
Christian Wolkersdorfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8155468/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mining Impacts on the Fresh Water Environment: Technical and Managerial Guidelines for Catchment Scale Management. Mine Water and the Environment, 2004, 23, s2-s80.	0.9	179
2	Application of banana peels nanosorbent for the removal of radioactive minerals from real mine water. Journal of Environmental Radioactivity, 2016, 164, 369-376.	0.9	78
3	Electrocoagulation treatment of mine water from the deepest working European metal mine – Performance, isotherm and kinetic studies. Separation and Purification Technology, 2017, 177, 363-373.	3.9	67
4	Titanosilicates in cation adsorption and cation exchange – A review. Chemical Engineering Journal, 2017, 317, 570-585.	6.6	67
5	Uranium removal from Pyhäalmi/Finland mine water by batch electrocoagulation and optimization with the response surface methodology. Separation and Purification Technology, 2018, 193, 386-397.	3.9	54
6	Contemporary Reviews of Mine Water Studies in Europe, Part 2. Mine Water and the Environment, 2005, 24, 2-37.	0.9	50
7	Sulfate removal from acid mine water from the deepest active European mine by precipitation and various electrocoagulation configurations. Journal of Environmental Management, 2018, 227, 162-171.	3.8	47
8	Contemporary Reviews of Mine Water Studies in Europe, Part 1. Mine Water and the Environment, 2004, 23, 162-182.	0.9	42
9	Guidance for the Integrated Use of Hydrological, Geochemical, and Isotopic Tools in Mining Operations. Mine Water and the Environment, 2020, 39, 204-228.	0.9	35
10	Contemporary Reviews of Mine Water Studies in Europe, Part 3. Mine Water and the Environment, 2005, 24, 58-76.	0.9	28
11	Lanthanides removal from mine water using banana peels nanosorbent. International Journal of Environmental Science and Technology, 2018, 15, 1265-1274.	1.8	28
12	Establishing a conversion factor between electrical conductivity and total dissolved solids in South African mine waters. Water S A, 2015, 41, 490.	0.2	25
13	Contemporary Reviews of Mine Water Studies in Europe. Mine Water and the Environment, 2004, 23, 161-161.	0.9	23
14	Quantitative Assessment of Mine Water Sources Based on the General Mixing Equation and Multivariate Statistics. Mine Water and the Environment, 2012, 31, 252-265.	0.9	19
15	Modelling the hydrogeochemical evolution of mine water in a decommissioned opencast coal mine. International Journal of Coal Geology, 2016, 164, 3-12.	1.9	19
16	Automated measurement systems in mine water management and mine workings – A review of potential methods. Water Resources and Industry, 2020, 24, 100136.	1.9	19
17	Assessment of water quality in surface waters of the Fayoum watershed, Egypt. Environmental Earth Sciences, 2015, 74, 1765-1783.	1.3	18
18	Renewed Demands for Mine Water Management. Mine Water and the Environment, 2012, 31, 147-158.	0.9	15

#	Article	IF	CITATIONS
19	Regulation of Mine Waters in the European Union: The Contribution of Scientific Research to Policy Development. Mine Water and the Environment, 2002, 21, 193-200.	0.9	13
20	Iron-mineral accretion from acid mine drainage and its application in passive treatment. Environmental Technology (United Kingdom), 2016, 37, 1428-1440.	1.2	13
21	Using Calcium Carbonate/Hydroxide and Barium Carbonate to Remove Sulphate from Mine Water. Mine Water and the Environment, 2017, 36, 264-272.	0.9	12
22	Mine water tracing. Geological Society Special Publication, 2002, 198, 47-60.	0.8	11
23	Mine water: policy perspective for improving water management in the mining environment with respect to developing economies. International Journal of Mining, Reclamation and Environment, 2016, 30, 115-127.	1.2	11
24	Pore structure and sorption characterization of titanosilicates obtained from concentrated precursors by the sol–gel method. RSC Advances, 2015, 5, 72562-72571.	1.7	10
25	Adsorptive Performance of Surface-Modified Montmorillonite in Vanadium Removal from Mine Water. Mine Water and the Environment, 2017, 36, 628-637.	0.9	10
26	A Snapshot of Coal Mine Drainage Discharge Limits for Conductivity, Sulfate, and Manganese across the Developed World. Mine Water and the Environment, 2020, 39, 165-172.	0.9	9
27	Hydrogeochemical investigations of an abandoned uranium mine in the Erzgebirge/Germany. Applied Geochemistry, 1996, 11, 237-241.	1.4	8
28	Tracer Test in a Settling Pond: The Passive Mine Water Treatment Plant of the 1 B Mine Pool, Nova Scotia, Canada. Mine Water and the Environment, 2011, 30, 105-112.	0.9	8
29	Effects of Mining on Surface Water. , 2022, , 170-188.		8
30	Regulations, legislation, and guidelines for artificial surface water and groundwater tracer tests in Canada. Water Quality Research Journal of Canada, 2012, 47, 42-55.	1.2	7
31	Assessing subsurface flow hydraulics of a coal mine water bioremediation system using a multi-tracer approach. International Journal of Coal Geology, 2016, 164, 58-68.	1.9	7
32	Nitrate Reduction of the Siilinjävi/Finland Mine Water with Zero-valent Iron and Iron Waste as Alternative Iron Sources. Mine Water and the Environment, 2020, 39, 280-290.	0.9	7
33	Density stratification and double-diffusive convection in mine pools of flooded underground mines – A review. Water Research, 2022, 214, 118033.	5.3	7
34	Mine Water Literature in ISI's Science Citation Index Expanded™. Mine Water and the Environment, 2004, 23, 96-99.	0.9	6
35	Improving Mine Water Quality by Low Density Sludge Storage in Flooded Underground Workings. Mine Water and the Environment, 2013, 32, 3-15.	0.9	6
36	Predicting and Forecasting Mine Water Parameters Using a Hybrid Intelligent System. Water Resources Management, 2022, 36, 2813-2826.	1.9	6

#	Article	IF	CITATIONS
37	Groundwater Level Fluctuation Analysis in a Semi-Urban Area Using Statistical Methods and Data Mining Techniques—A Case Study in WrocÅ,aw, Poland. Applied Sciences (Switzerland), 2020, 10, 3553.	1.3	5
38	Synthesis and application of alginate immobilised banana peels nanocomposite in rare earth and radioactive minerals removal from mine water. IET Nanobiotechnology, 2019, 13, 756-765.	1.9	5
39	An analogue Toma Hill formation model for the Tyrolian Fernpass rockslide. Landslides, 2019, 16, 1855-1870.	2.7	4
40	Effects of Mining on Surface Water—Case Studies. , 2022, , 210-224.		3
41	Mine water tracer tests as a basis for remediation strategies. Chemie Der Erde, 2005, 65, 65-74.	0.8	2
42	The Whitehill Formation as a natural geochemical analogue to the Witwatersrand Basin's mine water issues, South Africa. Environmental Science and Pollution Research, 2022, 29, 27195-27208.	2.7	2
43	Twenty years of the International Mine Water Association Journal — the First Issue. Mine Water and the Environment, 2002, 21, 100-101.	0.9	1
44	Hydrochemical investigations to locate Homer's hot and cold springs of Troia (Troy)/Turkey. Catena, 2021, 200, 105070.	2.2	1
45	Valanko et al.: About Water Treatment (Book Review). Mine Water and the Environment, 2021, 40, 803-804.	0.9	1
46	Pilot Scale RAPS-System in Gernrode/Harz Mountains. , 2006, , 317-328.		1
47	Chemical variations in mine water of abandoned pyrite mines exemplified by the Colorful Lakes in Wieściszowice, Sudetes Mountains, Poland. Journal of Hydrology: Regional Studies, 2021, 38, 100974.	1.0	1
48	Mine Water and the Environment—Notes for Contributors. Mine Water and the Environment, 2005, 24, 162-165.	0.9	0
49	A Word From the Secretary General. Mine Water and the Environment, 2010, 29, 235-236.	0.9	Ο
50	A Word from the Secretary General. Mine Water and the Environment, 2010, 29, 301-304.	0.9	0
51	Wood: Diasters and Minewater (Book Review). Mine Water and the Environment, 2012, 31, 233-235.	0.9	0
52	Professor Dr. Walter Semmler: A German Mine Water Pioneer. Mine Water and the Environment, 2014, 33, 372-375.	0.9	0
53	Ernest lakovlevich Kipko 1932–2016. Mine Water and the Environment, 2018, 37, 861-863.	0.9	0
54	A Hard Coal Miner at the Haarmannsbrunnen (Haarmann Fountain) in Osnabrück (Germany). Mine Water and the Environment, 2018, 37, 856-857.	0.9	0

#	Article	IF	CITATIONS
55	Peter Gunter 1970–2018. Mine Water and the Environment, 2018, 37, 864-865.	0.9	Ο
56	Pohl: Economic Geology 2nd Edition (Book Review). Mine Water and the Environment, 2021, 40, 553-554.	0.9	0
57	Mine Water and the Environment: History Until Volume 40 and the New Cover Design. Mine Water and the Environment, 2021, 40, 557-561.	0.9	Ο
58	Rare Earth Elements (REEs) as Natural Tracers in Mine Waters. , 2002, , 951-958.		0
59	Flutungsprognose eines Uranbergwerks. , 1999, , 55-71.		Ο
60	Tracer Tests as a Mean of Remediation Procedures in Mines. , 2006, , 817-822.		0
61	Identifying potential groundwater contamination by mining influenced water (MIW) using flow measurements in a sub-catchment of the "Cradle of Humankind―Unesco World Heritage Site, South Africa. Environmental Earth Sciences, 2022, 81, 1.	1.3	0