonic Stem Cells through Tcf3 Down-Regulation. PLoS Genetics, 2013, 9, e1003424.	3.5	76
219	Exosomal Non-Coding RNAs: Diagnostic, Prognostic and Therapeutic Applications in Cancer. Non-coding RNA, 2015, 1, 53-68.	2.6	76
220	Emerging Roles of microRNAs in the Molecular Responses to Hypoxia. Current Pharmaceutical Design, 2009, 15, 3861-3866.	1.9	75
221	Direct Upregulation of STAT3 by MicroRNA-551b-3p Deregulates Growth and Metastasis of Ovarian Cancer. Cell Reports, 2016, 15, 1493-1504.	6.4	75
222	Serum HOTAIR and GAS5 levels as predictors of survival in patients with glioblastoma. Molecular Carcinogenesis, 2018, 57, 137-141.	2.7	75
223	The Long Noncoding RNA CCAT2 Induces Chromosomal Instability Through BOP1-AURKB Signaling. Gastroenterology, 2020, 159, 2146-2162.e33.	1.3	75
224	MicroRNAs: Fundamental facts and involvement in human diseases. Birth Defects Research Part C: Embryo Today Reviews, 2006, 78, 180-189.	3.6	74
225	A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocrine-Related Cancer, 2013, 20, 809-823.	3.1	74
226	Using microRNA Networks to Understand Cancer. International Journal of Molecular Sciences, 2018, 19, 1871.	4.1	74
227	Examining plasma microRNA markers for colorectal cancer at different stages. Oncotarget, 2016, 7, 11434-11449.	1.8	74
228	The role of microRNA in human leukemia: a review. Leukemia, 2009, 23, 1257-1263.	7.2	73
229	Functional relevance of miRNA* sequences in human disease. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 731, 14-19.	1.0	72
230	miR-141-Mediated Regulation of Brain Metastasis From Breast Cancer. Journal of the National Cancer Institute, 2016, 108, djw026.	6.3	70
231	Genome-Wide and Species-Wide In Silico Screening for Intragenic MicroRNAs in Human, Mouse and Chicken. PLoS ONE, 2013, 8, e65165.	2.5	70
232	Effect of Rapamycin on Mouse Chronic Lymphocytic Leukemia and the Development of Nonhematopoietic Malignancies in Eî¼-TCL1 Transgenic Mice. Cancer Research, 2006, 66, 915-920.	0.9	69
233	Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis, 2010, 31, 208-215.	2.8	68
234	Non-coding RNAs: Identification of Cancer-Associated microRNAs by Gene Profiling. Technology in Cancer Research and Treatment, 2010, 9, 123-138.	1.9	67

#	Article	IF	Citations
235	Genetic Polymorphisms in MicroRNA-Related Genes as Predictors of Clinical Outcomes in Colorectal Adenocarcinoma Patients. Clinical Cancer Research, 2012, 18, 3982-3991.	7.0	67
236	Genome-Wide miRNA Analysis Identifies miR-188-3p as a Novel Prognostic Marker and Molecular Factor Involved in Colorectal Carcinogenesis. Clinical Cancer Research, 2017, 23, 1323-1333.	7.0	67
237	Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia - implications on constitutive activation of NFΰB pathway. Molecular Cancer, 2013, 12, 173.	19.2	66
238	Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis. Oncotarget, 2016, 7, 20636-20654.	1.8	66
239	Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mammalian Genome, 2008, 19, 526-40.	2.2	65
240	Complex Patterns of Altered MicroRNA Expression during the Adenoma-Adenocarcinoma Sequence for Microsatellite-Stable Colorectal Cancer. Clinical Cancer Research, 2011, 17, 7283-7293.	7.0	65
241	miR-196b-5p Regulates Colorectal Cancer Cell Migration and Metastases through Interaction with HOXB7 and GALNT5. Clinical Cancer Research, 2017, 23, 5255-5266.	7.0	65
242	Dual Suppressive Effect of miR-34a on the FOXM1/eEF2-Kinase Axis Regulates Triple-Negative Breast Cancer Growth and Invasion. Clinical Cancer Research, 2018, 24, 4225-4241.	7.0	64
243	MicroRNAs in the ontogeny of leukemias and lymphomas. Leukemia and Lymphoma, 2009, 50, 160-170.	1.3	63
244	Transcription signatures encoded by ultraconserved genomic regions in human prostate cancer. Molecular Cancer, 2013, 12, 13.	19.2	63
245	In Vivo Delivery of miR-34a Sensitizes Lung Tumors to Radiation Through RAD51 Regulation. Molecular Therapy - Nucleic Acids, 2015, 4, e270.	5.1	63
246	Radiotherapy-induced miR-223 prevents relapse of breast cancer by targeting the EGF pathway. Oncogene, 2016, 35, 4914-4926.	5.9	63
247	MiR-181 family-specific behavior in different cancers: a meta-analysis view. Cancer and Metastasis Reviews, 2018, 37, 17-32.	5.9	63
248	Current Status of Long Non-Coding RNAs in Human Breast Cancer. International Journal of Molecular Sciences, 2016, 17, 1485.	4.1	62
249	Dendritic Cell-derived Extracellular Vesicles mediate Mesenchymal Stem/Stromal Cell recruitment. Scientific Reports, 2017, 7, 1667.	3.3	62
250	Catalog of MicroRNA Seed Polymorphisms in Vertebrates. PLoS ONE, 2012, 7, e30737.	2.5	61
251	A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nature Communications, 2018, 9, 461.	12.8	61
252	Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget, 2016, 7, 15093-15104.	1.8	61

#	Article	IF	CITATIONS
253	Rac1/Pak1/p38/MMP-2 Axis Regulates Angiogenesis in Ovarian Cancer. Clinical Cancer Research, 2015, 21, 2127-2137.	7.0	60
254	Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Breast Cancer Research and Treatment, 2018, 171, 593-605.	2.5	60
255	Modulation of MicroRNA-194 and Cell Migration by HER2-Targeting Trastuzumab in Breast Cancer. PLoS ONE, 2012, 7, e41170.	2.5	59
256	miR-342 Regulates BRCA1 Expression through Modulation of ID4 in Breast Cancer. PLoS ONE, 2014, 9, e87039.	2. 5	59
257	Regulation of BRCA1 Transcription by Specific Single-Stranded DNA Binding Factors. Molecular and Cellular Biology, 2003, 23, 3774-3787.	2.3	58
258	Non-coding RNAs: the cancer genome dark matter that matters!. Clinical Chemistry and Laboratory Medicine, 2017, 55, 705-714.	2.3	58
259	Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA <i>CCAT2</i> i> induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Research, 2018, 28, 432-447.	5 . 5	58
260	NCRNA Combined Therapy as Future Treatment Option for Cancer. Current Pharmaceutical Design, 2014, 20, 6565-6574.	1.9	58
261	MicroRNAs, Regulatory Messengers Inside and Outside Cancer Cells. Advances in Experimental Medicine and Biology, 2018, 1056, 87-108.	1.6	57
262	MicroRNAs in the pathogeny of chronic lymphocytic leukaemia. British Journal of Haematology, 2007, 139, 709-716.	2. 5	56
263	Signal transducer and activator of transcription (STAT)-3 regulates microRNA gene expression in chronic lymphocytic leukemia cells. Molecular Cancer, 2013, 12, 50.	19.2	56
264	TRPA1–FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nature Communications, 2017, 8, 947.	12.8	56
265	Exosomal miR-940 maintains SRC-mediated oncogenic activity in cancer cells: a possible role for exosomal disposal of tumor suppressor miRNAs. Oncotarget, 2017, 8, 20145-20164.	1.8	56
266	A total transcriptome profiling method for plasma-derived extracellular vesicles: applications for liquid biopsies. Scientific Reports, 2017, 7, 14395.	3.3	55
267	MALAT1 promoted invasiveness of gastric adenocarcinoma. BMC Cancer, 2017, 17, 46.	2.6	54
268	MicroRNAs: a complex regulatory network drives the acquisition of malignant cell phenotype. Endocrine-Related Cancer, 2010, 17, F51-F75.	3.1	53
269	Loss of methylation at chromosome 11p15.5 is common in human adult tumors. Oncogene, 2002, 21, 2564-2572.	5.9	52
270	Non-coding RNAs as theranostics in human cancers. Journal of Cellular Biochemistry, 2011, 113, n/a-n/a.	2.6	52

#	Article	IF	Citations
271	microRNAome Expression in Chronic Lymphocytic Leukemia: Comparison with Normal B-cell Subsets and Correlations with Prognostic and Clinical Parameters. Clinical Cancer Research, 2014, 20, 4141-4153.	7.0	52
272	MicroRNAs and ceRNAs: therapeutic implications of RNA networks. Expert Opinion on Biological Therapy, 2014, 14, 1285-1293.	3.1	52
273	Genetic and epigenetic alterations of micro <scp>RNA</scp> s and implications for human cancers and other diseases. Genes Chromosomes and Cancer, 2016, 55, 193-214.	2.8	52
274	MicroRNAs and Cancer Therapy – From Bystanders to Major Players. Current Medicinal Chemistry, 2013, 20, 3561-3573.	2.4	50
275	Key principles of miRNA involvement in human diseases. Discoveries, 2014, 2, e34.	2.3	50
276	miR-195 inhibits macrophages pro-inflammatory profile and impacts the crosstalk with smooth muscle cells. PLoS ONE, 2017, 12, e0188530.	2.5	49
277	MiR-200 family and cancer: From a meta-analysis view. Molecular Aspects of Medicine, 2019, 70, 57-71.	6.4	49
278	The ZNF304-integrin axis protects against anoikis in cancer. Nature Communications, 2015, 6, 7351.	12.8	48
279	Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD. Leukemia, 2017, 31, 2355-2364.	7.2	48
280	To Wnt or Lose: The Missing Non-Coding Linc in Colorectal Cancer. International Journal of Molecular Sciences, 2017, 18, 2003.	4.1	48
281	A New World of Biomarkers and Therapeutics for Female Reproductive System and Breast Cancers: Circular RNAs. Frontiers in Cell and Developmental Biology, 2020, 8, 50.	3.7	48
282	Non-coding RNAs and ferroptosis: potential implications for cancer therapy. Cell Death and Differentiation, 2022, 29, 1094-1106.	11.2	48
283	Alterations of the Tumor Suppressor Gene ARLTS1 in Ovarian Cancer. Cancer Research, 2006, 66, 10287-10291.	0.9	47
284	From the Biology of PP2A to the PADs for Therapy of Hematologic Malignancies. Frontiers in Oncology, 2015, 5, 21.	2.8	47
285	The emerging role of long noncoding RNAs in oral cancer. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2017, 123, 235-241.	0.4	47
286	MicroRNAs, ultraconserved genes and colorectal cancers. International Journal of Biochemistry and Cell Biology, 2010, 42, 1291-1297.	2.8	46
287	Novel Insights of Structure-Based Modeling for RNA-Targeted Drug Discovery. Journal of Chemical Information and Modeling, 2012, 52, 2741-2753.	5.4	46
288	Cellular and viral microRNAs in sepsis: mechanisms of action and clinical applications. Cell Death and Differentiation, 2016, 23, 1906-1918.	11.2	46

#	Article	IF	Citations
289	The Mix of Two Worlds: Non-Coding RNAs and Hormones. Nucleic Acid Therapeutics, 2013, 23, 2-8.	3.6	45
290	The Many Faces of Long Noncoding RNAs in Cancer. Antioxidants and Redox Signaling, 2018, 29, 922-935.	5.4	45
291	Over-expression of the <i>miR-483-3p</i> overcomes the miR-145/TP53 pro-apoptotic loop in hepatocellular carcinoma. Oncotarget, 2016, 7, 31361-31371.	1.8	45
292	Coordinated Targeting of the EGFR Signaling Axis by MicroRNA-27a*. Oncotarget, 2013, 4, 1388-1398.	1.8	44
293	microRNAs in Cancer. Advances in Cancer Research, 2010, 108, 113-157.	5.0	43
294	Cellular and Kaposi's sarcoma-associated herpes virus microRNAs in sepsis and surgical trauma. Cell Death and Disease, 2014, 5, e1559-e1559.	6.3	43
295	Epstein–Barr Virus MicroRNAs are Expressed in Patients with Chronic Lymphocytic Leukemia and Correlate with Overall Survival. EBioMedicine, 2015, 2, 572-582.	6.1	43
296	Circulating free xenoâ€microRNAs – The new kids on the block. Molecular Oncology, 2016, 10, 503-508.	4.6	43
297	A noncoding RNA modulator potentiates phenylalanine metabolism in mice. Science, 2021, 373, 662-673.	12.6	42
298	Overexpression of miR-125a in Myelodysplastic Syndrome CD34+ Cells Modulates NF-κB Activation and Enhances Erythroid Differentiation Arrest. PLoS ONE, 2014, 9, e93404.	2.5	42
299	MicroRNAs and Ultraconserved Genes as Diagnostic Markers and Therapeutic Targets in Cancer and Cardiovascular Diseases. Journal of Cardiovascular Translational Research, 2010, 3, 271-279.	2.4	41
300	Current concepts of non-coding RNA regulation of immune checkpoints in cancer. Molecular Aspects of Medicine, 2019, 70, 117-126.	6.4	41
301	PDGF induced microRNA alterations in cancer cells. Nucleic Acids Research, 2011, 39, 4035-4047.	14.5	40
302	MicroRNAs in cancer therapeutics: " <i>from the bench to the bedside</i> ― Expert Opinion on Biological Therapy, 2015, 15, 1381-1385.	3.1	40
303	MicroRNAs from Liquid Biopsy Derived Extracellular Vesicles: Recent Advances in Detection and Characterization Methods. Cancers, 2020, 12, 2009.	3.7	40
304	Synchronous down-modulation of miR-17 family members is an early causative event in the retinal angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3770-3775.	7.1	39
305	UCbase & miRfunc: a database of ultraconserved sequences and microRNA function. Nucleic Acids Research, 2009, 37, D41-D48.	14.5	38
306	MicroRNA-383 located in frequently deleted chromosomal locus 8p22 regulates CD44 in prostate cancer. Oncogene, 2017, 36, 2667-2679.	5.9	38

#	Article	IF	CITATIONS
307	Ultraconserved long non-coding RNA uc.63 in breast cancer. Oncotarget, 2017, 8, 35669-35680.	1.8	38
308	The role of a new class of long noncoding RNAs transcribed from ultraconserved regions in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 449-455.	7.4	37
309	MicroRNAs and Long Non-Coding RNAs and Their Hormone-Like Activities in Cancer. Cancers, 2019, 11, 378.	3.7	37
310	Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma. Oncotarget, 2016, 7, 53165-53177.	1.8	37
311	Non-coding RNAs and cancer: new paradigms in oncology. Discovery Medicine, 2011, 11, 245-54.	0.5	37
312	Chronic lymphocytic leukaemia genetics overview. British Journal of Haematology, 2007, 139, 630-634.	2.5	36
313	Targeting the microRNA-regulating DNA damage/repair pathways in cancer. Expert Opinion on Biological Therapy, $2014, 14, 1667-1683$.	3.1	36
314	Regulation of hnRNPA1 by microRNAs controls the miR-18a \hat{a} \in "K-RAS axis in chemotherapy-resistant ovarian cancer. Cell Discovery, 2017, 3, 17029.	6.7	36
315	Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs. Nature Communications, 2017, 8, 1801.	12.8	36
316	Key questions about the checkpoint blockade-are microRNAs an answer?. Cancer Biology and Medicine, 2018, 15, 103.	3.0	36
317	Current Concepts of Non-Coding RNAs in the Pathogenesis of Non-Clear Cell Renal Cell Carcinoma. Cancers, 2019, 11, 1580.	3.7	36
318	Non-Coding RNAs in IGF-1R Signaling Regulation: The Underlying Pathophysiological Link between Diabetes and Cancer. Cells, 2019, 8, 1638.	4.1	36
319	FOXP3 is a direct target of miR15a/16 in umbilical cord blood regulatory T cells. Bone Marrow Transplantation, 2014, 49, 793-799.	2.4	35
320	ApoptomiRs expression modulated by BCR–ABL is linked to CML progression and imatinib resistance. Blood Cells, Molecules, and Diseases, 2014, 53, 47-55.	1.4	35
321	Roles and clinical implications of microRNAs in acute lymphoblastic leukemia. Journal of Cellular Physiology, 2018, 233, 5642-5654.	4.1	35
322	Long Non-coding RNAs in Myeloid Malignancies. Frontiers in Oncology, 2019, 9, 1048.	2.8	35
323	GLS2 is protumorigenic in breast cancers. Oncogene, 2020, 39, 690-702.	5.9	35
324	Stratifying risk of recurrence in stage II colorectal cancer using deregulated stromal and epithelial microRNAs. Oncotarget, 2015, 6, 7262-7279.	1.8	35

#	Article	IF	CITATIONS
325	MicroRNA and Epigenetics: Diagnostic and Therapeutic Opportunities. Current Pathobiology Reports, 2013, 1, 43-52.	3.4	34
326	miRâ€181a/b therapy in lung cancer: reality or myth?. Molecular Oncology, 2019, 13, 9-25.	4.6	34
327	FuncPEP: A Database of Functional Peptides Encoded by Non-Coding RNAs. Non-coding RNA, 2020, 6, 41.	2.6	34
328	Multigene Methylation Analysis of Gastrointestinal Tumors. Molecular Diagnosis and Therapy, 2003, 7, 201-207.	1.1	33
329	GAM/ZFp/ZNF512B is central to a gene sensor circuitry involving cell-cycle regulators, TGFβ effectors, Drosha and microRNAs with opposite oncogenic potentials. Nucleic Acids Research, 2010, 38, 7673-7688.	14.5	32
330	A large scale expression study associates uc.283-plus lncRNA with pluripotent stem cells and human glioma. Genome Medicine, 2014, 6, 76.	8.2	32
331	The protein phosphatase 2A regulatory subunit $B55\hat{l}\pm$ is a modulator of signaling and microRNA expression in acute myeloid leukemia cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1969-1977.	4.1	32
332	<i>HIF1A</i> gene polymorphisms and human diseases: Graphical review of 97 association studies. Genes Chromosomes and Cancer, 2017, 56, 439-452.	2.8	32
333	Association Between Germline Mutations in BRF1, a Subunit of the RNA Polymerase III Transcription Complex, and Hereditary Colorectal Cancer. Gastroenterology, 2018, 154, 181-194.e20.	1.3	32
334	MicroRNAs and genomic variations: from Proteus tricks to Prometheus gift. Carcinogenesis, 2009, 30, 912-917.	2.8	31
335	Signal Transducer and Activator of Transcription–3 Induces MicroRNA-155 Expression in Chronic Lymphocytic Leukemia. PLoS ONE, 2013, 8, e64678.	2.5	31
336	MicroRNAs in chronic lymphocytic leukemia: miRacle or miRage for prognosis and targeted therapies?. Seminars in Oncology, 2016, 43, 209-214.	2.2	31
337	Metformin blocks <scp>MYC</scp> protein synthesis in colorectal cancer via m <scp>TOR</scp> å€4 <scp>EBP</scp> å€e <scp>IF</scp> 4E and MNK1å€e <scp>IF</scp> 4Gå€e <scp>IF</scp> 4E signaling. Molecular Oncology, 2018, 12, 1856-1870.	4.6	31
338	Editing and Chemical Modifications on Non-Coding RNAs in Cancer: A New Tale with Clinical Significance. International Journal of Molecular Sciences, 2021, 22, 581.	4.1	31
339	Circulating miRNAs in sepsis—A network under attack: An in-silico prediction of the potential existence of miRNA sponges in sepsis. PLoS ONE, 2017, 12, e0183334.	2.5	31
340	RNA Inhibition, MicroRNAs, and New Therapeutic Agents for Cancer Treatment. Clinical Lymphoma and Myeloma, 2009, 9, S313-S318.	1.4	30
341	MicroRNAs: Toward the Clinic for Breast Cancer Patients. Seminars in Oncology, 2011, 38, 764-775.	2.2	30
342	Circulating microRNAs as Promising Tumor Biomarkers. Advances in Clinical Chemistry, 2014, 67, 189-214.	3.7	30

#	Article	IF	CITATIONS
343	Inflamma-miRs in Aging and Breast Cancer: Are They Reliable Players?. Frontiers in Medicine, 2015, 2, 85.	2.6	30
344	Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer. Seminars in Cancer Biology, 2019, 58, 47-55.	9.6	30
345	Genetic chaos and antichaos in human cancers. Medical Hypotheses, 2003, 60, 258-262.	1.5	29
346	Role of Pescadillo and Upstream Binding Factor in the Proliferation and Differentiation of Murine Myeloid Cells. Molecular and Cellular Biology, 2004, 24, 5421-5433.	2.3	29
347	Lung Cancer Susceptibility in Fhit-Deficient Mice Is Increased by Vhl Haploinsufficiency. Cancer Research, 2005, 65, 6576-6582.	0.9	29
348	$\mbox{\sc b>Decoy}$ activity through microRNAs: the therapeutic implications $\mbox{\sc /b>}$. Expert Opinion on Biological Therapy, 2012, 12, 1153-1159.	3.1	29
349	Clinical significance of the interaction between non-coding RNAs and the epigenetics machinery. Epigenetics, 2014, 9, 75-80.	2.7	29
350	Understanding the Genomic Ultraconservations: T-UCRs and Cancer. International Review of Cell and Molecular Biology, 2017, 333, 159-172.	3.2	29
351	Below the Surface: IGF-1R Therapeutic Targeting and Its Endocytic Journey. Cells, 2019, 8, 1223.	4.1	29
352	Circulating inflammation signature predicts overall survival and relapse-free survival in metastatic colorectal cancer. British Journal of Cancer, 2019, 120, 340-345.	6.4	29
353	Principles of microRNA involvement in human cancers. Chinese Journal of Cancer, 2011, 30, 739-748.	4.9	29
354	Plasma circulating-microRNA profiles are useful for assessing prognosis in patients with cytogenetically normal myelodysplastic syndromes. Modern Pathology, 2015, 28, 373-382.	5.5	28
355	Ofatumumab and Lenalidomide for Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia: Correlation between Responses and Immune Characteristics. Clinical Cancer Research, 2016, 22, 2359-2367.	7.0	28
356	Functional antagonism of \hat{l}^2 -arrestin isoforms balance IGF-1R expression and signalling with distinct cancer-related biological outcomes. Oncogene, 2017, 36, 5734-5744.	5.9	28
357	Long nonâ€coding RNA uc.291 controls epithelial differentiation by interfering with the ACTL6A/BAF complex. EMBO Reports, 2020, 21, e46734.	4.5	28
358	A mathematical model for the quantification of a patient's sensitivity to checkpoint inhibitors and long-term tumour burden. Nature Biomedical Engineering, 2021, 5, 297-308.	22.5	28
359	Non-coding RNAs for Medical Practice in Oncology. Keio Journal of Medicine, 2011, 60, 106-113.	1.1	27
360	IncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System. Cancers, 2020, 12, 2148.	3.7	27

#	Article	IF	CITATIONS
361	ARLTS1 – a novel tumor suppressor gene. Cancer Letters, 2008, 264, 11-20.	7.2	26
362	MicroRNA-138 suppresses glioblastoma proliferation through downregulation of CD44. Scientific Reports, 2021, 11, 9219.	3.3	26
363	MiR-223-5p works as an oncomiR in vulvar carcinoma by <i>TP63 < /i>suppression. Oncotarget, 2016, 7, 49217-49231.</i>	1.8	26
364	Refinement of the LOH region 1 at $11q23.1$ deleted in human breast carcinomas and sublocalization of 11 expressed sequence tags within the refined region. Oncogene, 1999, 18, 1635-1638.	5.9	25
365	Role of PTPRJ genotype in papillary thyroid carcinoma risk. Endocrine-Related Cancer, 2010, 17, 1001-1006.	3.1	25
366	Trisomy 12 chronic lymphocytic leukemia expresses a unique set of activated and targetable pathways. Haematologica, 2018, 103, 2069-2078.	3.5	25
367	Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Seminars in Cancer Biology, 2022, 83, 197-207.	9.6	25
368	miRNA as Potential Biomarkers of Breast Cancer in the Lebanese Population and in Young Women: A Pilot Study. PLoS ONE, 2014, 9, e107566.	2.5	25
369	The role of exosomal long non-coding RNAs in cancer drug resistance. , 2019, 2, 1178-1192.		25
370	Genetic variants at the miR-124 binding site on the cytoskeleton-organizing IQCAP1 gene confer differential predisposition to breast cancer. International Journal of Oncology, 2011, 38, 1153-61.	3.3	24
371	Hematopoietic stem cells from induced pluripotent stem cells $\hat{a} \in \text{``considering the role of microRNA'}$ as a cell differentiation regulator. Journal of Cell Science, 2018, 131, .	2.0	24
372	The Modulatory Role of MicroRNA-873 in the Progression of KRAS-Driven Cancers. Molecular Therapy - Nucleic Acids, 2019, 14, 301-317.	5.1	24
373	Therapeutic Potential of the miRNA–ATM Axis in the Management of Tumor Radioresistance. Cancer Research, 2020, 80, 139-150.	0.9	24
374	Potential Therapeutic Applications of miRNA-Based Technology in Hematological Malignancies. Current Pharmaceutical Design, 2008, 14, 2040-2050.	1.9	23
375	Hematopoietic differentiation: a coordinated dynamical process towards attractor stable states. BMC Systems Biology, 2010, 4, 85.	3.0	23
376	OncomiR-10b hijacks the small molecule inhibitor linifanib in human cancers. Scientific Reports, 2018, 8, 13106.	3.3	23
377	Epigenetic silencing of miR-340-5p in multiple myeloma: mechanisms and prognostic impact. Clinical Epigenetics, 2019, 11, 71.	4.1	23
378	Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model. Oncogene, 2017, 36, 6617-6626.	5.9	22

#	Article	IF	CITATIONS
379	microRNA Expression in Ethnic Specific Early Stage Breast Cancer: an Integration and Comparative Analysis. Scientific Reports, 2017, 7, 16829.	3.3	22
380	Long non-coding RNAs within the tumour microenvironment and their role in tumour-stroma cross-talk. Cancer Letters, 2018, 421, 94-102.	7.2	22
381	Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum. RNA Biology, 2020, 17, 1523-1534.	3.1	22
382	Circulating Non-coding RNAs in Renal Cell Carcinomaâ€"Pathogenesis and Potential Implications as Clinical Biomarkers. Frontiers in Cell and Developmental Biology, 2020, 8, 828.	3.7	22
383	VEGFR-1 Pseudogene Expression and Regulatory Function in Human Colorectal Cancer Cells. Molecular Cancer Research, 2015, 13, 1274-1282.	3.4	21
384	Design of a miRNA sponge for the miR-17 miRNA family as a therapeutic strategy against vulvar carcinoma. Molecular and Cellular Probes, 2015, 29, 420-426.	2.1	21
385	miR-122 and hepatocellular carcinoma: from molecular biology to therapeutics. EBioMedicine, 2018, 37, 17-18.	6.1	21
386	Long non-coding RNA CCAT2 as a therapeutic target in colorectal cancer. Expert Opinion on Therapeutic Targets, 2018, 22, 973-976.	3.4	20
387	The involvement of microRNA in the pathogenesis of Richter syndrome. Haematologica, 2019, 104, 1004-1015.	3.5	20
388	The Interplay between MicroRNAs and the Components of the Tumor Microenvironment in B-Cell Malignancies. International Journal of Molecular Sciences, 2020, 21, 3387.	4.1	20
389	Somatic frameshift mutations in the Bloom syndrome BLM gene are frequent in sporadic gastric carcinomas with microsatellite mutator phenotype. BMC Genetics, 2001, 2, 14.	2.7	19
390	MicroRNAs and cancer: what we know and what we still have to learn. Genome Medicine, 2009, 1, 78.	8.2	19
391	Levels of miRâ€29b do not predict for response in patients with acute myelogenous leukemia treated with the combination of 5â€azacytidine, valproic acid, and ATRA. American Journal of Hematology, 2011, 86, 237-238.	4.1	19
392	microRNA-10b: A New Marker or the Marker of Pancreatic Ductal Adenocarcinoma?. Clinical Cancer Research, 2011, 17, 5527-5529.	7.0	19
393	MicroRNAs as Main Players in the Pathogenesis of Chronic Lymphocytic Leukemia. MicroRNA (Shariqah,) Tj ETQq1	1.9.78431	14 rgBT /O\ 19
394	Plasma Viral miRNAs Indicate a High Prevalence of Occult Viral Infections. EBioMedicine, 2017, 20, 182-192.	6.1	19
395	The role of radiotherapy in metaplastic breast cancer: a propensity score-matched analysis of the SEER database. Journal of Translational Medicine, 2019, 17, 318.	4.4	19
396	Integrated MicroRNA–mRNA Profiling Identifies Oncostatin M as a Marker of Mesenchymal-Like ER-Negative/HER2-Negative Breast Cancer. International Journal of Molecular Sciences, 2017, 18, 194.	4.1	18

#	Article	IF	Citations
397	miR-543 regulates the epigenetic landscape of myelofibrosis by targeting TET1 and TET2. JCI Insight, 2020, 5, .	5.0	18
398	Spinophilin expression determines cellular growth, cancer stemness and 5-flourouracil resistance in colorectal cancer. Oncotarget, 2014, 5, 8492-8502.	1.8	18
399	Patients After Splenectomy: Old Risks and New Perspectives. Chirurgia (Romania), 2016, 111, 393.	0.5	18
400	MYC-microRNA-9-metastasis connection in breast cancer. Cell Research, 2010, 20, 603-604.	12.0	17
401	Tracking miRNAs' footprints in tumor–microenvironment interactions: Insights and implications for targeted cancer therapy. Genes Chromosomes and Cancer, 2015, 54, 335-352.	2.8	17
402	The nonâ€coding RNome after splenectomy. Journal of Cellular and Molecular Medicine, 2019, 23, 7844-7858.	3.6	17
403	Highlighting transcribed ultraconserved regions in human diseases. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1567.	6.4	17
404	An Integrative Analysis to Identify Driver Genes in Esophageal Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0139808.	2.5	17
405	Contact inhibition modulates intracellular levels of miR-223 in a p27kip1-dependent manner. Oncotarget, 2014, 5, 1185-1197.	1.8	17
406	Epigenetically regulated microRNAs and their prospect in cancer diagnosis. Expert Review of Molecular Diagnostics, 2014, 14, 673-683.	3.1	16
407	A Multiscale Agent-Based Model of Ductal Carcinoma <i>In Situ</i> In SituEEE Transactions on Biomedical Engineering, 2020, 67, 1450-1461.	4.2	16
408	Tumor Suppressor Functions of <i>ARLTS1</i> in Lung Cancers. Cancer Research, 2007, 67, 7738-7745.	0.9	15
409	CRISPR-based RNA editing: diagnostic applications and therapeutic options. Expert Review of Molecular Diagnostics, 2019, 19, 83-88.	3.1	15
410	Inhibition of G Protein–Coupled Receptor Kinase 2 Promotes Unbiased Downregulation of IGF1 Receptor and Restrains Malignant Cell Growth. Cancer Research, 2021, 81, 501-514.	0.9	15
411	Ultraconserved long non-coding RNA uc.112 is highly expressed in childhood T versus B-cell acute lymphoblastic leukemia. Hematology, Transfusion and Cell Therapy, 2021, 43, 28-34.	0.2	15
412	Gut microbiota: a new player in regulating immune- and chemo-therapy efficacy., 2020, 3, 356-370.		15
413	OMiR: Identification of associations between OMIM diseases and microRNAs. Genomics, 2011, 97, 71-76.	2.9	14
414	targetHub: a programmable interface for miRNA–gene interactions. Bioinformatics, 2013, 29, 2657-2658.	4.1	14

#	Article	IF	Citations
415	From mobility to crosstalk. A model of intracellular miRNAs motion may explain the RNAs interaction mechanism on the basis of target subcellular localization. Mathematical Biosciences, 2016, 280, 50-61.	1.9	14
416	Expression profiles of micro RNA in proliferating and differentiating 32D murine myeloid cells. Journal of Cellular Physiology, 2006, 207, 706-710.	4.1	13
417	Targeting IL11 Receptor in Leukemia and Lymphoma: A Functional Ligand-Directed Study and Hematopathology Analysis of Patient-Derived Specimens. Clinical Cancer Research, 2015, 21, 3041-3051.	7.0	13
418	The role of p19 and p21 H-Ras proteins and mutants in miRNA expression in cancer and a Costello syndrome cell model. BMC Medical Genetics, 2015, 16 , 46 .	2.1	13
419	Genetic Variations of Ultraconserved Elements in the Human Genome. OMICS A Journal of Integrative Biology, 2019, 23, 549-559.	2.0	13
420	MYC-related microRNAs signatures in non-Hodgkin B-cell lymphomas and their relationships with core cellular pathways. Oncotarget, 2018, 9, 29753-29771.	1.8	13
421	MicroRNAs as Cancer Biomarkers. MicroRNA (Shariqah, United Arab Emirates), 2013, 2, 102-117.	1.2	12
422	microRNA and Chronic Lymphocytic Leukemia. Advances in Experimental Medicine and Biology, 2015, 889, 23-40.	1.6	12
423	Non-Coding RNAs as Cancer Hallmarks in Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 2020, 21, 6720.	4.1	12
424	Frequent methylation of the tumour suppressor miRâ€1258 targeting PDL1: implication in multiple myelomaâ€specific cytotoxicity and prognostification. British Journal of Haematology, 2020, 190, 249-261.	2.5	12
425	Subcellular Localization of uc.8+ as a Prognostic Biomarker in Bladder Cancer Tissue. Cancers, 2021, 13, 681.	3.7	12
426	MicroRNAs in mouse models of lymphoid malignancies. Journal of Nucleic Acids Investigation, 2010, 1, 8.	0.8	12
427	Translational Modeling Identifies Synergy between Nanoparticle-Delivered miRNA-22 and Standard-of-Care Drugs in Triple-Negative Breast Cancer. Pharmaceutical Research, 2022, 39, 511-528.	3.5	12
428	Association of proton pump inhibitor use with survival outcomes in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Therapeutic Advances in Medical Oncology, 2022, 14, 175883592211117.	3.2	12
429	The Meaning of 21 in the MicroRNA World: Perfection Rather than Destruction?. Cancer Cell, 2010, 18, 203-205.	16.8	11
430	MicroRNAs: Clinical Trials and Potential Applications. Clinical Journal of Oncology Nursing, 2017, 21, 554-559.	0.6	11
431	Epigenetic silencing of miR-342-3p in B cell lymphoma and its impact on autophagy. Clinical Epigenetics, 2020, 12, 150.	4.1	11
432	Epigenetic silencing of long non-coding RNA BM742401 in multiple myeloma: impact on prognosis and myeloma dissemination. Cancer Cell International, 2020, 20, 403.	4.1	11

#	Article	IF	CITATIONS
433	Fractal-like kinetics of intracellular enzymatic reactions: a chemical framework of endotoxin tolerance and a possible non-specific contribution of macromolecular crowding to cross-tolerance. Theoretical Biology and Medical Modelling, 2013, 10, 55.	2.1	10
434	MicroRNA Analysis: Is It Ready for Prime Time?. Clinical Chemistry, 2013, 59, 343-347.	3.2	10
435	SnapShot: Chronic Lymphocytic Leukemia. Cancer Cell, 2014, 26, 770-770.e1.	16.8	10
436	An updated h-index measures both the primary and total scientific output of a researcher. Discoveries, 2015, 3, e50.	2.3	10
437	Interrupting Neuronâ€"Tumor Interactions to Overcome Treatment Resistance. Cancers, 2020, 12, 3741.	3.7	10
438	A Holistic Perspective: Exosomes Shuttle between Nerves and Immune Cells in the Tumor Microenvironment. Journal of Clinical Medicine, 2020, 9, 3529.	2.4	10
439	Low spinophilin expression enhances aggressive biological behavior of breast cancer. Oncotarget, 2015, 6, 11191-11202.	1.8	10
440	miRs: fine-tuning prognosis in CLL. Blood, 2009, 113, 5035-5036.	1.4	9
441	Crucial role of non-coding RNAs in disease. Cancer Letters, 2018, 420, 127-128.	7.2	9
442	Profiling the circulating miRnome reveals a temporal regulation of the bone injury response. Theranostics, 2018, 8, 3902-3917.	10.0	9
443	When non-coding is not enough. Journal of Experimental Medicine, 2020, 217, .	8.5	9
444	Classic and targeted antiâ€keukaemic agents interfere with the cholesterol biogenesis metagene in acute myeloid leukaemia: Therapeutic implications. Journal of Cellular and Molecular Medicine, 2020, 24, 7378-7392.	3.6	9
445	CRISPR/Cas9 to Silence Long Non-Coding RNAs. Methods in Molecular Biology, 2021, 2348, 175-187.	0.9	9
446	MicroRNAs in Myeloid Hematological Malignancies. Current Genomics, 2015, 16, 336-348.	1.6	9
447	Analysis of the circRNA and T-UCR populations identifies convergent pathways in mouse and human models of Rett syndrome. Molecular Therapy - Nucleic Acids, 2022, 27, 621-644.	5.1	9
448	Beyond genomics: interpreting the 93% of the human genome that does not encode proteins. Current Opinion in Drug Discovery & Development, 2010, 13, 350-8.	1.9	9
449	Cloning and characterization of cDNAs expressed during chick development and encoding different isoforms of a putative zinc finger transcriptional regulator. Biochimie, 2005, 87, 939-949.	2.6	8
450	MicroRNAs and metastases - the neuroblastoma link. Cancer Biology and Therapy, 2010, 9, 453-454.	3.4	8

#	Article	IF	CITATIONS
451	Bioinformatics, Non-coding RNAs and Its Possible Application in Personalized Medicine. Advances in Experimental Medicine and Biology, 2013, 774, 21-37.	1.6	8
452	EGFR gets in the way of microRNA biogenesis. Cell Research, 2013, 23, 1157-1158.	12.0	7
453	Tipping a favorable CNS intratumoral immune response using immune stimulation combined with inhibition of tumor-mediated immune suppression. Oncolmmunology, 2016, 5, e1117739.	4.6	7
454	The noncoding <scp>RNA</scp> revolutionâ€"three decades and still going strong!. Molecular Oncology, 2019, 13, 3-3.	4.6	7
455	Prognostic Value of Procalcitonin, C-Reactive Protein, and Lactate Levels in Emergency Evaluation of Cancer Patients with Suspected Infection. Cancers, 2021, 13, 4087.	3.7	7
456	MicroRNAs in Leukemias: A Clinically Annotated Compendium. International Journal of Molecular Sciences, 2022, 23, 3469.	4.1	7
457	t(1;7)(p36;q32): A new recurring abnormality in primary myelodysplastic syndrome. Cancer Genetics and Cytogenetics, 1994, 75, 103-105.	1.0	6
458	MicroRNAs in mouse models of lymphoid malignancies. Journal of Nucleic Acids Investigation, 2010, 1, 8.	0.8	6
459	Profiling Long Noncoding RNA Expression Using Custom-Designed Microarray. Methods in Molecular Biology, 2016, 1402, 33-41.	0.9	6
460	Allele Frequencies of Variants in Ultra Conserved Elements Identify Selective Pressure on Transcription Factor Binding. PLoS ONE, 2014, 9, e110692.	2.5	6
461	Selection of a Nuclease-Resistant RNA Aptamer Targeting CD19. Cancers, 2021, 13, 5220.	3.7	6
462	Serglycin Is Involved in TGF-β Induced Epithelial-Mesenchymal Transition and Is Highly Expressed by Immune Cells in Breast Cancer Tissue. Frontiers in Oncology, 2022, 12, 868868.	2.8	6
463	Small gene, big number, many effects. Blood, 2012, 120, 240-241.	1.4	5
464	Welcome to the New Journal Non-Coding RNA!. Non-coding RNA, 2015, 1, 1-3.	2.6	5
465	When kissing (disease) counts. Blood, 2016, 127, 1947-1948.	1.4	5
466	From cell biology to immunology: Controlling metastatic progression of cancer via microRNA regulatory networks. Oncolmmunology, 2016, 5, e1230579.	4.6	5
467	Disruption of TP63-miR-27a* Feedback Loop by Mutant TP53 in Head and Neck Cancer. Journal of the National Cancer Institute, 2020, 112, 266-277.	6.3	5
468	Viral Micro-RNAs Are Detected in the Early Systemic Response to Injury and Are Associated With Outcomes in Polytrauma Patients. Critical Care Medicine, 2022, 50, 296-306.	0.9	5

#	Article	lF	CITATIONS
469	ONCOGENES AND TUMOR-SUPPRESSOR GENES - 2 DIFFERENT LOOKS OF THE SAME GENE. Oncology Reports, 1994, 1, 987-91.	2.6	5
470	Dedifferentiation-mediated stem cell niche maintenance in early-stage ductal carcinoma in situ progression: insights from a multiscale modeling study. Cell Death and Disease, 2022, 13, .	6.3	5
471	MicroRNAs as New Players in the Genomic Galaxy and Disease Puzzles. Clinical and Translational Science, 2008, 1, 50-56.	3.1	4
472	MicroRNAs as new biomarkers in oncology. Expert Opinion on Medical Diagnostics, 2008, 2, 115-127.	1.6	4
473	BRCA1, microRNAs and cancer predisposition: Challenging the dogma. Cell Cycle, 2011, 10, 377-377.	2.6	4
474	Germline polymorphisms in myeloid-associated genes are not associated with survival in glioma patients. Journal of Neuro-Oncology, 2018, 136, 33-39.	2.9	4
475	Mir-roring hypoxia in EGFR-TKI tolerance. Nature Metabolism, 2019, 1, 418-419.	11.9	4
476	Construction and validation of prognostic nomogram for metaplastic breast cancer. Bosnian Journal of Basic Medical Sciences, 2021, , .	1.0	4
477	Genetic progression in microsatellite instability high (MSIâ€H) colon cancers correlates with clinicoâ€pathological parameters: A study of the TGRRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes. International Journal of Cancer, 2000, 89, 230-235.	5.1	4
478	New Definitions of Sepsis and the Quest for Specific Biomarkers. Are the miRNAs the Answer?. Chirurgia (Romania), 2018, 113, 464.	0.5	4
479	MicroRNA Expression and Regulation of Hematopoiesis in CD34+ Cells: A Bioinformatic Circuit Diagram of the Hematopoietic Differentiation Control Blood, 2006, 108, 1334-1334.	1.4	4
480	Marfan-like habitus and familial adenomatous polyposis in two unrelated males: a significant association?. European Journal of Human Genetics, 1999, 7, 609-614.	2.8	3
481	The difference between p53 mutation frequency in haematological and non-haematological malignancies: possible explanations. Medical Hypotheses, 1999, 53, 326-328.	1.5	3
482	MiR-sensing chemotherapy resistance in CLL. Blood, 2009, 113, 3652-3653.	1.4	3
483	The Role of MicroRNAs and Ultraconserved Non-Coding RNAs in Cancer. , 2014, , 435-447.		3
484	IMPS-28PD-L1 EXPRESSION AND PROGNOSTIC IMPACT IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v119.2-v119.	1.2	3
485	The interplay between lnRNAs, SNPs, and protein complexes - what does it mean for cancer metabolism?. Molecular and Cellular Oncology, 2016, 3, e1166308.	0.7	3
486	miRNA Expression Assays. , 2019, , 51-71.		3

#	Article	IF	CITATIONS
487	Pyknon-Containing Transcripts Are Downregulated in Colorectal Cancer Tumors, and Loss of PYK44 Is Associated With Worse Patient Outcome. Frontiers in Genetics, 2020, 11, 581454.	2.3	3
488	How Does a Tumor Get Its Shape? MicroRNAs Act as Morphogens at the Cancer Invasion Front. Non-coding RNA, 2020, 6, 23.	2.6	3
489	In silico prediction of target SNPs affecting miR-mRNA interaction. , 2008, , .		2
490	MicroRNAs: The Jack of All Trades. Clinical Leukemia, 2009, 3, 20-32.	0.2	2
491	High-Throughput Profiling in the Hematopoietic System. Methods in Molecular Biology, 2010, 667, 79-91.	0.9	2
492	Molecular aspects of medicine – Editorial 2019. Molecular Aspects of Medicine, 2019, 70, 1-2.	6.4	2
493	Being Small and Intronic: miRNAs That Count!. Cancer Research, 2021, 81, 1212-1213.	0.9	2
494	Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Frontiers in Oncology, 2021, 11, 682129.	2.8	2
495	MicroRNAs: New Players in AML Pathogenesis. Cancer Treatment and Research, 2009, 145, 169-181.	0.5	2
496	Multiple Approach to Analyzing the Role of MicroRNAs in Apoptosis. Methods in Molecular Biology, 2009, 559, 219-245.	0.9	2
497	MicroRNAs in Chronic Lymphocytic Leukemia: An Old Disease with New Genetic Insights. MicroRNA (Shariqah, United Arab Emirates), 2016, 5, 106-112.	1.2	2
498	Pseudogenes, RNAs and new reproducibility norms. ELife, 2020, 9, .	6.0	2
499	IncRNAs UC.145 and PRKG1-AS1 Determine the Functional Output of DKK1 in Regulating the Wnt Signaling Pathway in Gastric Cancer. Cancers, 2022, 14, 2369.	3.7	2
500	Coding and noncoding: the CLL mix. Blood, 2010, 115, 3858-3859.	1.4	1
501	Genetic control of mammalian T-cell proliferation with a synthetic RNA regulatory system - illusion or reality?. Genome Medicine, 2010, 2, 77.	8.2	1
502	Principles of MicroRNA Involvement in Breast Cancer. Breast Diseases, 2011, 22, 238-243.	0.0	1
503	In situ hybridization-based detection of microRNAs in human diseases. MicroRNA Diagnostics and Therapeutics, 2014, 1, .	0.0	1
504	Beyond miRNAs: Role of Other Noncoding RNAs in Cancer. , 2014, , 247-264.		1

#	Article	IF	CITATIONS
505	Drug–MicroRNA Cross-Talk. , 2015, , 991-1016.		1
506	MiRNA Expression Assays. , 2015, , 45-70.		1
507	Hodgkin Lymphoma Cells Have a Specific Long Noncoding RNA Expression Pattern. American Journal of Pathology, 2016, 186, 2251-2253.	3.8	1
508	A unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks Journal of Biological Chemistry, 2016, 291, 14914.	3.4	1
509	Describing a Transcription Factor Dependent Regulation of the MicroRNA Transcriptome. Journal of Visualized Experiments, 2016, , .	0.3	1
510	Measurement of miRNAs in Chronic Lymphocytic Leukemia Patient Samples by Quantitative Reverse Transcription PCR. Methods in Molecular Biology, 2019, 1881, 267-276.	0.9	1
511	Preface for GCC Special Issue on noncoding RNAs, noncoding DNAs, and genome editing. Genes Chromosomes and Cancer, 2019, 58, 189-190.	2.8	1
512	TNF-alpha releasing capacity of the whole blood drops after open total splenectomy, but increases after partial/subtotal or minimally invasive splenectomy. Acta Chirurgica Belgica, 2022, 122, 346-356.	0.4	1
513	JAM-ming miR-21. Cell Death and Differentiation, 2021, 28, 2837-2839.	11.2	1
514	MicroRNAs as Therapeutic Targets., 2015,, 683-697.		1
515	Abstract 3087: MicroRNA 141: A novel regulator of brain metastasis from breast cancer. , 2015, , .		1
516	CpG island hypermethylation go circular (RNA). Oncotarget, 2018, 9, 33052-33053.	1.8	1
517	MicroRNas: beating cancer with new powerful weapons. Molecular Life, 0, , 50-56.	0.0	1
518	CAN THE LOSS OF NEGATIVE REGULATION THEORY BE COMPATIBLE WITH THE DEVELOPMENT OF HEMATOLOGICAL MALIGNANCIES - (REVIEW). Oncology Reports, 1995, 2, 875-8.	2.6	1
519	Abstract 2548: Oncogenic function and molecular mechanism of H19 noncoding RNA in colorectal cancer., 2017,,.		1
520	Abstract 504: miR-484 acts as an "oncomiR―in triple negative breast cancer cells to promote tumor growth and progression by targeting HOXA5. , 2018, , .		1
521	Abstract 288: Genomic profiling of metastatic gastric adenocarcinoma. Cancer Research, 2018, 78, 288-288.	0.9	1
522	microRNA in cancer: An overview. , 2022, , 21-28.		1

#	Article	IF	CITATIONS
523	Predictive capacity of a miRNA panel in identifying teratoma in postâ€chemotherapy consolidation surgeries. BJUI Compass, 2023, 4, 81-87.	1.3	1
524	T-cell malignant lymphoma with a complex unbalanced translocation (8;11;14). Cancer Genetics and Cytogenetics, 1993, 70, 71-73.	1.0	0
525	FAP and Marfanoid habitus. European Journal of Human Genetics, 2000, 8, 153-153.	2.8	0
526	ARLTS1 Trp149Stop Mutation and the Risk of Ovarian Cancer. Cancer Research, 2007, 67, 4534-4534.	0.9	0
527	Non-Coding RNAs in Cancer â€" The Other Part of the Story. Modecular Medicine and Medicinal, 2010, , 265-277.	0.4	0
528	Micro-RNAs in Hematologic Malignancies. , 2011, , 325-340.		0
529	Noncoding RNAs: Identification of Cancer-Associated MicroRNAs. , 2012, , 573-587.		0
530	MicroRNAs and Other Non-Coding RNAs: Implications for Cancer Patients. , 2013, , 1-12.		0
531	Small silencing non-coding RNAs: cancer connections and significance., 0,, 481-496.		0
532	Therapeutic Potential of microRNAs. , 2015, , 543-564.		0
533	The Non-Coding RNA Journal Club: Highlights on Recent Papers—3. Non-coding RNA, 2015, 1, 285-288.	2.6	0
534	Estrogen and breast cancer: can less mean more?. Cell Cycle, 2015, 14, 2197-2198.	2.6	0
535	MicroRNA Involvement in Intestinal Tumorigenesis. , 2015, , 169-188.		0
536	Long non-coding RNAs in primary myelofibrosis: the dark matter in hematopoietic progenitor cells?. Leukemia and Lymphoma, 2015, 56, 281-282.	1.3	0
537	Preface. Cancer and Metastasis Reviews, 2018, 37, 3-4.	5.9	0
538	Featuring the special issue Guest Editor. Cancer Letters, 2018, 423, 27.	7.2	0
539	The Non-Coding RNA Journal Club: Highlights on Recent Papers—6. Non-coding RNA, 2018, 4, 23.	2.6	0
540	New Insights into the Molecular Mechanisms of Long Non-coding RNAs in Cancer Biology. , 2019, , 85-113.		0

#	Article	IF	CITATIONS
541	S-MiRAGE: A Quantitative, Secreted RNA-Based Reporter of Gene Expression and Cell Persistence. ACS Synthetic Biology, 2019, 8, 25-33.	3.8	O
542	Neural reprogramming via microRNAs: the new kid on the p53-deficient block. Molecular and Cellular Oncology, 2020, 7, 1756723.	0.7	0
543	Profiling Long Non-coding RNA expression Using Custom-Designed Microarray. Methods in Molecular Biology, 2021, 2372, 43-51.	0.9	0
544	Quicker and digital: the way on protein biomarkers?. Blood, 2021, 137, 1564-1565.	1.4	0
545	Effects of long non-coding RNAs on androgen signaling pathways in genitourinary malignancies. Molecular and Cellular Endocrinology, 2021, 526, 111197.	3.2	0
546	Molecular Pathogenesis., 2008,, 35-44.		0
547	Significance of Aberrant Expression of MicroRNAs in Cancer Cells. , 2009, , 1-12.		0
548	MicroRNAs and Drug Resistance. , 2009, , 257-270.		0
549	Involvement of MicroRNAs in Human Cancer: Discovery and Expression Profiling. , 2010, , 69-104.		0
550	MicroRNAs in Cancer (An Overview)., 2011,, 1-71.		0
551	A COMPLEX TRANSLOCATION T(1-12-11) IN A PATIENT WITH HODGKINS-DISEASE. Oncology Reports, 1994, 1, 837-9.	2.6	0
552	Genetic Services in Romania. European Journal of Human Genetics, 1997, 5, 145-147.	2.8	0
553	Abstract 2259: Evaluation of polymorphisms in myeloid-associated genes and glioma survival., 2017,,.		0
554	Abstract 1017: Lipid metabolic reprogramming drives resistance to PD1 blockage., 2017,,.		0
555	Abstract 1988: Exosome-mediated ovarian cancer tumorigenesis mediated by miR1246/Rb/Cav1 axis. , 2017, , .		0
556	Tyrosine Kinases, microRNAs, Epigenetics: New Insights in the Mechanisms of Leukemogenesis. , 2018, , 11-25.		0
557	Abstract 507: MiR-873 functions as a potential tumor suppressor in pancreatic cancer by targeting KRAS., 2018,,.		0
558	Abstract 1905: New targeted therapeutics for gastric cancer. , 2018, , .		0

#	Article	lF	CITATIONS
559	Abstract 1811: The long noncoding RNA KIAAO125 is aberrantly expressed in ameloblastomas. , 2019, , .		0
560	Diagnostic and Therapeutic MicroRNAs in Primary Myelofibrosis. Proceedings of the Singapore National Academy of Science, 2020, 14, 91-109.	0.1	0
561	Tumorigenesis-Related Long Noncoding RNAs and Their Targeting as Therapeutic Approach in Cancer. RNA Technologies, 2020, , 277-303.	0.3	O
562	APPLE and translation: When a small peptide produced from a "non-coding RNA―matters!. Molecular Cell, 2021, 81, 4349-4351.	9.7	0
563	Standardisation of protocols can be crucial in long non-coding RNA research. British Journal of Cancer, 2022, 126, 833-834.	6.4	0
564	RNA delivery for cancer gene therapy. , 2022, , 375-424.		0