
TomÃ;s Delgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8155059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The crucial role of molecular emissions on LIBS differentiation of organic compounds of interest in astrobiology under a Mars simulated atmosphere. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 192, 106413.	2.9	6
2	Investigation on the origin of molecular emissions in laser-induced breakdown spectroscopy under Mars-like atmospheric conditions of isotope-labeled compounds of interest in astrobiology. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 179, 106114.	2.9	10
3	Detectability and discrimination of biomarker organic precursors in a low pressure CO ₂ atmosphere by LIBS. Journal of Analytical Atomic Spectrometry, 2020, 35, 1947-1955.	3.0	11
4	Considerations on formation mechanisms of emitting species of organic and C-containing inorganic compounds in CO2 atmosphere using laser-induced breakdown spectroscopy as a strategy for detection of molecular solids. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 169, 105869.	2.9	13
5	A stochastic model of the process of sequence casting of steel, taking into account imperfect mixing. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	1
6	In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS. Measurement: Journal of the International Measurement Confederation, 2018, 115, 1-10.	5.0	33
7	Stand-off laser-induced breakdown spectroscopy for steel-grade intermix detection in sequence casting operations. At-line monitoring of temporal evolution versus predicted mathematical model. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 146, 93-100.	2.9	13
8	lsomer discrimination in condensed phase by laser-induced breakdown spectrometry and laser-ionization mass spectrometry using a tailored paired-pulse excitation scheme. Journal of Analytical Atomic Spectrometry, 2018, 33, 1469-1476.	3.0	7
9	At-line monitoring of continuous casting sequences of steel using discriminant function analysis and dual-pulse laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2017, 32, 1119-1128.	3.0	21
10	Distinction strategies based on discriminant function analysis for particular steel grades at elevated temperature using stand-off LIBS. Journal of Analytical Atomic Spectrometry, 2016, 31, 2242-2252.	3.0	15
11	Acting Role of Background Gas in the Emission Response of Laser-Induced Plasmas of Energetic Nitro Compounds. Applied Spectroscopy, 2016, 70, 1364-1374.	2.2	15
12	Primary and recombined emitting species in laser-induced plasmas of organic explosives in controlled atmospheres. Journal of Analytical Atomic Spectrometry, 2014, 29, 1675-1685.	3.0	30
13	Pressure Effects in Laser-Induced Plasmas of Trinitrotoluene and Pyrene by Laser-Induced Breakdown Spectroscopy (LIBS). Applied Spectroscopy, 2014, 68, 33-38.	2.2	19
14	Laser-induced plasma spectroscopy of organic compounds. Understanding fragmentation processes using ion–photon coincidence measurements. Journal of Analytical Atomic Spectrometry, 2013, 28, 1377.	3.0	22
15	Condensedâ€phase laser ionization timeâ€ofâ€flight mass spectrometry of highly energetic nitroâ€aromatic compounds. Rapid Communications in Mass Spectrometry, 2013, 27, 1807-1813.	1.5	12
16	Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 89, 77-83.	2.9	77
17	Laser welding of AA 5083 samples by high power diode laser. Science and Technology of Welding and Joining, 2009, 14, 78-86.	3.1	46
18	Laser welding of aluminium alloys 5083 and 6082 under conduction regime. Applied Surface Science, 2009, 255, 9512-9521.	6.1	88