Sergey Gusarov

List of Publications by Citations

Source: https://exaly.com/author-pdf/8154772/sergey-gusarov-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

55 1,666 24 40 g-index

64 1,894 4.2 4.69 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
55	Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 607-624	6.4	197
54	An MM/3D-RISM approach for ligand binding affinities. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 8505-	·1364	117
53	Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength. <i>Journal of the American Chemical Society</i> , 2013 , 135, 19048-51	16.4	82
52	Density Functional Theory Investigation of the Contributions of I stacking and Hydrogen-Bonding Interactions to the Aggregation of Model Asphaltene Compounds. <i>Energy & Amp; Fuels</i> , 2012 , 26, 2727-2735	4.1	81
51	Self-consistent combination of the three-dimensional RISM theory of molecular solvation with analytical gradients and the Amsterdam density functional package. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 6083-90	2.8	75
50	Modeling solvatochromic shifts using the orbital-free embedding potential at statistically mechanically averaged solvent density. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 6082-96	2.8	74
49	Electronic Characteristics and Charge Transport Mechanisms for Large Area Aromatic Molecular Junctions. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15806-15815	3.8	73
48	Single-side-hydrogenated graphene: Density functional theory predictions. <i>Physical Review B</i> , 2011 , 84,	3.3	71
47	Optical control of selectivity of high rate CO2 photoreduction via interband- or hot electron Z-scheme reaction pathways in Au-TiO2 plasmonic photonic crystal photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2020 , 267, 118644	21.8	56
46	Evaluation of the SCF Combination of KS-DFT and 3D-RISM-KH; Solvation Effect on Conformational Equilibria, Tautomerization Energies, and Activation Barriers. <i>Journal of Chemical Theory and Computation</i> , 2007 , 3, 458-76	6.4	55
45	Microtubule stability studied by three-dimensional molecular theory of solvation. <i>Biophysical Journal</i> , 2007 , 92, 394-403	2.9	53
44	Correlation potentials for a multiconfigurational-based density functional theory with exact exchange. <i>Theoretical Chemistry Accounts</i> , 2004 , 112, 84-94	1.9	52
43	Computational and experimental study of the structure, binding preferences, and spectroscopy of nickel(II) and vanadyl porphyrins in petroleum. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 2180-8	3.4	47
42	Using on-top pair density for construction of correlation functionals for multideterminant wave functions. <i>Molecular Physics</i> , 2004 , 102, 2207-2216	1.7	46
41	Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 206-11	6.4	45
40	Theoretical Modeling of Zeolite Nanoparticle Surface Acidity for Heavy Oil Upgrading. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 6794-6810	3.8	45
39	Molecular theory of solvation for supramolecules and soft matter structures: application to ligand binding, ion channels, and oligomeric polyelectrolyte gelators. <i>Soft Matter</i> , 2012 , 8, 1508-1520	3.6	43

(2021-2012)

38	Efficient treatment of solvation shells in 3D molecular theory of solvation. <i>Journal of Computational Chemistry</i> , 2012 , 33, 1478-94	3.5	42
37	Ab initio study of ionic liquids by KS-DFT/3D-RISM-KH theory. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 3536-42	3.4	40
36	Computational study of the effect of dispersion interactions on the thermochemistry of aggregation of fused polycyclic aromatic hydrocarbons as model asphaltene compounds in solution. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 896-908	2.8	37
35	Consistently High Values in p-i-n Type Perovskite Solar Cells Using Ni-Doped NiO Nanomesh as the Hole Transporting Layer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 11467-11478	9.5	33
34	Donor-acceptor small molecules for organic photovoltaics: single-atom substitution (Se or S). <i>ACS Applied Materials & Applied & Applied Materials & Applied & Applied</i>	9.5	31
33	Adsorption of Indole on Kaolinite in Nonaqueous Media: Organoclay Preparation and Characterization, and 3D-RISM-KH Molecular Theory of Solvation Investigation. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 18556-18566	3.8	30
32	Electronic structure, binding energy, and solvation structure of the streptavidin-biotin supramolecular complex: ONIOM and 3D-RISM study. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 9958-6	7 ^{3.4}	25
31	MoleculeBurface Recognition between Heterocyclic Aromatic Compounds and Kaolinite in Toluene Investigated by Molecular Theory of Solvation and Thermodynamic and Kinetic Experiments. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 23821-23834	3.8	21
30	Multiscale modelling of asphaltene disaggregation. <i>Molecular Simulation</i> , 2008 , 34, 953-960	2	21
29	Density functional theory investigation of the effect of axial coordination and annelation on the absorption spectroscopy of nickel(II) and vanadyl porphyrins relevant to bitumen and crude oils. <i>Canadian Journal of Chemistry</i> , 2013 , 91, 872-878	0.9	19
28	Multiscale methods framework: self-consistent coupling of molecular theory of solvation with quantum chemistry, molecular simulations, and dissipative particle dynamics. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 2947-2969	3.6	17
27	A closure relation to molecular theory of solvation for macromolecules. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 404003	1.8	15
26	Modelling of bitumen fragment adsorption on Cu+ and Ag+ exchanged zeolite nanoparticles. <i>Molecular Simulation</i> , 2008 , 34, 943-951	2	13
25	Development of Fukui Function Based Descriptors for a Machine Learning Study of CO2 Reduction. Journal of Physical Chemistry C, 2020 , 124, 10079-10084	3.8	12
24	Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@CN Core-Shell Nanowires. <i>ACS Applied Materials & Dynamics amp; Interfaces</i> , 2021 , 13, 47418-47439	9.5	11
23	Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation. <i>Langmuir</i> , 2015 , 31, 7106-16	4	10
22	Theoretical Modeling of Tunneling Barriers in Carbon-Based Molecular Electronic Junctions. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 11286-11295	3.8	9
21	Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 42741-42752	9.5	9

20	Multi-scale modeling and synthesis of polyester ionomers. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 6128-38	3.6	8
19	Dissipative particle dynamics with an effective pair potential from integral equation theory of molecular liquids. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 12034-49	3.4	7
18	Multiscale modeling of active layer of hybrid organic-inorganic solar cells for photovoltaic applications by means of density functional theory and integral equation theory of molecular liquids. <i>Journal of Molecular Liquids</i> , 2019 , 289, 110997	6	6
17	CVD grown nitrogen doped graphene is an exceptional visible-light driven photocatalyst for surface catalytic reactions. <i>2D Materials</i> , 2020 , 7, 015002	5.9	6
16	COSMO-RS-Based Descriptors for the Machine Learning-Enabled Screening of Nucleotide Analogue Drugs against SARS-CoV-2. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 9408-9414	6.4	6
15	Synthesis and Characterization of Zinc Phthalocyanine-Cellulose Nanocrystal (CNC) Conjugates: Toward Highly Functional CNCs. <i>ACS Applied Materials & Discrete Materials & Discre</i>	9.5	4
14	Computational and Experimental Investigations of the Role of Water and Alcohols in the Desorption of Heterocyclic Aromatic Compounds from Kaolinite in Toluene. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 10377-10391	3.8	3
13	On variational estimates for exchange-correlation interaction obtained within super-CI approach to MCSCF approximation. <i>International Journal of Quantum Chemistry</i> , 2009 , 109, 1672-1675	2.1	3
12	Development of additive isotropic site potential for exchange-repulsion energy, based on intermolecular perturbation theory. <i>Canadian Journal of Chemistry</i> , 2009 , 87, 1727-1732	0.9	3
11	The Effect of Molecular Structure and Environment on the Miscibility and Diffusivity in Polythiophene-Methanofullerene Bulk Heterojunctions: Theory and Modeling with the RISM Approach. <i>Polymers</i> , 2016 , 8,	4.5	3
10	Koopmans[multiconfigurational self-consistent field (MCSCF) Fukui functions and MCSCF perturbation theory. <i>Canadian Journal of Chemistry</i> , 2013 , 91, 886-893	0.9	2
9	Comment on "Density functional theory and 3D-RISM-KH molecular theory of solvation studies of CO reduction on Cu-, CuO-, Fe-, and FeO-based nanocatalysts". <i>Journal of Molecular Modeling</i> , 2021 , 27, 344	2	2
8	Organic-Inorganic Nanohybrid Materials for Photovoltaic Applications. ECS Transactions, 2018, 85, 543-	550	1
7	TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting. <i>Catalysts</i> , 2021 , 11, 1374	4	1
6	Extended Koopmans Approximation for CASDFT Exchange-Correlation Functional. <i>Journal of Applied Mathematics and Physics</i> , 2018 , 06, 1242-1246	0.3	0
5	Modeling the interaction of SARS-CoV-2 binding to the ACE2 receptor via molecular theory of solvation. <i>New Journal of Chemistry</i> , 2021 , 45, 15448-15457	3.6	O
4	Hot hole transfer from Ag nanoparticles to multiferroic YMn2O5 nanowires enables superior photocatalytic activity. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 4128-4139	7.1	О
3	Experimental and Computational Synergistic Design of Cu and Fe Catalysts for the Reverse Water G as Shift: A Review. <i>ACS Catalysis</i> ,6887-6905	13.1	O

LIST OF PUBLICATIONS

Density Functional Investigation of Charge Transfer in Organic Solar Cells. *ECS Transactions*, **2011**, 41, 129-134

1

A reply to: "Response to Comment on "Density Functional Theory and 3D-RISM-KH molecular theory of solvation studies of CO2 reduction on Cu-, Cu2O-, Fe-, and Fe3O4-based nanocatalysts""..

Journal of Molecular Modeling, 2022, 28, 114

2