Michael P Lisanti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8154985/publications.pdf Version: 2024-02-01

		256	736
520	75,343	142	251
papers	citations	h-index	g-index
523	523	523	64205
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Caveolins, a Family of Scaffolding Proteins for Organizing "Preassembled Signaling Complexes―at the Plasma Membrane. Journal of Biological Chemistry, 1998, 273, 5419-5422.	3.4	1,375
4	The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 2009, 8, 3984-4001.	2.6	1,130
5	Cancer metabolism: a therapeutic perspective. Nature Reviews Clinical Oncology, 2017, 14, 11-31.	27.6	1,028
6	Caveolins, Liquid-Ordered Domains, and Signal Transduction. Molecular and Cellular Biology, 1999, 19, 7289-7304.	2.3	960
7	Caveolin-1 Null Mice Are Viable but Show Evidence of Hyperproliferative and Vascular Abnormalities. Journal of Biological Chemistry, 2001, 276, 38121-38138.	3.4	957
8	Co-purification and Direct Interaction of Ras with Caveolin, an Integral Membrane Protein of Caveolae Microdomains. Journal of Biological Chemistry, 1996, 271, 9690-9697.	3.4	930
9	Caveolae: From Cell Biology to Animal Physiology. Pharmacological Reviews, 2002, 54, 431-467.	16.0	852
10	Identification of Peptide and Protein Ligands for the Caveolin-scaffolding Domain. Journal of Biological Chemistry, 1997, 272, 6525-6533.	3.4	792
11	Role of Caveolae and Caveolins in Health and Disease. Physiological Reviews, 2004, 84, 1341-1379.	28.8	773
12	ESPEN expert group recommendations for action against cancer-related malnutrition. Clinical Nutrition, 2017, 36, 1187-1196.	5.0	758
13	Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin. Journal of Biological Chemistry, 1997, 272, 25437-25440.	3.4	731
14	Src Tyrosine Kinases, Gα Subunits, and H-Ras Share a Common Membrane-anchored Scaffolding Protein, Caveolin. Journal of Biological Chemistry, 1996, 271, 29182-29190.	3.4	703
15	Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends in Cell Biology, 1994, 4, 231-235.	7.9	636
16	Molecular Cloning of Caveolin-3, a Novel Member of the Caveolin Gene Family Expressed Predominantly in Muscle. Journal of Biological Chemistry, 1996, 271, 2255-2261.	3.4	623
17	Expression of Caveolin-3 in Skeletal, Cardiac, and Smooth Muscle Cells. Journal of Biological Chemistry, 1996, 271, 15160-15165.	3.4	619
18	Caveolin-1 Regulates Transforming Growth Factor (TGF)-β/SMAD Signaling through an Interaction with the TGF-β Type I Receptor. Journal of Biological Chemistry, 2001, 276, 6727-6738.	3.4	585

#	Article	IF	CITATIONS
19	Interaction of a Receptor Tyrosine Kinase, EGF-R, with Caveolins. Journal of Biological Chemistry, 1997, 272, 30429-30438.	3.4	584
20	Emerging Themes in Lipid Rafts and Caveolae. Cell, 2001, 106, 403-411.	28.9	557
21	Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nature Genetics, 1998, 18, 365-368.	21.4	555
22	Evidence for a Regulated Interaction between Heterotrimeric G Proteins and Caveolin. Journal of Biological Chemistry, 1995, 270, 15693-15701.	3.4	550
23	Cancer stem cells. International Journal of Biochemistry and Cell Biology, 2012, 44, 2144-2151.	2.8	530
24	Ketones and lactate "fuel―tumor growth and metastasis. Cell Cycle, 2010, 9, 3506-3514.	2.6	526
25	Flotillin and Epidermal Surface Antigen Define a New Family of Caveolae-associated Integral Membrane Proteins. Journal of Biological Chemistry, 1997, 272, 13793-13802.	3.4	510
26	Caveolin-1-deficient Mice Are Lean, Resistant to Diet-induced Obesity, and Show Hypertriglyceridemia with Adipocyte Abnormalities. Journal of Biological Chemistry, 2002, 277, 8635-8647.	3.4	494
27	Differential Targeting of β-Adrenergic Receptor Subtypes and Adenylyl Cyclase to Cardiomyocyte Caveolae. Journal of Biological Chemistry, 2000, 275, 41447-41457.	3.4	481
28	Cell-type and Tissue-specific Expression of Caveolin-2. Journal of Biological Chemistry, 1997, 272, 29337-29346.	3.4	466
29	Caveolin-1 in oncogenic transformation, cancer, and metastasis. American Journal of Physiology - Cell Physiology, 2005, 288, C494-C506.	4.6	459
30	The caveolin proteins. Genome Biology, 2004, 5, 214.	9.6	405
31	Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget, 2015, 6, 4569-4584.	1.8	401
32	Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution. Cell Cycle, 2010, 9, 3276-3296.	2.6	400
33	Evidence for a stromal-epithelial "lactate shuttle―in human tumors. Cell Cycle, 2011, 10, 1772-1783.	2.6	393
34	Caveolin-3 Null Mice Show a Loss of Caveolae, Changes in the Microdomain Distribution of the Dystrophin-Glycoprotein Complex, and T-tubule Abnormalities. Journal of Biological Chemistry, 2001, 276, 21425-21433.	3.4	385
35	Autophagy in cancer associated fibroblasts promotes tumor cell survival. Cell Cycle, 2010, 9, 3515-3533.	2.6	377
36	Cancer stem cell metabolism. Breast Cancer Research, 2016, 18, 55.	5.0	377

#	Article	IF	CITATIONS
37	Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. FEBS Letters, 1998, 428, 205-211.	2.8	342
38	Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. Journal of Clinical Investigation, 2005, 115, 1163-1176.	8.2	338
39	Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Seminars in Cancer Biology, 2014, 25, 47-60.	9.6	337
40	The Caveolin genes: from cell biology to medicine. Annals of Medicine, 2004, 36, 584-595.	3.8	335
41	Recombinant Expression of Caveolin-1 in Oncogenically Transformed Cells Abrogates Anchorage-independent Growth. Journal of Biological Chemistry, 1997, 272, 16374-16381.	3.4	334
42	Caveolin, Caveolae, and Endothelial Cell Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1161-1168.	2.4	326
43	Specific Inhibitors of p38 Mitogen-activated Protein Kinase Block 3T3-L1 Adipogenesis. Journal of Biological Chemistry, 1998, 273, 32111-32120.	3.4	325
44	Caveolin Isoforms Differ in Their N-terminal Protein Sequence and Subcellular Distribution. IDENTIFICATION AND EPITOPE MAPPING OF AN ISOFORM-SPECIFIC MONOCLONAL ANTIBODY PROBE. Journal of Biological Chemistry, 1995, 270, 16395-16401.	3.4	322
45	Large Oncosomes in Human Prostate Cancer Tissues and in the Circulation of Mice with Metastatic Disease. American Journal of Pathology, 2012, 181, 1573-1584.	3.8	321
46	Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene, 2003, 22, 6408-6423.	5.9	317
47	Direct Acetylation of the Estrogen Receptor α Hinge Region by p300 Regulates Transactivation and Hormone Sensitivity. Journal of Biological Chemistry, 2001, 276, 18375-18383.	3.4	312
48	Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. American Journal of Physiology - Cell Physiology, 2003, 285, C222-C235.	4.6	308
49	Constitutive and Growth Factor-Regulated Phosphorylation of Caveolin-1 Occurs at the Same Site (Tyr-14) in Vivo: Identification of a c-Src/Cav-1/Grb7 Signaling Cassette. Molecular Endocrinology, 2000, 14, 1750-1775.	3.7	307
50	An Absence of Stromal Caveolin-1 Expression Predicts Early Tumor Recurrence and Poor Clinical Outcome in Human Breast Cancers. American Journal of Pathology, 2009, 174, 2023-2034.	3.8	307
51	The Lipopolysaccharide-activated Toll-like Receptor (TLR)-4 Induces Synthesis of the Closely Related Receptor TLR-2 in Adipocytes. Journal of Biological Chemistry, 2000, 275, 24255-24263.	3.4	300
52	Ketones and lactate increase cancer cell "stemness,―driving recurrence, metastasis and poor clinical outcome in breast cancer. Cell Cycle, 2011, 10, 1271-1286.	2.6	295
53	Microvascular Hyperpermeability in Caveolin-1 (â^'/â^') Knock-out Mice. Journal of Biological Chemistry, 2002, 277, 40091-40098.	3.4	290
54	Caveolae-deficient Endothelial Cells Show Defects in the Uptake and Transport of Albumin in Vivo. Journal of Biological Chemistry, 2001, 276, 48619-48622.	3.4	289

#	Article	IF	CITATIONS
55	Caveolin-2-Deficient Mice Show Evidence of Severe Pulmonary Dysfunction without Disruption of Caveolae. Molecular and Cellular Biology, 2002, 22, 2329-2344.	2.3	280
56	Role of Caveolin-1 in the Modulation of Lipolysis and Lipid Droplet Formation. Diabetes, 2004, 53, 1261-1270.	0.6	278
57	Caveolin-3 Knock-out Mice Develop a Progressive Cardiomyopathy and Show Hyperactivation of the p42/44 MAPK Cascade. Journal of Biological Chemistry, 2002, 277, 38988-38997.	3.4	269
58	Perilipin A Mediates the Reversible Binding of CGI-58 to Lipid Droplets in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2004, 279, 42062-42071.	3.4	266
59	Caveolin-1 Expression Negatively Regulates Cell Cycle Progression by Inducing G ₀ /G ₁ Arrest via a p53/p21 ^{WAF1/Cip1} -dependent Mechanism. Molecular Biology of the Cell, 2001, 12, 2229-2244.	2.1	259
60	Caveolin-1 Gene Disruption Promotes Mammary Tumorigenesis and Dramatically Enhances Lung Metastasis in Vivo. Journal of Biological Chemistry, 2004, 279, 51630-51646.	3.4	259
61	Caveolin Is an Activator of Insulin Receptor Signaling. Journal of Biological Chemistry, 1998, 273, 26962-26968.	3.4	257
62	Role of Cholesterol in the Development and Progression of Breast Cancer. American Journal of Pathology, 2011, 178, 402-412.	3.8	257
63	Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ. Cell Cycle, 2011, 10, 4047-4064.	2.6	256
64	Warburg Meets Autophagy: Cancer-Associated Fibroblasts Accelerate Tumor Growth and Metastasis <i>via</i> Oxidative Stress, Mitophagy, and Aerobic Glycolysis. Antioxidants and Redox Signaling, 2012, 16, 1264-1284.	5.4	254
65	Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: Connecting TGF-β signaling with "Warburg-like―cancer metabolism and L-lactate production. Cell Cycle, 2012, 11, 3019-3035.	2.6	249
66	Caveolin-1 and Cancer Metabolism in the Tumor Microenvironment: Markers, Models, and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 2012, 7, 423-467.	22.4	249
67	The autophagic tumor stroma model of cancer. Cell Cycle, 2010, 9, 3485-3505.	2.6	248
68	Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect. Cell Cycle, 2011, 10, 2504-2520.	2.6	245
69	CCR5 Antagonist Blocks Metastasis of Basal Breast Cancer Cells. Cancer Research, 2012, 72, 3839-3850.	0.9	240
70	Caveolinopathies: from the biology of caveolin-3 to human diseases. European Journal of Human Genetics, 2010, 18, 137-145.	2.8	238
71	Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle, 2010, 9, 2423-2433.	2.6	238
72	Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells. Journal of Membrane Biology, 1989, 107, 277-286.	2.1	236

#	Article	IF	CITATIONS
73	Caveolin Interaction with Protein Kinase C. Journal of Biological Chemistry, 1997, 272, 33416-33421.	3.4	230
74	Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends in Biochemical Sciences, 1990, 15, 113-118.	7.5	227
75	The Integrin-linked Kinase Regulates the Cyclin D1 Gene through Glycogen Synthase Kinase 3Î ² and cAMP-responsive Element-binding Protein-dependent Pathways. Journal of Biological Chemistry, 2000, 275, 32649-32657.	3.4	225
76	Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget, 2015, 6, 14777-14795.	1.8	225
77	microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8231-8236.	7.1	224
78	Using the "reverse Warburg effect―to identify high-risk breast cancer patients. Cell Cycle, 2012, 11, 1108-1117.	2.6	224
79	Stat3 Promotes Metastatic Progression of Prostate Cancer. American Journal of Pathology, 2008, 172, 1717-1728.	3.8	222
80	Stromal–epithelial metabolic coupling in cancer: Integrating autophagy and metabolism in the tumor microenvironment. International Journal of Biochemistry and Cell Biology, 2011, 43, 1045-1051.	2.8	218
81	Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. American Journal of Physiology - Cell Physiology, 2003, 284, C457-C474.	4.6	215
82	Cellular Stress Induces the Tyrosine Phosphorylation of Caveolin-1 (Tyr14) via Activation of p38 Mitogen-activated Protein Kinase and c-Src kinase. Journal of Biological Chemistry, 2001, 276, 8094-8103.	3.4	213
83	Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect†A transcriptional informatics analysis with validation. Cell Cycle, 2010, 9, 2201-2219.	2.6	212
84	Gpa2p, a G-protein α-Subunit, Regulates Growth and Pseudohyphal Development in Saccharomyces cerevisiae via a cAMP-dependent Mechanism. Journal of Biological Chemistry, 1997, 272, 20321-20323.	3.4	210
85	Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production. Cell Cycle, 2012, 11, 2285-2302.	2.6	209
86	Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis. Cell Cycle, 2011, 10, 2440-2449.	2.6	208
87	The Canonical NF-κB Pathway Governs Mammary Tumorigenesis in Transgenic Mice and Tumor Stem Cell Expansion. Cancer Research, 2010, 70, 10464-10473.	0.9	207
88	HIF1-alpha functions as a tumor promoter in cancer-associated fibroblasts, and as a tumor suppressor in breast cancer cells. Cell Cycle, 2010, 9, 3534-3551.	2.6	207
89	Genetic Ablation of Caveolin-1 Confers Protection Against Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 98-105.	2.4	206
90	Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochemical Journal, 2018, 475, 1611-1634.	3.7	205

#	Article	IF	CITATIONS
91	Expression and Characterization of Recombinant Caveolin. Journal of Biological Chemistry, 1996, 271, 568-573.	3.4	199
92	Cancer metabolism, stemness and tumor recurrence. Cell Cycle, 2013, 12, 1371-1384.	2.6	195
93	Caveolin-deficient mice: insights into caveolar function human disease. Journal of Clinical Investigation, 2001, 108, 1553-1561.	8.2	195
94	Caveolin-1/3 Double-Knockout Mice Are Viable, but Lack Both Muscle and Non-Muscle Caveolae, and Develop a Severe Cardiomyopathic Phenotype. American Journal of Pathology, 2002, 160, 2207-2217.	3.8	192
95	The reverse Warburg Effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 2010, 9, 1960-1971.	2.6	192
96	Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via "differentiation-based nano-therapy― Oncotarget, 2015, 6, 3553-3562.	1.8	192
97	Expression of Caveolin-1 Induces Premature Cellular Senescence in Primary Cultures of Murine Fibroblasts. Molecular Biology of the Cell, 2002, 13, 2502-2517.	2.1	191
98	Reciprocal Regulation of Neu Tyrosine Kinase Activity and Caveolin-1 Protein Expression in Vitro and in Vivo. Journal of Biological Chemistry, 1998, 273, 20448-20455.	3.4	188
99	Caveolin-2 Localizes to the Colgi Complex but Redistributes to Plasma Membrane, Caveolae, and Rafts when Co-expressed with Caveolin-1. Journal of Biological Chemistry, 1999, 274, 25708-25717.	3.4	188
100	Flotillins/Cavatellins Are Differentially Expressed in Cells and Tissues and Form a Hetero-oligomeric Complex with Caveolins in Vivo. Journal of Biological Chemistry, 1999, 274, 12702-12709.	3.4	186
101	Caveolae and signalling in cancer. Nature Reviews Cancer, 2015, 15, 225-237.	28.4	185
102	Expression of Caveolin-1 Is Required for the Transport of Caveolin-2 to the Plasma Membrane. Journal of Biological Chemistry, 1999, 274, 25718-25725.	3.4	184
103	Genes encoding human caveolinâ€1 and â€2 are coâ€localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Letters, 1998, 436, 403-410.	2.8	182
104	CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling―tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle, 2012, 11, 3599-3610.	2.6	182
105	Caveolin-3 Directly Interacts with the C-terminal Tail of Î ² -Dystroglycan. Journal of Biological Chemistry, 2000, 275, 38048-38058.	3.4	181
106	Role of caveolin and caveolae in insulin signaling and diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1151-E1160.	3.5	181
107	N-Cadherin Signaling Potentiates Mammary Tumor Metastasis via Enhanced Extracellular Signal-Regulated Kinase Activation. Cancer Research, 2007, 67, 3106-3116.	0.9	181
108	Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget, 2014, 5, 11029-11037.	1.8	181

#	Article	IF	CITATIONS
109	Understanding the "lethal" drivers of tumor-stroma co-evolution. Cancer Biology and Therapy, 2010, 10, 537-542.	3.4	180
110	The Biology of Caveolae: Lessons from Caveolin Knockout Mice and Implications for Human Disease. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 445-464.	3.4	178
111	Caveolin-1 Mutations (P132L and Null) and the Pathogenesis of Breast Cancer. American Journal of Pathology, 2002, 161, 1357-1369.	3.8	176
112	Tumor Microenvironment and Metabolic Synergy in Breast Cancers: Critical Importance of Mitochondrial Fuels and Function. Seminars in Oncology, 2014, 41, 195-216.	2.2	176
113	High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget, 2015, 6, 30472-30486.	1.8	175
114	Affinity-purification and characterization of caveolins from the brain: Differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types. Brain Research, 1998, 804, 177-192.	2.2	173
115	A Molecular Dissection of Caveolin-1 Membrane Attachment and Oligomerization. Journal of Biological Chemistry, 2000, 275, 21605-21617.	3.4	172
116	Molecular Genetics of the Caveolin Gene Family: Implications for Human Cancers, Diabetes, Alzheimer Disease, and Muscular Dystrophy. American Journal of Human Genetics, 1998, 63, 1578-1587.	6.2	171
117	The Adipocyte as an Important Target Cell for Trypanosoma cruzi Infection. Journal of Biological Chemistry, 2005, 280, 24085-24094.	3.4	171
118	Repurposing atovaquone: Targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget, 2016, 7, 34084-34099.	1.8	171
119	Akt1 governs breast cancer progression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7438-7443.	7.1	170
120	COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection?. Aging, 2020, 12, 6511-6517.	3.1	170
121	The autophagic tumor stroma model of cancer or "battery-operated tumor growth― Cell Cycle, 2010, 9, 4297-4306.	2.6	165
122	Crowded Little Caves. Cellular Signalling, 1998, 10, 457-463.	3.6	164
123	Caveolin-1 Expression Inhibits Wnt/β-Catenin/Lef-1 Signaling by Recruiting β-Catenin to Caveolae Membrane Domains. Journal of Biological Chemistry, 2000, 275, 23368-23377.	3.4	162
124	Mitochondrial metabolism in cancer metastasis. Cell Cycle, 2012, 11, 1445-1454.	2.6	162
125	Plasma Membrane Cholesterol Is a Key Molecule in Shear Stress-dependent Activation of Extracellular Signal-regulated Kinase. Journal of Biological Chemistry, 1998, 273, 32304-32311.	3.4	159
126	Decreased expression of caveolin 1 in patients with systemic sclerosis: Crucial role in the pathogenesis of tissue fibrosis. Arthritis and Rheumatism, 2008, 58, 2854-2865.	6.7	159

#	Article	IF	CITATIONS
127	Regulation of G Protein-coupled Receptor Kinases by Caveolin. Journal of Biological Chemistry, 1999, 274, 8858-8864.	3.4	158
128	Regulation of cAMP-mediated Signal Transduction via Interaction of Caveolins with the Catalytic Subunit of Protein Kinase A. Journal of Biological Chemistry, 1999, 274, 26353-26360.	3.4	157
129	Inhibition of Cellular Proliferation through lκB Kinase-Independent and Peroxisome Proliferator-Activated Receptor γ-Dependent Repression of Cyclin D1. Molecular and Cellular Biology, 2001, 21, 3057-3070.	2.3	157
130	The Role of Breast Cancer Stem Cells in Metastasis and Therapeutic Implications. American Journal of Pathology, 2011, 179, 2-11.	3.8	155
131	Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biology and Therapy, 2011, 12, 924-938.	3.4	154
132	Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Research, 2011, 13, 213.	5.0	153
133	Caveolin-1 Expression Enhances Endothelial Capillary Tubule Formation. Journal of Biological Chemistry, 2002, 277, 10661-10668.	3.4	152
134	Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle, 2009, 8, 1930-1934.	2.6	152
135	Ketone body utilization drives tumor growth and metastasis. Cell Cycle, 2012, 11, 3964-3971.	2.6	152
136	Angiogenesis Activators and Inhibitors Differentially Regulate Caveolin-1 Expression and Caveolae Formation in Vascular Endothelial Cells. Journal of Biological Chemistry, 1999, 274, 15781-15785.	3.4	151
137	Caveolin-1 Promotes Tumor Progression in an Autochthonous Mouse Model of Prostate Cancer. Journal of Biological Chemistry, 2005, 280, 25134-25145.	3.4	151
138	Mutational Analysis of the Properties of Caveolin-1. Journal of Biological Chemistry, 1997, 272, 4398-4403.	3.4	150
139	Upregulation of caveolinâ€1 and caveolae organelles in Taxolâ€resistant A549 cells. FEBS Letters, 1998, 439, 368-372.	2.8	150
140	Absence of Caveolin-1 Sensitizes Mouse Skin to Carcinogen-Induced Epidermal Hyperplasia and Tumor Formation. American Journal of Pathology, 2003, 162, 2029-2039.	3.8	149
141	Mitochondria "fuel―breast cancer metabolism: Fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle, 2012, 11, 4390-4401.	2.6	147
142	Decorin Antagonizes the Angiogenic Network. Journal of Biological Chemistry, 2012, 287, 5492-5506.	3.4	146
143	Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells. Cancer Biology and Therapy, 2011, 12, 1085-1097.	3.4	145
144	Caveolae, Plasma Membrane Microdomains for α-Secretase-mediated Processing of the Amyloid Precursor Protein. Journal of Biological Chemistry, 1998, 273, 10485-10495.	3.4	144

#	Article	IF	CITATIONS
145	p42/44 MAP Kinase-dependent and -independent Signaling Pathways Regulate Caveolin-1 Gene Expression. Journal of Biological Chemistry, 1999, 274, 32333-32341.	3.4	144
146	Caveolae and caveolin-3 in muscular dystrophy. Trends in Molecular Medicine, 2001, 7, 435-441.	6.7	144
147	Energy transfer in "parasitic" cancer metabolism. Cell Cycle, 2011, 10, 4208-4216.	2.6	144
148	Caveolin Interacts with Trk A and p75NTR and Regulates Neurotrophin Signaling Pathways. Journal of Biological Chemistry, 1999, 274, 257-263.	3.4	143
149	Phenotypic Behavior of Caveolin-3 Mutations That Cause Autosomal Dominant Limb Girdle Muscular Dystrophy (LGMD-1C). Journal of Biological Chemistry, 1999, 274, 25632-25641.	3.4	141
150	Epidermal Growth Factor Receptor Exposed to Oxidative Stress Undergoes Src- and Caveolin-1-dependent Perinuclear Trafficking. Journal of Biological Chemistry, 2006, 281, 14486-14493.	3.4	141
151	An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease spread and epithelial Akt activation. Cell Cycle, 2009, 8, 2420-2424.	2.6	141
152	Preferred apical distribution of glycosyl-phosphatidylinositol (GPI) anchored proteins: A highly conserved feature of the polarized epithelial cell phenotype. Journal of Membrane Biology, 1990, 113, 155-167.	2.1	140
153	Loss of Caveolin-1 Gene Expression Accelerates the Development of Dysplastic Mammary Lesions in Tumor-Prone Transgenic Mice. Molecular Biology of the Cell, 2003, 14, 1027-1042.	2.1	138
154	Cytokine production and inflammation drive autophagy in the tumor microenvironment. Cell Cycle, 2011, 10, 1784-1793.	2.6	137
155	Power Surge: Supporting Cells "Fuel―Cancer Cell Mitochondria. Cell Metabolism, 2012, 15, 4-5.	16.2	137
156	Caveolin-1 Potentiates Estrogen Receptor α (ERα) Signaling. Journal of Biological Chemistry, 1999, 274, 33551-33556.	3.4	136
157	Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 down-regulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy. Cancer Biology and Therapy, 2008, 7, 1212-1225.	3.4	136
158	Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: Similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling". Aging, 2010, 2, 185-199.	3.1	136
159	Caveolae, transmembrane signalling and cellular transformation. Molecular Membrane Biology, 1995, 12, 121-124.	2.0	135
160	Interaction between Caveolin-1 and the Reductase Domain of Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 1998, 273, 22267-22271.	3.4	135
161	Caveolin-1 Null (â~'/â~') Mice Show Dramatic Reductions in Life Spanâ€. Biochemistry, 2003, 42, 15124-15131.	2.5	134
162	Caveolin-1 and regulation of cellular cholesterol homeostasis. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H677-H686.	3.2	134

#	Article	IF	CITATIONS
163	microRNA, Cell Cycle, and Human Breast Cancer. American Journal of Pathology, 2010, 176, 1058-1064.	3.8	133
164	Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cellular Microbiology, 2012, 14, 634-643.	2.1	133
165	A Role for the Caveolin Scaffolding Domain in Mediating the Membrane Attachment of Caveolin-1. Journal of Biological Chemistry, 1999, 274, 22660-22667.	3.4	132
166	Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). FEBS Letters, 1999, 448, 221-230.	2.8	130
167	Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle, 2010, 9, 2412-2422.	2.6	130
168	Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). FEBS Letters, 1998, 429, 330-336.	2.8	129
169	Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell and Tissue Research, 2009, 335, 41-47.	2.9	129
170	The Cyclin D1 Gene Is Transcriptionally Repressed by Caveolin-1. Journal of Biological Chemistry, 2000, 275, 21203-21209.	3.4	126
171	DACH1 Inhibits Transforming Growth Factor-Î ² Signaling through Binding Smad4. Journal of Biological Chemistry, 2003, 278, 51673-51684.	3.4	125
172	Caveolin-1 Deficiency Increases Cerebral Ischemic Injury. Circulation Research, 2007, 100, 721-729.	4.5	125
173	Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biology and Therapy, 2009, 8, 1071-1079.	3.4	125
174	Targeted Down-regulation of Caveolin-3 Is Sufficient to Inhibit Myotube Formation in Differentiating C2C12 Myoblasts. Journal of Biological Chemistry, 1999, 274, 30315-30321.	3.4	123
175	Caveolin-1â^'/â^' Null Mammary Stromal Fibroblasts Share Characteristics with Human Breast Cancer-Associated Fibroblasts. American Journal of Pathology, 2009, 174, 746-761.	3.8	123
176	Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment. Cancer Biology and Therapy, 2011, 11, 383-394.	3.4	122
177	Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle, 2013, 12, 1868-1878.	2.6	122
178	DACH1 Is a Cell Fate Determination Factor That Inhibits Cyclin D1 and Breast Tumor Growth. Molecular and Cellular Biology, 2006, 26, 7116-7129.	2.3	121
179	Role of caveolin-1 in the regulation of lipoprotein metabolism. American Journal of Physiology - Cell Physiology, 2008, 295, C242-C248.	4.6	121
180	Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?. BMC Medicine, 2011, 9, 62.	5.5	121

#	Article	IF	CITATIONS
181	Baculovirus-based Expression of Mammalian Caveolin in Sf21 Insect Cells. Journal of Biological Chemistry, 1996, 271, 28647-28654.	3.4	120
182	c-Jun Induces Mammary Epithelial Cellular Invasion and Breast Cancer Stem Cell Expansion. Journal of Biological Chemistry, 2010, 285, 8218-8226.	3.4	119
183	Cyclin D1 Induction of Cellular Migration Requires p27KIP1. Cancer Research, 2006, 66, 9986-9994.	0.9	118
184	Caveolin-1, transforming growth factor-β receptor internalization, and the pathogenesis of systemic sclerosis. Current Opinion in Rheumatology, 2008, 20, 713-719.	4.3	118
185	Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biology and Therapy, 2010, 10, 135-143.	3.4	118
186	[47] Caveolae purification and glycosylphosphatidylinositol-linked protein sorting in polarized epithelia. Methods in Enzymology, 1995, 250, 655-668.	1.0	117
187	Impairment of Caveolae Formation and T-System Disorganization in Human Muscular Dystrophy with Caveolin-3 Deficiency. American Journal of Pathology, 2002, 160, 265-270.	3.8	117
188	CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle, 2012, 11, 2272-2284.	2.6	116
189	Caveolin-1 Knockout Mice Show an Impaired Angiogenic Response to Exogenous Stimuli. American Journal of Pathology, 2003, 162, 2059-2068.	3.8	115
190	Mutational analysis of caveolin-induced vesicle formation. FEBS Letters, 1998, 434, 127-134.	2.8	113
191	Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling. Oncotarget, 2015, 6, 30453-30471.	1.8	113
192	Porin Is Present in the Plasma Membrane Where It Is Concentrated in Caveolae and Caveolae-related Domains. Journal of Biological Chemistry, 1999, 274, 29607-29612.	3.4	112
193	Mitochondrial Fission Induces Glycolytic Reprogramming in Cancer-Associated Myofibroblasts, Driving Stromal Lactate Production, and Early Tumor Growth. Oncotarget, 2012, 3, 798-810.	1.8	112
194	Caveolins and Caveolae: Molecular and Functional Relationships. Experimental Cell Research, 2001, 271, 36-44.	2.6	111
195	Caveolin-1 expression sensitizes fibroblastic and epithelial cells to apoptotic stimulation. American Journal of Physiology - Cell Physiology, 2001, 280, C823-C835.	4.6	111
196	Proteasome Inhibitor (MG-132) Treatment of mdx Mice Rescues the Expression and Membrane Localization of Dystrophin and Dystrophin-Associated Proteins. American Journal of Pathology, 2003, 163, 1663-1675.	3.8	111
197	Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth. Cell Cycle, 2011, 10, 4065-4073.	2.6	110
198	Caveolin-1 Inhibits Epidermal Growth Factor-stimulated Lamellipod Extension and Cell Migration in Metastatic Mammary Adenocarcinoma Cells (MTLn3). Journal of Biological Chemistry, 2000, 275, 20717-20725.	3.4	109

#	Article	IF	CITATIONS
199	Elevated Expression of Caveolin-1 in Adenocarcinoma of the Colon. American Journal of Clinical Pathology, 2001, 115, 719-724.	0.7	109
200	Molecular and Cellular Biology of Caveolae. Trends in Cardiovascular Medicine, 1997, 7, 103-110.	4.9	108
201	Scavenger receptor class B type I regulates cellular cholesterol metabolism and cell signaling associated with breast cancer development. Breast Cancer Research, 2013, 15, R87.	5.0	108
202	Emerging functional roles for the glycosyl-phosphatidylinositol membrane protein anchor. Journal of Membrane Biology, 1990, 117, 1-10.	2.1	107
203	Caveolin-1-deficient Mice Show Accelerated Mammary Gland Development During Pregnancy, Premature Lactation, and Hyperactivation of the Jak-2/STAT5a Signaling Cascade. Molecular Biology of the Cell, 2002, 13, 3416-3430.	2.1	107
204	Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle, 2011, 10, 1794-1809.	2.6	107
205	Two-compartment tumor metabolism: Autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells. Cell Cycle, 2012, 11, 2545-2559.	2.6	107
206	TEM8 expression stimulates endothelial cell adhesion and migration by regulating cell?matrix interactions on collagen. Experimental Cell Research, 2005, 305, 133-144.	2.6	106
207	Reviewing once more the c-myc and Ras collaboration. Cell Cycle, 2011, 10, 57-67.	2.6	106
208	Caveolin-1 Binding to Endoplasmic Reticulum Membranes and Entry into the Regulated Secretory Pathway Are Regulated by Serine Phosphorylation. Journal of Biological Chemistry, 2001, 276, 4398-4408.	3.4	105
209	Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Cell Cycle, 2012, 11, 4174-4180.	2.6	105
210	Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs). Aging, 2016, 8, 1593-1607.	3.1	105
211	Constitutively Active Mitogen-activated Protein Kinase Kinase 6 (MKK6) or Salicylate Induces Spontaneous 3T3-L1 Adipogenesis. Journal of Biological Chemistry, 1999, 274, 35630-35638.	3.4	104
212	Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction―are new therapeutic targets for drug discovery. Cell Cycle, 2013, 12, 2723-2732.	2.6	104
213	The Membrane-spanning Domains of Caveolins-1 and -2 Mediate the Formation of Caveolin Hetero-oligomers. Journal of Biological Chemistry, 1999, 274, 18721-18728.	3.4	103
214	Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle, 2012, 11, 3956-3963.	2.6	103
215	Inhibition of nuclear factor-erythroid 2–related factor (Nrf2) by caveolin-1 promotes stress-induced premature senescence. Molecular Biology of the Cell, 2013, 24, 1852-1862.	2.1	103
216	Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy. Oncotarget, 2015, 6, 14005-14025.	1.8	103

#	Article	IF	CITATIONS
217	A Western-Type Diet Accelerates Tumor Progression in an Autochthonous Mouse Model of Prostate Cancer. American Journal of Pathology, 2010, 177, 3180-3191.	3.8	102
218	Palmitoylation of Caveolin-1 at a Single Site (Cys-156) Controls Its Coupling to the c-Src Tyrosine Kinase. Journal of Biological Chemistry, 2001, 276, 35150-35158.	3.4	100
219	Expression of Caveolin-1 and Caveolin-2 in Urothelial Carcinoma of the Urinary Bladder Correlates With Tumor Grade and Squamous Differentiation. American Journal of Clinical Pathology, 2003, 120, 93-100.	0.7	99
220	Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biology and Therapy, 2011, 12, 1101-1113.	3.4	99
221	Doxycycline, an Inhibitor of Mitochondrial Biogenesis, Effectively Reduces Cancer Stem Cells (CSCs) in Early Breast Cancer Patients: A Clinical Pilot Study. Frontiers in Oncology, 2018, 8, 452.	2.8	98
222	Understanding the metabolic basis of drug resistance. Cell Cycle, 2011, 10, 2521-2528.	2.6	97
223	Short-Term Administration of a Cell-Permeable Caveolin-1 Peptide Prevents the Development of Monocrotaline-Induced Pulmonary Hypertension and Right Ventricular Hypertrophy. Circulation, 2006, 114, 912-920.	1.6	96
224	Caveolinâ€1 tumorâ€promoting role in human melanoma. International Journal of Cancer, 2009, 125, 1514-1522.	5.1	96
225	PPARÎ ³ activation induces autophagy in breast cancer cells. International Journal of Biochemistry and Cell Biology, 2009, 41, 2334-2342.	2.8	95
226	Caveolin-1 and Accelerated Host Aging in the Breast Tumor Microenvironment. American Journal of Pathology, 2012, 181, 278-293.	3.8	95
227	Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle, 2013, 12, 1955-1963.	2.6	95
228	Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. American Journal of Physiology - Cell Physiology, 2005, 288, C1317-C1331.	4.6	94
229	Cyclin D1 Antagonizes BRCA1 Repression of Estrogen Receptor α Activity. Cancer Research, 2005, 65, 6557-6567.	0.9	94
230	The Dually Acylated NH2-terminal Domain of Gi1α Is Sufficient to Target a Green Fluorescent Protein Reporter to Caveolin-enriched Plasma Membrane Domains. Journal of Biological Chemistry, 1999, 274, 5843-5850.	3.4	93
231	Increased Number of Caveolae and Caveolin-3 Overexpression in Duchenne Muscular Dystrophy. Biochemical and Biophysical Research Communications, 1999, 261, 547-550.	2.1	93
232	Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. Journal of Pathology, 2013, 231, 77-87.	4.5	93
233	Constitutive and Growth Factor-Regulated Phosphorylation of Caveolin-1 Occurs at the Same Site (Tyr-14) in Vivo: Identification of a c-Src/Cav-1/Grb7 Signaling Cassette. Molecular Endocrinology, 2000, 14, 1750-1775.	3.7	93
234	Identification of Triton X-100 Insoluble Membrane Domains in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271, 32975-32980.	3.4	92

#	Article	IF	CITATIONS
235	Caveolin-1 Mutations in Human Breast Cancer. American Journal of Pathology, 2006, 168, 1998-2013.	3.8	92
236	Dachshund inhibits oncogene-induced breast cancer cellular migration and invasion through suppression of interleukin-8. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6924-6929.	7.1	92
237	Chagas Heart Disease. Cardiology in Review, 2012, 20, 53-65.	1.4	90
238	Azithromycin and Roxithromycin define a new family of "senolytic―drugs that target senescent human fibroblasts. Aging, 2018, 10, 3294-3307.	3.1	90
239	Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget, 2015, 6, 10728-10745.	1.8	89
240	Activation of Transcription Factors AP-1 and NF-κB in Murine Chagasic Myocarditis. Infection and Immunity, 2003, 71, 2859-2867.	2.2	88
241	Basolateral Distribution of Caveolin-1 in the Kidney: Absence from H+-ATPase-coated Endocytic Vesicles in Intercalated Cells. Journal of Histochemistry and Cytochemistry, 1998, 46, 205-214.	2.5	87
242	Identification, Sequence, and Expression of an Invertebrate Caveolin Gene Family from the Nematode Caenorhabditis elegans. Journal of Biological Chemistry, 1997, 272, 2437-2445.	3.4	86
243	Limb-girdle Muscular Dystrophy (LGMD-1C) Mutants of Caveolin-3 Undergo Ubiquitination and Proteasomal Degradation. Journal of Biological Chemistry, 2000, 275, 37702-37711.	3.4	86
244	Caveolin-1-Deficient Mice Show Defects in Innate Immunity and Inflammatory Immune Response during Salmonella enterica Serovar Typhimurium Infection. Infection and Immunity, 2006, 74, 6665-6674.	2.2	86
245	Metastasis and Oxidative Stress: Are Antioxidants a Metabolic Driver of Progression?. Cell Metabolism, 2015, 22, 956-958.	16.2	85
246	Caveolin-1 Expression Is Down-Regulated in Cells Transformed by the Human Papilloma Virus in a p53-Dependent Manner. Replacement of Caveolin-1 Expression Suppresses HPV-Mediated Cell Transformationâ€. Biochemistry, 2000, 39, 13916-13924.	2.5	84
247	Intracellular Retention of Glycosylphosphatidyl Inositol-Linked Proteins in Caveolin-Deficient Cells. Molecular and Cellular Biology, 2002, 22, 3905-3926.	2.3	82
248	Cyclin D1 Represses p300 Transactivation through a Cyclin-dependent Kinase-independent Mechanism. Journal of Biological Chemistry, 2005, 280, 29728-29742.	3.4	82
249	Deficiency of hyccin, a newly identified membrane protein, causes hypomyelination and congenital cataract. Nature Genetics, 2006, 38, 1111-1113.	21.4	82
250	Isolation and Preliminary Characterization of Clathrin-Associated Proteins. FEBS Journal, 1982, 125, 463-470.	0.2	81
251	REMOVED: The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction. Cytokine and Growth Factor Reviews, 2001, 12, 41-51.	7.2	80
252	Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle, 2008, 7, 2257-2267.	2.6	80

#	Article	IF	CITATIONS
253	Lung remodeling and pulmonary hypertension after myocardial infarction: pathogenic role of reduced caveolin expression. Cardiovascular Research, 2004, 63, 747-755.	3.8	79
254	Phorbol Ester-induced Disruption of the CD4-Lck Complex Occurs within a Detergent-resistant Microdomain of the Plasma Membrane. Journal of Biological Chemistry, 1999, 274, 14176-14187.	3.4	78
255	Caveolin-3 Upregulation Activates β-Secretase–Mediated Cleavage of the Amyloid Precursor Protein in Alzheimer's Disease. Journal of Neuroscience, 1999, 19, 6538-6548.	3.6	77
256	Metabolic reprogramming and two-compartment tumor metabolism. Cell Cycle, 2012, 11, 3280-3289.	2.6	77
257	Mitochondrial fission as a driver of stemness in tumor cells: mDIVI1 inhibits mitochondrial function, cell migration and cancer stem cell (CSC) signalling. Oncotarget, 2018, 9, 13254-13275.	1.8	77
258	Clinical and translational implications of the caveolin gene family: lessons from mouse models and human genetic disorders. Laboratory Investigation, 2009, 89, 614-623.	3.7	76
259	Mitochondrial dysfunction in breast cancer cells prevents tumor growth. Cell Cycle, 2013, 12, 172-182.	2.6	76
260	Caveolin-3 is not an integral component of the dystrophin glycoprotein complex. FEBS Letters, 1998, 427, 279-282.	2.8	75
261	Stabilization of Caveolin-1 by Cellular Cholesterol and Scavenger Receptor Class B Type I. Biochemistry, 2002, 41, 11931-11940.	2.5	75
262	Stromal and Epithelial Caveolin-1 Both Confer a Protective Effect Against Mammary Hyperplasia and Tumorigenesis. American Journal of Pathology, 2006, 169, 1784-1801.	3.8	75
263	Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment. Cell Cycle, 2013, 12, 2580-2597.	2.6	75
264	Anthrax Lethal Toxin Kills Macrophages in a Strain-Specific Manner by Apoptosis or Caspase-1-Mediated Necrosis. Cell Cycle, 2007, 6, 758-766.	2.6	74
265	Caveolin-1 Deficiency Stimulates Neointima Formation during Vascular Injury. Biochemistry, 2004, 43, 8312-8321.	2.5	73
266	Loss of Caveolin-1 Causes the Hyper-Proliferation of Intestinal Crypt Stem Cells, with Increased Sensitivity to Whole Body ?-Radiation. Cell Cycle, 2005, 4, 1817-1825.	2.6	73
267	Caveolin-1 (P132L), a Common Breast Cancer Mutation, Confers Mammary Cell Invasiveness and Defines a Novel Stem Cell/Metastasis-Associated Gene Signature. American Journal of Pathology, 2009, 174, 1650-1662.	3.8	73
268	Urogenital Alterations in Aged Male Caveolin-1 Knockout Mice. Journal of Urology, 2004, 171, 950-957.	0.4	72
269	Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Current Opinion in Lipidology, 2004, 15, 523-529.	2.7	72
270	Loss of stromal caveolin-1 expression in malignant melanoma metastases predicts poor survival. Cell Cycle, 2011, 10, 4250-4255.	2.6	72

#	Article	IF	CITATIONS
271	Cerebral Malaria. American Journal of Pathology, 2012, 181, 1484-1492.	3.8	72
272	Vitamin C and Doxycycline: A synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs). Oncotarget, 2017, 8, 67269-67286.	1.8	72
273	Transcription Factor Stat3 Stimulates Metastatic Behavior of Human Prostate Cancer Cells in Vivo, whereas Stat5b Has a Preferential Role in the Promotion of Prostate Cancer Cell Viability and Tumor Growth. American Journal of Pathology, 2010, 176, 1959-1972.	3.8	71
274	Therapeutic Potential of Proteasome Inhibition in Duchenne and Becker Muscular Dystrophies. American Journal of Pathology, 2010, 176, 1863-1877.	3.8	71
275	BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment. Cell Cycle, 2012, 11, 4402-4413.	2.6	71
276	Glomerular Endothelial Fenestrae In Vivo Are Not Formed from Caveolae. Journal of the American Society of Nephrology: JASN, 2002, 13, 2639-2647.	6.1	70
277	Src-induced Phosphorylation of Caveolin-2 on Tyrosine 19. Journal of Biological Chemistry, 2002, 277, 34556-34567.	3.4	69
278	Caveolin-1-Deficient Mice Have An Increased Mammary Stem Cell Population with Upregulation of Wnt/?-Catenin Signaling. Cell Cycle, 2005, 4, 1808-1816.	2.6	69
279	Matrix remodeling stimulates stromal autophagy, "fueling―cancer cell mitochondrial metabolism and metastasis. Cell Cycle, 2011, 10, 2021-2034.	2.6	69
280	Cell Fate Determination Factor DACH1 Inhibits c-Jun–induced Contact-independent Growth. Molecular Biology of the Cell, 2007, 18, 755-767.	2.1	68
281	Reversion of gene expression alterations in hearts of mice with chronic chagasic cardiomyopathy after transplantation of bone marrow cells. Cell Cycle, 2011, 10, 1448-1455.	2.6	68
282	Cell Fate Factor DACH1 Represses YB-1–Mediated Oncogenic Transcription and Translation. Cancer Research, 2014, 74, 829-839.	0.9	68
283	Localized Treatment with a Novel FDA-Approved Proteasome Inhibitor Blocks the Degradation of Dystrophin Associated Proteins in mdx Mice. Cell Cycle, 2007, 6, 1242-1248.	2.6	67
284	Estrogen receptor beta (ERβ) produces autophagy and necroptosis in human seminoma cell line through the binding of the Sp1 on the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) promoter gene. Cell Cycle, 2012, 11, 2911-2921.	2.6	67
285	Combined Loss of INK4a and Caveolin-1 Synergistically Enhances Cell Proliferation and Oncogene-induced Tumorigenesis. Journal of Biological Chemistry, 2004, 279, 24745-24756.	3.4	66
286	Caveolin-1 Deficiency (â^'/â^') Conveys Premalignant Alterations in Mammary Epithelia, with Abnormal Lumen Formation, Growth Factor Independence, and Cell Invasiveness. American Journal of Pathology, 2006, 168, 292-309.	3.8	66
287	Trypanosoma cruzi Infection Activates Extracellular Signal-Regulated Kinase in Cultured Endothelial and Smooth Muscle Cells. Infection and Immunity, 2004, 72, 5274-5282.	2.2	65
288	Caveolin-1-deficient aortic smooth muscle cells show cell autonomous abnormalities in proliferation, migration, and endothelin-based signal transduction. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2393-H2401.	3.2	65

#	Article	IF	CITATIONS
289	Co-expression of fatty acid synthase and caveolin-1 in pancreatic ductal adenocarcinoma: Implications for tumor progression and clinical outcome. Cell Cycle, 2008, 7, 3021-3025.	2.6	65
290	CAV1 Inhibits Metastatic Potential in Melanomas through Suppression of the Integrin/Src/FAK Signaling Pathway. Cancer Research, 2010, 70, 7489-7499.	0.9	65
291	Mitochondrial "power―drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer. Oncotarget, 2017, 8, 20309-20327.	1.8	65
292	Towards a new "stromal-based―classification system for human breast cancer prognosis and therapy. Cell Cycle, 2009, 8, 1654-1658.	2.6	64
293	Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: Early detection of treatment failure with companion diagnostics. Oncotarget, 2017, 8, 68730-68745.	1.8	64
294	Accelerated aging in the tumor microenvironment. Cell Cycle, 2011, 10, 2059-2063.	2.6	63
295	Response of Adipose Tissue to Early Infection With Trypanosoma cruzi (Brazil Strain). Journal of Infectious Diseases, 2012, 205, 830-840.	4.0	62
296	Visualization of caveolin-1, a caveolar marker protein, in living cells using green fluorescent protein (GFP) chimeras. FEBS Letters, 1999, 445, 431-439.	2.8	61
297	Transgenic overexpression of caveolin-3 in the heart induces a cardiomyopathic phenotype. Human Molecular Genetics, 2003, 12, 2777-2788.	2.9	61
298	NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Identification of Vitamin C and CAPE as natural products targeting "stemness― Oncotarget, 2017, 8, 20667-20678.	1.8	61
299	<i>Trypanosoma cruzi</i> Infection of Cultured Adipocytes Results in an Inflammatory Phenotype. Obesity, 2008, 16, 1992-1997.	3.0	60
300	Pressure-Overload–Induced Subcellular Relocalization/Oxidation of Soluble Guanylyl Cyclase in the Heart Modulates Enzyme Stimulation. Circulation Research, 2012, 110, 295-303.	4.5	60
301	Metabolic reprogramming of bone marrow stromal cells by leukemic extracellular vesicles in acute lymphoblastic leukemia. Blood, 2016, 128, 453-456.	1.4	60
302	Impaired Phagocytosis in Caveolin-1 Deficient Macrophages. Cell Cycle, 2005, 4, 1599-1607.	2.6	59
303	Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells. American Journal of Physiology - Cell Physiology, 2005, 288, C677-C691.	4.6	59
304	Segregation of micron-scale membrane sub-domains in live murine sperm. Journal of Cellular Physiology, 2006, 206, 636-646.	4.1	59
305	Caveolin-1(â^'/â^')- and Caveolin-2(â^'/â^')-Deficient Mice Both Display Numerous Skeletal Muscle Abnormalities, with Tubular Aggregate Formation. American Journal of Pathology, 2007, 170, 316-333.	3.8	59
306	Cyclin D1 Determines Estrogen Signaling in the Mammary Gland In Vivo. Molecular Endocrinology, 2013, 27, 1415-1428.	3.7	59

#	Article	IF	CITATIONS
307	GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment. Breast Cancer Research, 2017, 19, 129.	5.0	59
308	Caveolin-1, Mammary Stem Cells, and Estrogen-Dependent Breast Cancers: Figure 1 Cancer Research, 2006, 66, 10647-10651.	0.9	58
309	Attenuation of Forkhead signaling by the retinal determination factor DACH1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6864-6869.	7.1	58
310	Scleroderma-like properties of skin from caveolin-1-deficient mice. Cell Cycle, 2011, 10, 2140-2150.	2.6	58
311	CCR5 Receptor Antagonists Block Metastasis to Bone of v-Src Oncogene–Transformed Metastatic Prostate Cancer Cell Lines. Cancer Research, 2014, 74, 7103-7114.	0.9	58
312	Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 984-996.	1.0	58
313	Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment. American Journal of Physiology - Cell Physiology, 2006, 290, C577-C582.	4.6	57
314	Genetic Ablation of Caveolin-1 Drives Estrogen-Hypersensitivity and the Development of DCIS-Like Mammary Lesions. American Journal of Pathology, 2009, 174, 1172-1190.	3.8	57
315	Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle, 2012, 11, 253-263.	2.6	57
316	The primary sequence of murine caveolin reveals a conserved consensus site for phosphorylation by protein kinase C. Gene, 1994, 147, 299-300.	2.2	56
317	Transmission FT-IR Chemical Imaging on Glass Substrates: Applications in Infrared Spectral Histopathology. Analytical Chemistry, 2014, 86, 1648-1653.	6.5	56
318	Caveolin in breast cancer. Cancer Biology and Therapy, 2004, 3, 931-941.	3.4	55
319	Dachshund Binds p53 to Block the Growth of Lung Adenocarcinoma Cells. Cancer Research, 2013, 73, 3262-3274.	0.9	55
320	Endothelial caveolin-1 plays a major role in the development of atherosclerosis. Cell and Tissue Research, 2014, 356, 147-157.	2.9	55
321	Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction. Oncotarget, 2015, 6, 4585-4601.	1.8	55
322	Association of Phosphofructokinase-M with Caveolin-3 in Differentiated Skeletal Myotubes. Journal of Biological Chemistry, 1997, 272, 20698-20705.	3.4	54
323	Mitochondrial Biogenesis Drives Tumor Cell Proliferation. American Journal of Pathology, 2011, 178, 1949-1952.	3.8	54
324	Doxycycline, Azithromycin and Vitamin C (DAV): A potent combination therapy for targeting mitochondria and eradicating cancer stem cells (CSCs). Aging, 2019, 11, 2202-2216.	3.1	54

#	Article	IF	CITATIONS
325	Identification, sequence and developmental expression of invertebrate flotillins from Drosophila melanogaster. Gene, 1998, 210, 229-237.	2.2	53
326	Hereditary ovarian cancer and two-compartment tumor metabolism. Cell Cycle, 2012, 11, 4152-4166.	2.6	53
327	Caveolin-1 Deficiency Induces Spontaneous Endothelial-to-Mesenchymal Transition in Murine Pulmonary Endothelial Cells inÂVitro. American Journal of Pathology, 2013, 182, 325-331.	3.8	53
328	Targeting hypoxic cancer stem cells (CSCs) with Doxycycline: Implications for optimizing anti-angiogenic therapy. Oncotarget, 2017, 8, 56126-56142.	1.8	53
329	A mitochondrial based oncology platform for targeting cancer stem cells (CSCs): MITO-ONC-RX. Cell Cycle, 2018, 17, 2091-2100.	2.6	53
330	c-Myc induction of programmed cell death may contribute to carcinogenesis. Cancer Biology and Therapy, 2011, 11, 615-626.	3.4	52
331	JNK1 stress signaling is hyper-activated in high breast density and the tumor stroma: Connecting fibrosis, inflammation, and stemness for cancer prevention. Cell Cycle, 2014, 13, 580-599.	2.6	52
332	"Energetic―Cancer Stem Cells (e-CSCs): A New Hyper-Metabolic and Proliferative Tumor Cell Phenotype, Driven by Mitochondrial Energy. Frontiers in Oncology, 2018, 8, 677.	2.8	52
333	Evidence That Myc Isoforms Transcriptionally Repress Caveolin-1 Gene Expression via an INR-Dependent Mechanismâ€. Biochemistry, 2001, 40, 3354-3362.	2.5	51
334	Cigarette smoke metabolically promotes cancer, via autophagy and premature aging in the host stromal microenvironment. Cell Cycle, 2013, 12, 818-825.	2.6	51
335	Loss of Sirt1 Promotes Prostatic Intraepithelial Neoplasia, Reduces Mitophagy, and Delays Park2 Translocation to Mitochondria. American Journal of Pathology, 2015, 185, 266-279.	3.8	51
336	Withdrawal of ?Caveolae and Their Coat Proteins, the Caveolins: From Electron Microscopic Novelty to Biological Launching Pad? [Journal of Cellular Physiology 186(3) 329-337 (2001)]. Journal of Cellular Physiology, 2001, 186, 329-337.	4.1	51
337	ARC (apoptosis repressor with caspase recruitment domain) is a novel marker of human colon cancer. Cell Cycle, 2008, 7, 1640-1647.	2.6	50
338	Role of SOCS2 in Modulating Heart Damage and Function in a Murine Model of Acute Chagas Disease. American Journal of Pathology, 2012, 181, 130-140.	3.8	50
339	The distribution of glycosyl-phosphatidylinositol anchored proteins is differentially regulated by serum and insulin. Biochemical and Biophysical Research Communications, 1989, 164, 824-832.	2.1	49
340	Recombinant Expression of the MAL Proteolipid, a Component of Glycolipid-enriched Membrane Microdomains, Induces the Formation of Vesicular Structures in Insect Cells. Journal of Biological Chemistry, 1997, 272, 18311-18315.	3.4	49
341	Caveolin-1 promotes pancreatic cancer cell differentiation and restores membranous E-cadherin via suppression of the epithelial-mesenchymal transition. Cell Cycle, 2011, 10, 3692-3700.	2.6	49
342	Targeting flavin-containing enzymes eliminates cancer stem cells (CSCs), by inhibiting mitochondrial respiration: Vitamin B2 (Riboflavin) in cancer therapy. Aging, 2017, 9, 2610-2628.	3.1	49

#	Article	IF	CITATIONS
343	Caveolin-1 Expression Is Essential for Proper Nonshivering Thermogenesis in Brown Adipose Tissue. Diabetes, 2005, 54, 679-686.	0.6	48
344	Caveolae and Caveolin-1: Novel Potential Targets for the Treatment of Cardiovascular Disease. Current Pharmaceutical Design, 2007, 13, 1761-1769.	1.9	48
345	Expression of Caveolin-1 and Caveolin-2 in Urothelial Carcinoma of the Urinary Bladder Correlates With Tumor Grade and Squamous Differentiation. American Journal of Clinical Pathology, 2003, 120, 93-100.	0.7	48
346	SOCS proteins and caveolin-1 as negative regulators of endocrine signaling. Trends in Endocrinology and Metabolism, 2006, 17, 150-158.	7.1	47
347	Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biology and Therapy, 2007, 6, 1269-1274.	3.4	47
348	Nutrient Restriction and Radiation Therapy for Cancer Treatment: When Less Is More. Oncologist, 2013, 18, 97-103.	3.7	47
349	Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways. Aging, 2018, 10, 1867-1883.	3.1	47
350	A Novel Role for Caveolin-1 in B Lymphocyte Function and the Development of Thymus-Independent Immune Responses. Cell Cycle, 2006, 5, 1865-1871.	2.6	46
351	Altered expression of DACH1 and cyclin D1 in endometrial cancer. Cancer Biology and Therapy, 2009, 8, 1534-1539.	3.4	46
352	Caveolin-1 deficiency exacerbates cardiac dysfunction and reduces survival in mice with myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1274-H1281.	3.2	46
353	Acetylation in hormone signaling and the cell cycle. Cytokine and Growth Factor Reviews, 2002, 13, 259-276.	7.2	45
354	Left Ventricular Dysfunction in Murine Models of Heart Failure and in Failing Human Heart is Associated With a Selective Decrease in the Expression of Caveolin-3. Journal of Cardiac Failure, 2011, 17, 253-263.	1.7	45
355	Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide. Cell Cycle, 2013, 12, 1510-1520.	2.6	45
356	Contrast-Enhanced In Vivo Imaging of Breast and Prostate Cancer Cells by MRI. Cell Cycle, 2006, 5, 113-119.	2.6	44
357	ErbB2 Induces Notch1 Activity and Function in Breast Cancer Cells. Clinical and Translational Science, 2008, 1, 107-115.	3.1	44
358	Stromal CD10 and SPARC expression in ductal carcinoma in situ (DCIS) patients predicts disease recurrence. Cancer Biology and Therapy, 2010, 10, 391-396.	3.4	44
359	Identification of a <i>Cyclin D1</i> Network in Prostate Cancer That Antagonizes Epithelial–Mesenchymal Restraint. Cancer Research, 2014, 74, 508-519.	0.9	44
360	Hodgkin lymphoma: A complex metabolic ecosystem with glycolytic reprogramming of the tumor microenvironment. Seminars in Oncology, 2017, 44, 218-225.	2.2	44

#	Article	IF	CITATIONS
361	Targeting cancer stem cell propagation with palbociclib, a CDK4/6 inhibitor: Telomerase drives tumor cell heterogeneity. Oncotarget, 2017, 8, 9868-9884.	1.8	44
362	Cancer Metabolism: New Validated Targets for Drug Discovery. Oncotarget, 2013, 4, 1309-1316.	1.8	44
363	Overexpression of Caveolin-1 Inhibits Endothelial Cell Proliferation by Arresting the Cell Cycle at G0/G1 Phase. Cell Cycle, 2007, 6, 199-204.	2.6	43
364	Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism. Cell Cycle, 2013, 12, 289-301.	2.6	43
365	Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis. Oncotarget, 2015, 6, 8525-8538.	1.8	43
366	Metabolic remodeling of the tumor microenvironment: Migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth. Cell Cycle, 2012, 11, 3403-3414.	2.6	42
367	Essential Role of Caveolin-3 in Adiponectin Signalsome Formation and Adiponectin Cardioprotection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 934-942.	2.4	42
368	Polarized Distribution and Delivery of Plasma Membrane Proteins in Thyroid Follicular Epithelial Cells. Journal of Biological Chemistry, 1995, 270, 2478-2482.	3.4	41
369	PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b. Cell Cycle, 2011, 10, 73-81.	2.6	41
370	Distinct cathepsins control necrotic cell death mediated by pyroptosis inducers and lysosome-destabilizing agents. Cell Cycle, 2015, 14, 964-972.	2.6	41
371	Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells. Oncotarget, 2015, 6, 21892-21905.	1.8	41
372	Chapter 2 Methods to Estimate the Polarized Distribution of Surface Antigens in Cultured Epithelial Cells. Methods in Cell Biology, 1989, 32, 37-56.	1.1	40
373	Prolactin Negatively Regulates Caveolin-1 Gene Expression in the Mammary Gland during Lactation, via a Ras-dependent Mechanism. Journal of Biological Chemistry, 2001, 276, 48389-48397.	3.4	40
374	Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production. Cell Cycle, 2012, 11, 4167-4173.	2.6	40
375	Reverse Warburg Effect in a Patient With Aggressive B-Cell Lymphoma: Is Lactic Acidosis a Paraneoplastic Syndrome?. Seminars in Oncology, 2013, 40, 403-418.	2.2	40
376	Pilot study demonstrating metabolic and anti-proliferative effects of in vivo anti-oxidant supplementation with N-Acetylcysteine in Breast Cancer. Seminars in Oncology, 2017, 44, 226-232.	2.2	40
377	p27Kip1 Repression of ErbB2-Induced Mammary Tumor Growth in Transgenic Mice Involves Skp2 and Wnt/β-Catenin Signaling. Cancer Research, 2006, 66, 8529-8541.	0.9	39
378	Phenotypic characterization of hypomyelination and congenital cataract. Annals of Neurology, 2007, 62, 121-127.	5.3	39

#	Article	IF	CITATIONS
379	MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction. Cell Cycle, 2012, 11, 1291-1295.	2.6	39
380	Cyclin D1 Promotes Androgen-Dependent DNA Damage Repair in Prostate Cancer Cells. Cancer Research, 2016, 76, 329-338.	0.9	39
381	Estrogen related receptor \hat{I}_{\pm} (ERR \hat{I}_{\pm}) a promising target for the therapy of adrenocortical carcinoma (ACC). Oncotarget, 2015, 6, 25135-25148.	1.8	39
382	Characterisation of caveolins from cartilage: expression of caveolin-1, -2 and -3 in chondrocytes and in alginate cell culture of the rat tibia. Histochemistry and Cell Biology, 1999, 112, 41-49.	1.7	38
383	Trypanosoma cruzi Infection Induces Proliferation of Vascular Smooth Muscle Cells. Infection and Immunity, 2006, 74, 152-159.	2.2	38
384	Altered emotionality, spatial memory and cholinergic function in caveolin-1 knock-out mice. Behavioural Brain Research, 2008, 188, 255-262.	2.2	38
385	Dodecyl-TPP Targets Mitochondria and Potently Eradicates Cancer Stem Cells (CSCs): Synergy With FDA-Approved Drugs and Natural Compounds (Vitamin C and Berberine). Frontiers in Oncology, 2019, 9, 615.	2.8	38
386	Deferiprone (DFP) Targets Cancer Stem Cell (CSC) Propagation by Inhibiting Mitochondrial Metabolism and Inducing ROS Production. Cells, 2020, 9, 1529.	4.1	38
387	Mitochondrial biomarkers predict tumor progression and poor overall survival in gastric cancers: Companion diagnostics for personalized medicine. Oncotarget, 2017, 8, 67117-67128.	1.8	38
388	High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Frontiers in Oncology, 2021, 11, 740720.	2.8	38
389	Caveolin-3 T78M and T78K missense mutations lead to different phenotypes in vivo and in vitro. Laboratory Investigation, 2008, 88, 275-283.	3.7	37
390	Bortezomib (PS-341) Treatment Decreases Inflammation and Partially Rescues the Expression of the Dystrophin-Glycoprotein Complex in GRMD Dogs. PLoS ONE, 2013, 8, e61367.	2.5	36
391	Mitoriboscins: Mitochondrial-based therapeutics targeting cancer stem cells (CSCs), bacteria and pathogenic yeast. Oncotarget, 2017, 8, 67457-67472.	1.8	36
392	Atherosclerosis, Caveolae and Caveolin-1. Advances in Experimental Medicine and Biology, 2012, 729, 127-144.	1.6	35
393	Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment. Oncotarget, 2015, 6, 14687-14699.	1.8	35
394	Mitochondrial Impairment Mediates Cytolysis in Anthrax Lethal Toxin-Treated Murine Macrophages. Cell Cycle, 2006, 5, 100-106.	2.6	34
395	Somatic Excision Demonstrates that c-Jun Induces Cellular Migration and Invasion through Induction of Stem Cell Factor. Molecular and Cellular Biology, 2007, 27, 1356-1369.	2.3	34
396	The Endogenous Cell-Fate Factor Dachshund Restrains Prostate Epithelial Cell Migration via Repression of Cytokine Secretion via a CXCL Signaling Module. Cancer Research, 2015, 75, 1992-2004.	0.9	34

#	Article	IF	CITATIONS
397	Exploiting mitochondrial targeting signal(s), TPP and bis-TPP, for eradicating cancer stem cells (CSCs). Aging, 2018, 10, 229-240.	3.1	34
398	Cholesterol and Mevalonate: Two Metabolites Involved in Breast Cancer Progression and Drug Resistance through the ERRα Pathway. Cells, 2020, 9, 1819.	4.1	34
399	Caveolae and human disease: functional roles in transcytosis, potocytosis, signalling and cell polarity. Seminars in Developmental Biology, 1995, 6, 47-58.	1.3	33
400	Phosphofructokinase Muscle-Specific Isoform Requires Caveolin-3 Expression for Plasma Membrane Recruitment and Caveolar Targeting. American Journal of Pathology, 2003, 163, 2619-2634.	3.8	32
401	Genetic ablation of caveolin-1 increases neural stem cell proliferation in the subventricular zone (SVZ) of the adult mouse brain. Cell Cycle, 2009, 8, 3978-3983.	2.6	32
402	Compartment-specific activation of PPARÎ ³ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis. Cell Cycle, 2013, 12, 1360-1370.	2.6	32
403	Cyclin D1 Integrates Estrogen-Mediated DNA Damage Repair Signaling. Cancer Research, 2014, 74, 3959-3970.	0.9	32
404	Proteomic identification of prognostic tumour biomarkers, using chemotherapy-induced cancer-associated fibroblasts. Aging, 2015, 7, 816-838.	3.1	32
405	Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth. Oncotarget, 2017, 8, 81754-81775.	1.8	32
406	Requirement of transcription factor NFAT in developing atrial myocardium. Journal of Cell Biology, 2003, 161, 861-874.	5.2	31
407	The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis. Cell Cycle, 2012, 11, 3972-3982.	2.6	31
408	Thioalbamide, A Thioamidated Peptide from Amycolatopsis alba, Affects Tumor Growth and Stemness by Inducing Metabolic Dysfunction and Oxidative Stress. Cells, 2019, 8, 1408.	4.1	31
409	Mitoketoscins: Novel mitochondrial inhibitors for targeting ketone metabolism in cancer stem cells (CSCs). Oncotarget, 2017, 8, 78340-78350.	1.8	31
410	Alterations in Glucose Homeostasis in a Murine Model of Chagas Disease. American Journal of Pathology, 2013, 182, 886-894.	3.8	30
411	Bedaquiline, an FDA-approved drug, inhibits mitochondrial ATP production and metastasis in vivo, by targeting the gamma subunit (ATP5F1C) of the ATP synthase. Cell Death and Differentiation, 2021, 28, 2797-2817.	11.2	30
412	Role of caveolin-1 in the regulation of the vascular shear stress response. Journal of Clinical Investigation, 2006, 116, 1222-1225.	8.2	30
413	17β-estradiol regulates giant vesicle formation via estrogen receptor-alpha in human breast cancer cells. Oncotarget, 2014, 5, 3055-3065.	1.8	30
414	Cyclin and Caveolin Expression in an Acute Model of Murine Chagasic Myocarditis. Cell Cycle, 2006, 5, 107-112.	2.6	29

#	Article	IF	CITATIONS
415	Alterations in myocardial gene expression associated with experimental Trypanosoma cruzi infection. Genomics, 2008, 91, 423-432.	2.9	29
416	Caveolin-1 Expression Determines the Route of Neutrophil Extravasation through Skin Microvasculature. American Journal of Pathology, 2009, 174, 684-692.	3.8	29
417	Mitochondrial markers predict survival and progression in non-small cell lung cancer (NSCLC) patients: Use as companion diagnostics. Oncotarget, 2017, 8, 68095-68107.	1.8	29
418	Disruption of c-Jun Reduces Cellular Migration and Invasion through Inhibition of c-Src and Hyperactivation of ROCK II Kinase. Molecular Biology of the Cell, 2008, 19, 1378-1390.	2.1	28
419	Mutational Analysis Identifies a Short Atypical Membrane Attachment Sequence (KYWFYR) within Caveolin-1â€. Biochemistry, 2002, 41, 3790-3795.	2.5	27
420	Regulation of insulin receptor substrateâ€1 expression levels by caveolinâ€1. Journal of Cellular Physiology, 2008, 217, 281-289.	4.1	27
421	G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts. International Journal of Molecular Sciences, 2017, 18, 2713.	4.1	27
422	Acetylation of the Cell-Fate Factor Dachshund Determines p53 Binding and Signaling Modules in Breast Cancer. Oncotarget, 2013, 4, 923-935.	1.8	27
423	Genetic ablation of caveolin-1 in mammary epithelial cells increases milk production and hyper-activates STAT5a signaling. Cancer Biology and Therapy, 2006, 5, 292-297.	3.4	26
424	Evolutionarily Conserved Role of Calcineurin in Phosphodegron-Dependent Degradation of Phosphodiesterase 4D. Molecular and Cellular Biology, 2010, 30, 4379-4390.	2.3	26
425	Cav1 Suppresses Tumor Growth and Metastasis in a Murine Model of Cutaneous SCC through Modulation of MAPK/AP-1 Activation. American Journal of Pathology, 2013, 182, 992-1004.	3.8	26
426	Creating a tumor-resistant microenvironment: Cell-mediated delivery of TNFα completely prevents breast cancer tumor formation in vivo. Cell Cycle, 2013, 12, 480-490.	2.6	26
427	Doxycycline and therapeutic targeting of the DNA damage response in cancer cells: old drug, new purpose. Oncoscience, 2015, 2, 696-699.	2.2	26
428	Mitochondrial Fission Factor (MFF) Inhibits Mitochondrial Metabolism and Reduces Breast Cancer Stem Cell (CSC) Activity. Frontiers in Oncology, 2020, 10, 1776.	2.8	26
429	The reverse warburg effect in osteosarcoma. Oncotarget, 2014, 5, 7982-7983.	1.8	26
430	Inhibition of cyclin D1 gene transcription by Brg-1. Cell Cycle, 2008, 7, 647-655.	2.6	25
431	Caveolin-1 and Breast Cancer: A New Clinical Perspective. Advances in Experimental Medicine and Biology, 2012, 729, 83-94.	1.6	25
432	Novel Oncogene–Induced Metastatic Prostate Cancer Cell Lines Define Human Prostate Cancer Progression Signatures. Cancer Research, 2013, 73, 978-989.	0.9	25

#	Article	IF	CITATIONS
433	Brain Clathrin: Studies of Its Ultrastructural Assemblies. FEBS Journal, 1982, 121, 617-622.	0.2	24
434	CAPER, a novel regulator of human breast cancer progression. Cell Cycle, 2014, 13, 1256-1264.	2.6	24
435	Calmodulin Affinity for Brain Coated Vesicle Proteins. Journal of Neurochemistry, 1982, 38, 1742-1747.	3.9	23
436	Immune dysfunction in caveolin-1 null mice following infection with Trypanosoma cruzi (Tulahuen) Tj ETQq0 0 0	rgBT /Ove 1.9	erlock 10 Tf 50
437	Regulation of Cripto-1 Signaling and Biological Activity by Caveolin-1 in Mammary Epithelial Cells. American Journal of Pathology, 2008, 172, 345-357.	3.8	23
438	A metabolic perturbation by U0126 identifies a role for glutamine in resveratrol-induced cell death. Cancer Biology and Therapy, 2011, 12, 966-977.	3.4	23
439	Caveolin-2-deficient mice show increased sensitivity to endotoxemia. Cell Cycle, 2011, 10, 2151-2161.	2.6	23
440	Recent Developments in the Interactions Between Caveolin and Pathogens. Advances in Experimental Medicine and Biology, 2012, 729, 65-82.	1.6	23
441	Glutamine Supplementation Alleviates Vasculopathy and Corrects Metabolic Profile in an In Vivo Model of Endothelial Cell Dysfunction. PLoS ONE, 2013, 8, e65458.	2.5	23
442	Development of a High-Affinity Inhibitor of the Prostaglandin Transporter. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 633-641.	2.5	22
443	v-Src Oncogene Induces Trop2 Proteolytic Activation via Cyclin D1. Cancer Research, 2016, 76, 6723-6734.	0.9	22
444	FoxO3a as a Positive Prognostic Marker and a Therapeutic Target in Tamoxifen-Resistant Breast Cancer. Cancers, 2019, 11, 1858.	3.7	22
445	Hypoxia and hyperglycaemia determine why some endometrial tumours fail to respond to metformin. British Journal of Cancer, 2020, 122, 62-71.	6.4	22
446	Localization of the human caveolin-3 gene to the D3S18/D3S4163/D3S4539 locus (3p25), in close proximity to the human oxytocin receptor gene. FEBS Letters, 1999, 452, 177-180.	2.8	21
447	Caveolin-1 and Liver Regeneration: Role in Proliferation and Lipogenesis. Cell Cycle, 2007, 6, 115-116.	2.6	21
448	The ER-alpha mutation Y537S confers Tamoxifen-resistance via enhanced mitochondrial metabolism, glycolysis and Rho-GDI/PTEN signaling: Implicating TIGAR in somatic resistance to endocrine therapy. Aging, 2018, 10, 4000-4023.	3.1	21
449	A new mutation-independent approach to cancer therapy: Inhibiting oncogenic RAS and MYC, by targeting mitochondrial biogenesis. Aging, 2017, 9, 2098-2116.	3.1	21
450	Hearts lacking caveolin-1 develop hypertrophy with normal cardiac substrate metabolism. Cell Cycle, 2008, 7, 2509-2518.	2.6	20

#	Article	IF	CITATIONS
451	Loss of Caveolin-3 Induces a Lactogenic Microenvironment that Is Protective Against Mammary Tumor Formation. American Journal of Pathology, 2009, 174, 613-629.	3.8	20
452	Trypanosoma cruziinfection results in the reduced expression of caveolin-3 in the heart. Cell Cycle, 2010, 9, 1639-1646.	2.6	20
453	Genetic Ablation of Cav1 Differentially Affects Melanoma Tumor Growth and Metastasis in Mice: Role of Cav1 in Shh Heterotypic Signaling and Transendothelial Migration. Cancer Research, 2012, 72, 2262-2274.	0.9	20
454	Hyccin, the Molecule Mutated in the Leukodystrophy Hypomyelination and Congenital Cataract (HCC), Is a Neuronal Protein. PLoS ONE, 2012, 7, e32180.	2.5	20
455	Metabolic Asymmetry in Cancer: A "Balancing Act―that Promotes Tumor Growth. Cancer Cell, 2014, 26, 5-7.	16.8	20
456	Hallmarks of the cancer cell of origin: Comparisons with "energetic―cancer stem cells (e-CSCs). Aging, 2019, 11, 1065-1068.	3.1	20
457	Imaging of Small-Animal Models of Infectious Diseases. American Journal of Pathology, 2013, 182, 296-304.	3.8	19
458	Anti-CTLA-4 therapy for malignant mesothelioma. Immunotherapy, 2017, 9, 273-280.	2.0	19
459	Repurposing of FDA-approved drugs against cancer – focus on metastasis. Aging, 2016, 8, 567-568.	3.1	19
460	First-in-class candidate therapeutics that target mitochondria and effectively prevent cancer cell metastasis: mitoriboscins and TPP compounds. Aging, 2020, 12, 10162-10179.	3.1	19
461	A Reduction in Pten Tumor Suppressor Activity Promotes ErbB-2-Induced Mouse Prostate Adenocarcinoma Formation through the Activation of Signaling Cascades Downstream of PDK1. American Journal of Pathology, 2009, 174, 2051-2060.	3.8	18
462	VMY-1-103, a dansylated analog of purvalanol B, induces caspase-3-dependent apoptosis in LNCaP prostate cancer cells. Cancer Biology and Therapy, 2010, 10, 320-325.	3.4	18
463	Alterations in membrane caveolae and BKCa channel activity in skin fibroblasts in Smith–Lemli–Opitz syndrome. Molecular Genetics and Metabolism, 2011, 104, 346-355.	1.1	18
464	Identification of Mom12 and Mom13, two novel modifier loci of ApcMin-mediated intestinal tumorigenesis. Cell Cycle, 2011, 10, 1092-1099.	2.6	18
465	Mitochondrial mRNA transcripts predict overall survival, tumor recurrence and progression in serous ovarian cancer: Companion diagnostics for cancer therapy. Oncotarget, 2017, 8, 66925-66939.	1.8	18
466	ErbB-2 Induces Bilateral Adrenal Pheochromocytoma Formation in Mice. Cell Cycle, 2007, 6, 1946-1950.	2.6	17
467	Cell Cycle Regulatory Proteins in the Liver in Murine Trypanosoma cruzi Infection. Cell Cycle, 2006, 5, 2396-2400.	2.6	16
468	PV-1 is Negatively Regulated by VEGF in the Lung of Cav-1, but not Cav-2, Null Mice. Cell Cycle, 2006, 5, 2012-2020.	2.6	16

#	Article	IF	CITATIONS
469	Caveolin-1 overexpression enhances androgen-dependent growth and proliferation in the mouse prostate. International Journal of Biochemistry and Cell Biology, 2011, 43, 1318-1329.	2.8	16
470	Quantifying the CDK inhibitor VMY-1-103's activity and tissue levels in an in vivo tumor model by LC-MS/MS and by MRI. Cell Cycle, 2012, 11, 3801-3809.	2.6	16
471	Ablation of Calcineurin Aβ Reveals Hyperlipidemia and Signaling Cross-talks with Phosphodiesterases. Journal of Biological Chemistry, 2013, 288, 3477-3488.	3.4	16
472	The membrane-associated form of cyclin D1 enhances cellular invasion. Oncogenesis, 2020, 9, 83.	4.9	16
473	Ectopic expression of murine diphosphoinositol polyphosphate phosphohydrolase 1 attenuates signaling through the ERK1/2 pathway. Cellular Signalling, 2004, 16, 1045-1059.	3.6	16
474	MR imaging of caveolin gene-specific alterations in right ventricular wall thickness. Magnetic Resonance Imaging, 2005, 23, 61-68.	1.8	15
475	Using Caveolin-1 epithelial immunostaining patterns to stratify human breast cancer patients and to predict the Caveolin-1 (P132L) mutation. Cell Cycle, 2009, 8, 1396-1401.	2.6	15
476	A role for the Werner syndrome protein in epigenetic inactivation of the pluripotency factor Oct4. Aging Cell, 2010, 9, 580-591.	6.7	15
477	Caveolin-1 regulates the anti-atherogenic properties of macrophages. Cell and Tissue Research, 2014, 358, 821-831.	2.9	15
478	Co-ordination of cell cycle, migration and stem cell-like activity in breast cancer. Oncotarget, 2014, 5, 7833-7842.	1.8	15
479	Molecular cloning and characterization of mitogen-activated protein kinase 2 inToxoplasma gondii. Cell Cycle, 2011, 10, 3519-3526.	2.6	14
480	Selective cytotoxicity of synthesized procyanidin 3-O-Galloylepicatechin-4b,8-3-O-galloylcatechin to human cancer cells. Cell Cycle, 2008, 7, 1648-1657.	2.6	13
481	Regulation of host cell cyclin D1 by <i>Trypanosoma cruzi</i> in myoblasts. Cell Cycle, 2008, 7, 500-503.	2.6	13
482	Foxp3-expressing T regulatory cells and mast cells in acute graft-versus-host disease of the skin. Cell Cycle, 2009, 8, 3601-3605.	2.6	13
483	Molecular cloning and characterization of mitogen-activated protein kinase 2 in <i>Trypanosoma cruzi</i> . Cell Cycle, 2010, 9, 2960-2968.	2.6	13
484	Dietary n-3 polyunsaturated fatty acids fail to reduce prostate tumorigenesis in the PB-ErbB-2 x Pten ^{+/-} preclinical mouse model. Cell Cycle, 2010, 9, 1824-1829.	2.6	13
485	Transcellular migration of neutrophils is a quantitatively significant pathway across dermal microvascular endothelial cells. Experimental Dermatology, 2009, 18, 88-90.	2.9	12
486	Oxidative Stress and Reprogramming of Mitochondrial Function and Dynamics as Targets to Modulate Cancer Cell Behavior and Chemoresistance. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-4.	4.0	12

#	Article	IF	CITATIONS
487	MitoTracker Deep Red (MTDR) Is a Metabolic Inhibitor for Targeting Mitochondria and Eradicating Cancer Stem Cells (CSCs), With Anti-Tumor and Anti-Metastatic Activity In Vivo. Frontiers in Oncology, 2021, 11, 678343.	2.8	12
488	Microarray analysis of the mammalian thromboxane receptor- <i>Trypanosoma cruzi</i> interaction. Cell Cycle, 2011, 10, 1132-1143.	2.6	11
489	Stromal glycolysis and MCT4 are hallmarks of DCIS progression to invasive breast cancer. Cell Cycle, 2013, 12, 2935-2936.	2.6	11
490	Caveolin-3 Promotes a Vascular Smooth Muscle Contractile Phenotype. Frontiers in Cardiovascular Medicine, 2015, 2, 27.	2.4	11
491	Homozygous T172T and Heterozygous G135C Variants of Homologous Recombination Repairing Protein RAD51 are Related to Sporadic Breast Cancer Susceptibility. Biochemical Genetics, 2016, 54, 83-94.	1.7	11
492	New insights in the expression of stromal caveolin 1 in breast cancer spread to axillary lymph nodes. Scientific Reports, 2021, 11, 2755.	3.3	11
493	Zebrafish as a Novel Model System to Study the Function of Caveolae and Caveolin-1 in Organismal Biology. American Journal of Pathology, 2006, 169, 1910-1912.	3.8	10
494	Genetic ablation of caveolin-2 sensitizes mice to bleomycin-induced injury. Cell Cycle, 2013, 12, 2248-2254.	2.6	10
495	Inhibition of the Prostaglandin Transporter PGT Lowers Blood Pressure in Hypertensive Rats and Mice. PLoS ONE, 2015, 10, e0131735.	2.5	10
496	Mitochondrial and ribosomal biogenesis are new hallmarks of stemness, oncometabolism and biomass accumulation in cancer: Mitoâ€stemness and riboâ€stemness features. Aging, 2019, 11, 4801-4835.	3.1	10
497	A biphasic response of hepatobiliary cholesterol metabolism to dietary fat at the onset of obesity in the mouse. Hepatology, 2005, 41, 887-895.	7.3	9
498	Switch to oral hypoglycemic agent therapy from insulin injection in patients with type 2 diabetes. Geriatrics and Gerontology International, 2008, 8, 218-226.	1.5	9
499	Mesenchymal Stem Cells, Used As Bait, Disclose Tissue Binding Sites. American Journal of Pathology, 2010, 177, 873-883.	3.8	9
500	Identification of a functional prostanoid-like receptor in the protozoan parasite, Trypanosoma cruzi. Parasitology Research, 2013, 112, 1417-1425.	1.6	9
501	Tumor Microenvironment: Introduction. Seminars in Oncology, 2014, 41, 145.	2.2	9
502	PV-1 Labels Trans-Cellular Openings in Mouse Endothelial Cells and is Negatively Regulated by VEGF. Cell Cycle, 2006, 5, 2021-2028.	2.6	8
503	Translational Discoveries, Personalized Medicine, and Living Biobanks of the Future. American Journal of Pathology, 2012, 180, 1334-1336.	3.8	8
504	Current and prospective pharmacotherapies for the treatment of pleural mesothelioma. Expert Opinion on Orphan Drugs, 2017, 5, 455-465.	0.8	8

0

#	Article	IF	CITATIONS
505	A Myristoyl Amide Derivative of Doxycycline Potently Targets Cancer Stem Cells (CSCs) and Prevents Spontaneous Metastasis, Without Retaining Antibiotic Activity. Frontiers in Oncology, 2020, 10, 1528.	2.8	8
506	Genetic Induction of the Warburg Effect Inhibits Tumor Growth. Oncotarget, 2012, 3, 1266-1267.	1.8	7
507	c-Jun is required for TGF-β-mediated cellular migration via nuclear Ca2+ signaling. International Journal of Biochemistry and Cell Biology, 2011, 43, 1104-1113.	2.8	6
508	Cav1 inhibits benign skin tumor development in a two-stage carcinogenesis model by suppressing epidermal proliferation. American Journal of Translational Research (discontinued), 2013, 5, 80-91.	0.0	6
509	Mammary Gland Selective Excision of <i>c-Jun</i> Identifies Its Role in mRNA Splicing. Cancer Research, 2012, 72, 1023-1034.	0.9	5
510	Using the common cold virus as a naturally occurring vaccine to prevent COVID-19: Lessons from Edward Jenner. Aging, 2020, 12, 18797-18803.	3.1	5
511	Anticancer innovative therapy congress: Highlights from the 10th anniversary edition. Cytokine and Growth Factor Reviews, 2021, 59, 1-8.	7.2	4
512	SH3BGRL3 binds to myosin 1c in a calcium dependent manner and modulates migration in the MDA-MB-231 cell line. BMC Molecular and Cell Biology, 2021, 22, 41.	2.0	4
513	Clathrin lattice reorganization: theoretical considerations. Journal of Theoretical Biology, 1984, 108, 143-157.	1.7	3
514	Carbonic anhydrase 9 (CA9) and redox signaling in cancer-associated fibroblasts: Therapeutic implications. Cell Cycle, 2013, 12, 2534-2534.	2.6	3
515	Essential role of STAT5a in DCIS formation and invasion following estrogen treatment. Aging, 2020, 12, 15104-15120.	3.1	3
516	Purification and molecular characterization of NP185, a neuronal-specific and synapse-enriched clathrin assembly polypeptide. Bioquâ^ŝâ‰mica Y Patologâ^ŝâ‰a Clâ^ŝâ‰nica, 1998, 62, 5-17.	0.0	2
517	Cigarette Smoke Promotes Cancer via Autophagy. , 2015, , 245-253.		0
518	Caveolinâ€3 KO Mice Develop Dyslipidemia with Impaired Substrate Utilization in Skeletal Muscle FASEB Journal, 2009, 23, 600.32.	0.5	0
519	Caveolin-1 and Cancer-Associated Stromal Fibroblasts. , 2012, , 105-119.		0

520 Caveolin-1 and Breast Cancer. , 2012, , 91-104.