Guishuang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8154640/publications.pdf

Version: 2024-02-01

19	285	9	888059 17
papers	citations	h-index	g-index
19 all docs	19 docs citations	19 times ranked	288 citing authors

#	Article	IF	CITATIONS
1	EMS1 and BRI1 control separate biological processes via extracellular domain diversity and intracellular domain conservation. Nature Communications, 2019, 10, 4165.	12.8	44
2	Predicting suitable cultivation regions of medicinal plants with Maxent modeling and fuzzy logics: a case study of Scutellaria baicalensis in China. Environmental Earth Sciences, 2016, 75, 1.	2.7	43
3	Growth years and post-harvest processing methods have critical roles on the contents of medicinal active ingredients of Scutellaria baicalensis. Industrial Crops and Products, 2020, 158, 112985.	5.2	37
4	Wetlands rise and fall: Six endangered wetland species showed different patterns of habitat shift under future climate change. Science of the Total Environment, 2020, 731, 138518.	8.0	31
5	Future landscape of renewable fuel resources: Current and future conservation and utilization of main biofuel crops in China. Science of the Total Environment, 2022, 806, 150946.	8.0	17
6	Chinese Cornus officinalis: genetic resources, genetic diversity and core collection. Genetic Resources and Crop Evolution, 2012, 59, 1659-1671.	1.6	16
7	Genetic diversity and sampling strategy of Scutellaria baicalensis germplasm resources based on ISSR. Genetic Resources and Crop Evolution, 2013, 60, 1673-1685.	1.6	15
8	Transcriptomic analysis and dynamic expression of genes reveal flavonoid synthesis in Scutellaria viscidula. Acta Physiologiae Plantarum, 2018, 40, 1.	2.1	15
9	Concentrated conservation and utilization: Four medicinal crops for diabetes treatment showed similar habitat distribution patterns in China. Industrial Crops and Products, 2020, 152, 112478.	5 . 2	11
10	Less Conserved LRRs Is Important for BRI1 Folding. Frontiers in Plant Science, 2019, 10, 634.	3.6	9
11	Effects of drought stress on hybrids of Vigna radiata at germination stage. Acta Biologica Hungarica, 2018, 69, 481-492.	0.7	8
12	Brassinosteroids synthesised by CYP85A/A1 but not CYP85A2 function via a BRI1-like receptor but not via BRI1 in <i>Picea abies</i>). Journal of Experimental Botany, 2021, 72, 1748-1763.	4.8	7
13	Panâ€brassinosteroid signaling revealed by functional analysis of <scp>NILR1</scp> in land plants. New Phytologist, 2022, 235, 1455-1469.	7.3	7
14	De novo transcriptome assembly based on RNA-seq and dynamic expression of key enzyme genes in loganin biosynthetic pathway of Cornus officinalis. Tree Genetics and Genomes, 2018, 14, 1.	1.6	6
15	Engineering Chimeras by Fusing Plant Receptor-like Kinase EMS1 and BRI1 Reveals the Two Receptors' Structural Specificity and Molecular Mechanisms. International Journal of Molecular Sciences, 2022, 23, 2155.	4.1	6
16	The medicinal active ingredients and their associated key enzyme genes are differentially regulated at different growth stages in Cornus officinalis and Cornus controversa. Industrial Crops and Products, 2019, 142, 111858.	5.2	5
17	Kinase Function of Brassinosteroid Receptor Specified by Two Allosterically Regulated Subdomains. Frontiers in Plant Science, 2021, 12, 802924.	3.6	4
18	Development and optimization of novel processing methods of fruit extracts of medicinal crop Cornus officinalis. Industrial Crops and Products, 2021, 174, 114177.	5.2	2

#	ARTICLE	IF	CITATIONS
19	A Non-redundant Function of MNS5: A Class I α-1, 2 Mannosidase, in the Regulation of Endoplasmic Reticulum-Associated Degradation of Misfolded Glycoproteins. Frontiers in Plant Science, 2022, 13, 873688.	3.6	2