Nikolai Slavov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8155466/publications.pdf Version: 2024-02-01

NIKOLAL SLAVOV

#	Article	IF	CITATIONS
1	Increasing the throughput of sensitive proteomics by plexDIA. Nature Biotechnology, 2023, 41, 50-59.	9.4	92
2	Scaling Up Single-Cell Proteomics. Molecular and Cellular Proteomics, 2022, 21, 100179.	2.5	37
3	Learning from natural variation across the proteomes of single cells. PLoS Biology, 2022, 20, e3001512.	2.6	17
4	Counting protein molecules for single-cell proteomics. Cell, 2022, 185, 232-234.	13.5	15
5	Beyond Protein Sequence: Protein Isomerization in Alzheimer's Disease. Journal of Proteome Research, 2022, 21, 299-300.	1.8	1
6	New Views of Old Proteins: Clarifying the Enigmatic Proteome. Molecular and Cellular Proteomics, 2022, 21, 100254.	2.5	16
7	Single-cellÂprotein analysis by mass spectrometry. Current Opinion in Chemical Biology, 2021, 60, 1-9.	2.8	106
8	Optimizing Accuracy and Depth of Protein Quantification in Experiments Using Isobaric Carriers. Journal of Proteome Research, 2021, 20, 880-887.	1.8	40
9	Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biology, 2021, 22, 50.	3.8	298
10	Voices of biotech research. Nature Biotechnology, 2021, 39, 281-286.	9.4	3
11	Increasing proteomics throughput. Nature Biotechnology, 2021, 39, 809-810.	9.4	27
12	Measuring Protein Shapes in Living Cells. Journal of Proteome Research, 2021, 20, 3017-3017.	1.8	7
13	Driving Single Cell Proteomics Forward with Innovation. Journal of Proteome Research, 2021, 20, 4915-4918.	1.8	43
14	Multiplexed single-cell proteomics using SCoPE2. Nature Protocols, 2021, 16, 5398-5425.	5.5	108
15	Comprehensive Identification of Regulatory Protein Networks. Journal of Proteome Research, 2021, 20, 4913-4914.	1.8	1
16	Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors. Cell Reports, 2021, 37, 109955.	2.9	89
17	Analyzing Ribosome Remodeling in Health and Disease. Proteomics, 2020, 20, e2000039.	1.3	10
18	Unpicking the proteome in single cells. Science, 2020, 367, 512-513.	6.0	125

Nikolai Slavov

#	Article	IF	CITATIONS
19	DART-ID increases single-cell proteome coverage. PLoS Computational Biology, 2019, 15, e1007082.	1.5	49
20	DO-MS: Data-Driven Optimization of Mass Spectrometry Methods. Journal of Proteome Research, 2019, 18, 2493-2500.	1.8	51
21	Approaches for Studying Ribosome Specialization. Trends in Biochemical Sciences, 2019, 44, 478-479.	3.7	11
22	Voices in methods development. Nature Methods, 2019, 16, 945-951.	9.0	5
23	Ribosome Stoichiometry: From Form to Function. Trends in Biochemical Sciences, 2019, 44, 95-109.	3.7	71
24	Quantifying Homologous Proteins and Proteoforms. Molecular and Cellular Proteomics, 2019, 18, 162-168.	2.5	17
25	DARTâ€ID Increases Singleâ€Cell Proteome Coverage. FASEB Journal, 2019, 33, 475.2.	0.2	0
26	SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biology, 2018, 19, 161.	3.8	574
27	Transformative Opportunities for Single-Cell Proteomics. Journal of Proteome Research, 2018, 17, 2565-2571.	1.8	107
28	Single cell protein analysis for systems biology. Essays in Biochemistry, 2018, 62, 595-605.	2.1	73
29	Kinase Activities of RIPK1 and RIPK3 Can Direct IFN-β Synthesis Induced by Lipopolysaccharide. Journal of Immunology, 2017, 198, 4435-4447.	0.4	51
30	Post-transcriptional regulation across human tissues. PLoS Computational Biology, 2017, 13, e1005535.	1.5	171
31	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
32	Comparative Proteomic Profiling of Divergent Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate. PLoS ONE, 2016, 11, e0150605.	1.1	34
33	Differential Stoichiometry among Core Ribosomal Proteins. Cell Reports, 2015, 13, 865-873.	2.9	178
34	De Novo Reconstruction of Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown Adipocyte Development. Cell Metabolism, 2015, 21, 764-776.	7.2	201
35	Making the most of peer review. ELife, 2015, 4, .	2.8	5
36	Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis. Cell Reports, 2014, 7, 705-714.	2.9	85

Nikolai Slavov

#	Article	IF	CITATIONS
37	Calmodulin Transduces Ca ²⁺ Oscillations into Differential Regulation of Its Target Proteins. ACS Chemical Neuroscience, 2013, 4, 601-612.	1.7	18
38	Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression. Molecular Biology of the Cell, 2013, 24, 157-168.	0.9	37
39	A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes. Molecular Biology of the Cell, 2012, 23, 1986-1997.	0.9	43
40	How to Regulate a Gene: To Repress or to Activate?. Molecular Cell, 2012, 46, 551-552.	4.5	0
41	Metabolic cycling without cell division cycling in respiring yeast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19090-19095.	3.3	74
42	Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast. Molecular Biology of the Cell, 2011, 22, 1997-2009.	0.9	108
43	Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6946-6951.	3.3	89
44	Correlation signature of the macroscopic states of the gene regulatory network in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4079-4084.	3.3	42
45	Multi-Class Biclustering and Classification Based on Modeling of Gene Regulatory Networks. , 0, , .		6