Kateryna Bazaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8154251/publications.pdf Version: 2024-02-01

KATEDVNA RAZAKA

#	Article	IF	CITATIONS
1	Metallic Biomaterials: Current Challenges and Opportunities. Materials, 2017, 10, 884.	1.3	410
2	Review on the Antimicrobial Properties of Carbon Nanostructures. Materials, 2017, 10, 1066.	1.3	325
3	Plasma-activated water: generation, origin of reactive species and biological applications. Journal Physics D: Applied Physics, 2020, 53, 303001.	1.3	314
4	Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018, 20, 5276-5284.	4.6	302
5	Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomaterialia, 2011, 7, 2015-2028.	4.1	254
6	Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers. Applied Physics Reviews, 2018, 5, .	5.5	242
7	Implantable Devices: Issues and Challenges. Electronics (Switzerland), 2013, 2, 1-34.	1.8	239
8	Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Applied Microbiology and Biotechnology, 2012, 95, 299-311.	1.7	198
9	Materials and methods for encapsulation of OPV: A review. Renewable and Sustainable Energy Reviews, 2013, 27, 104-117.	8.2	173
10	Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Advances, 2015, 5, 48739-48759.	1.7	172
11	Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214.	23.0	163
12	Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth. Scientific Reports, 2016, 6, 32603.	1.6	142
13	Perspectives, frontiers, and new horizons for plasma-based space electric propulsion. Physics of Plasmas, 2020, 27, .	0.7	140
14	Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Scientific Reports, 2017, 7, 1591.	1.6	130
15	Catalyst-Free Plasma Enhanced Growth of Graphene from Sustainable Sources. Nano Letters, 2015, 15, 5702-5708.	4.5	124
16	Explore space using swarms of tiny satellites. Nature, 2018, 562, 185-187.	13.7	111
17	Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution. PLoS ONE, 2016, 11, e0155584.	1.1	94
18	Advanced Materials for Nextâ€Generation Spacecraft. Advanced Materials, 2018, 30, e1802201.	11.1	92

#	Article	IF	CITATIONS
19	Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Selfâ€Assembly at the Nanoscale. Advanced Materials, 2018, 30, 1702226.	11.1	91
20	The Emerging Role of Gas Plasma in Oncotherapy. Trends in Biotechnology, 2018, 36, 1183-1198.	4.9	89
21	Do bacteria differentiate between degrees of nanoscale surface roughness?. Biotechnology Journal, 2011, 6, 1103-1114.	1.8	86
22	Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chemical Engineering Journal, 2018, 342, 401-409.	6.6	81
23	Bacterial Extracellular Polysaccharides. Advances in Experimental Medicine and Biology, 2011, 715, 213-226.	0.8	79
24	Comparative study of photocatalysis and gas sensing of ZnO/Ag nanocomposites synthesized by one- and two-step polymer-network gel processes. Journal of Alloys and Compounds, 2021, 868, 158723.	2.8	78
25	Prospects and physical mechanisms for photonic space propulsion. Nature Photonics, 2018, 12, 649-657.	15.6	77
26	Microplasma Bubbles: Reactive Vehicles for Biofilm Dispersal. ACS Applied Materials & Interfaces, 2019, 11, 20660-20669.	4.0	76
27	Graphene oxide – Based supercapacitors from agricultural wastes: A step to mass production of highly efficient electrodes for electrical transportation systems. Renewable Energy, 2020, 151, 731-739.	4.3	76
28	White paper on the future of plasma science and technology in plastics and textiles. Plasma Processes and Polymers, 2019, 16, 1700228.	1.6	73
29	Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Applied Physics Reviews, 2017, 4, .	5.5	72
30	Quantification of plasma produced OH radical density for water sterilization. Plasma Processes and Polymers, 2018, 15, 1700241.	1.6	70
31	Plasma-Enhanced Synthesis of Bioactive Polymeric Coatings from Monoterpene Alcohols: A Combined Experimental and Theoretical Study. Biomacromolecules, 2010, 11, 2016-2026.	2.6	63
32	Interfacial modification of titanium dioxide to enhance photocatalytic efficiency towards H2 production. Journal of Colloid and Interface Science, 2019, 556, 376-385.	5.0	63
33	Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature. Chemical Engineering Journal, 2020, 382, 122745.	6.6	63
34	The Effect of Polyterpenol Thin Film Surfaces on Bacterial Viability and Adhesion. Polymers, 2011, 3, 388-404.	2.0	62
35	Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media. Scientific Reports, 2016, 6, 39552.	1.6	59
36	Synthesis of radio frequency plasma polymerized non-synthetic Terpinen-4-ol thin films. Materials Letters, 2009, 63, 1594-1597.	1.3	58

#	Article	IF	CITATIONS
37	Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation. Applied Physics Reviews, 2018, 5, 021103.	5.5	53
38	MoS ₂ -based nanostructures: synthesis and applications in medicine. Journal Physics D: Applied Physics, 2019, 52, 183001.	1.3	53
39	Hopes and concerns for astronomy of satellite constellations. Nature Astronomy, 2020, 4, 1012-1014.	4.2	51
40	Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells. Physics of Plasmas, 2015, 22, 122003.	0.7	50
41	Cold Atmospheric Plasma: A Promising Controller of Cancer Cell States. Cancers, 2020, 12, 3360.	1.7	50
42	From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring. Materials Horizons, 2018, 5, 765-798.	6.4	49
43	Spectral characteristics of cotton seeds treated by a dielectric barrier discharge plasma. Scientific Reports, 2017, 7, 5601.	1.6	48
44	Plasma polymerised thin films for flexible electronic applications. Thin Solid Films, 2013, 546, 167-170.	0.8	46
45	Mars Colonization: Beyond Getting There. Global Challenges, 2019, 3, 1800062.	1.8	44
46	Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. Materials Horizons, 2021, 8, 3201-3238.	6.4	44
47	Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication. Nanoscale, 2018, 10, 17494-17511.	2.8	43
48	Wearable, Flexible, Disposable Plasma-Reduced Graphene Oxide Stress Sensors for Monitoring Activities in Austere Environments. ACS Applied Materials & Interfaces, 2019, 11, 15122-15132.	4.0	43
49	Effects of Iodine Doping on Optoelectronic and Chemical Properties of Polyterpenol Thin Films. Nanomaterials, 2017, 7, 11.	1.9	42
50	Plasma and Polymers: Recent Progress and Trends. Molecules, 2021, 26, 4091.	1.7	42
51	Post-deposition ageing reactions of plasma derived polyterpenol thin films. Polymer Degradation and Stability, 2010, 95, 1123-1128.	2.7	40
52	Optical and chemical properties of polyterpenol thin films deposited via plasma-enhanced chemical vapor deposition. Journal of Materials Research, 2011, 26, 1018-1025.	1.2	38
53	Optical and Surface Characterization of Radio Frequency Plasma Polymerized 1-Isopropyl-4-Methyl-1,4-Cyclohexadiene Thin Films. Electronics (Switzerland), 2014, 3, 266-281.	1.8	38
54	Investigation of interfacial charging and discharging in double-layer pentacene-based metal-insulator-metal device with polyterpenol blocking layer using electric field induced second harmonic generation. Chemical Physics Letters, 2011, 503, 105-111.	1.2	34

4

#	Article	IF	CITATIONS
55	Electron-blocking hole-transport polyterpenol thin films. Chemical Physics Letters, 2012, 528, 26-28.	1.2	34
56	Growth of rGO nanostructures via facile wick and oil flame synthesis for environmental remediation. Carbon Letters, 2021, 31, 763.	3.3	34
57	Multifunctional oil-produced reduced graphene oxide – Silver oxide composites with photocatalytic, antioxidant, and antibacterial activities. Journal of Colloid and Interface Science, 2022, 608, 294-305.	5.0	34
58	Fabrication and characterization of polyterpenol as an insulating layer and incorporated organic field effect transistor. Thin Solid Films, 2010, 518, 6123-6129.	0.8	33
59	Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death. Journal Physics D: Applied Physics, 2015, 48, 464002.	1.3	33
60	The Fate of Osteoblast-Like MG-63 Cells on Pre-Infected Bactericidal Nanostructured Titanium Surfaces. Materials, 2019, 12, 1575.	1.3	33
61	Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films. Nanomaterials, 2017, 7, 270.	1.9	32
62	Highâ€Performance Plasmaâ€Enabled Biorefining of Microalgae to Valueâ€Added Products. ChemSusChem, 2019, 12, 4976-4985.	3.6	32
63	Formation of vertically oriented graphenes: what are the key drivers of growth?. 2D Materials, 2018, 5, 044002.	2.0	31
64	Resistive switching in graphene-organic device: Charge transport properties of graphene-organic device through electric field induced optical second harmonic generation and charge modulation spectroscopy. Carbon, 2017, 112, 111-116.	5.4	30
65	Eco-friendly nanocomposites derived from geranium oil and zinc oxide in one step approach. Scientific Reports, 2019, 9, 5973.	1.6	29
66	Effect of titanium surface topography on plasma deposition of antibacterial polymer coatings. Applied Surface Science, 2020, 521, 146375.	3.1	29
67	Wetting, Solubility and Chemical Characteristics of Plasma-Polymerized 1-Isopropyl-4-Methyl-1,4-Cyclohexadiene Thin Films. Coatings, 2014, 4, 527-552.	1.2	28
68	Towards universal plasma-enabled platform for the advanced nanofabrication: plasma physics level approach. Reviews of Modern Plasma Physics, 2018, 2, 1.	2.2	28
69	Superhydrophobic fluorine-modified cerium-doped mesoporous carbon as an efficient catalytic platform for photo-degradation of organic pollutants. Carbon, 2019, 147, 323-333.	5.4	28
70	Photostability of plasma polymerized \hat{I}^3 -terpinene thin films for encapsulation of OPV. Scientific Reports, 2017, 7, 45599.	1.6	27
71	Structural Characterization of γâ€Terpinene Thin Films Using Mass Spectroscopy and Xâ€Ray Photoelectron Spectroscopy. Plasma Processes and Polymers, 2015, 12, 1085-1094.	1.6	26
72	Plant Secondary Metabolite-Derived Polymers: A Potential Approach to Develop Antimicrobial Films. Polymers, 2018, 10, 515.	2.0	24

#	Article	IF	CITATIONS
73	Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Scientific Reports, 2018, 8, 8252.	1.6	23
74	Plasma parameters and discharge characteristics of lab-based krypton-propelled miniaturized Hall thruster. Plasma Sources Science and Technology, 2019, 28, 064003.	1.3	21
75	Tuning and fine morphology control of natural resource-derived vertical graphene. Carbon, 2020, 159, 668-685.	5.4	21
76	PC 12 Pheochromocytoma Cell Response to Super High Frequency Terahertz Radiation from Synchrotron Source. Cancers, 2019, 11, 162.	1.7	20
77	NiFe2O4 / rGO nanocomposites produced by soft bubble assembly for energy storage and environmental remediation. Renewable Energy, 2022, 181, 1386-1401.	4.3	20
78	Metallic biomaterials: types and advanced applications. , 2014, , 121-147.		19
79	Direct current arc plasma thrusters for space applications: basic physics, design and perspectives. Reviews of Modern Plasma Physics, 2019, 3, 1.	2.2	19
80	Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption. Frontiers of Chemical Science and Engineering, 2019, 13, 340-349.	2.3	19
81	Plasma-potentiated small molecules—possible alternative to antibiotics?. Nano Futures, 2017, 1, 025002.	1.0	18
82	Effect of Precursor on Antifouling Efficacy of Vertically-Oriented Graphene Nanosheets. Nanomaterials, 2017, 7, 170.	1.9	18
83	Biodegradable optically transparent terpinen-4-ol thin films for marine antifouling applications. Surface and Coatings Technology, 2018, 349, 426-433.	2.2	18
84	Plasma Treatment of Polymeric Membranes. , 2019, , 211-240.		18
85	Power-to-chemicals: Low-temperature plasma for lignin depolymerisation in ethanol. Bioresource Technology, 2020, 318, 123917.	4.8	18
86	Fabrication of Nano-Onion-Structured Graphene Films from <i>Citrus sinensis</i> Extract and Their Wetting and Sensing Characteristics. ACS Applied Materials & Interfaces, 2020, 12, 29594-29604.	4.0	18
87	Non-equilibrium plasma prevention of Schistosoma japonicum transmission. Scientific Reports, 2016, 6, 35353.	1.6	17
88	Pulse Plasma Deposition of Terpinen-4-ol: An Insight into Polymerization Mechanism and Enhanced Antibacterial Response of Developed Thin Films. Plasma Chemistry and Plasma Processing, 2020, 40, 339-355.	1.1	17
89	Focusing plasma jets to achieve high current density: Feasibility and opportunities for applications in debris removal and space exploration. Aerospace Science and Technology, 2021, 108, 106343.	2.5	16
90	3Dâ€Printed Multilayered Reinforced Material System for Gas Supply in CubeSats and Small Satellites. Advanced Engineering Materials, 2019, 21, 1900401.	1.6	15

#	Article	IF	CITATIONS
91	Polymer Encapsulation of Magnesium to Control Biodegradability and Biocompatibility. Journal of Nanoscience and Nanotechnology, 2014, 14, 8087-8093.	0.9	14
92	Exposure to high-frequency electromagnetic field triggers rapid uptake of large nanosphere clusters by pheochromocytoma cells. International Journal of Nanomedicine, 2018, Volume 13, 8429-8442.	3.3	14
93	Cosmetic reconstruction in breast cancer patients: Opportunities for nanocomposite materials. Acta Biomaterialia, 2019, 86, 41-65.	4.1	14
94	Hydrophilicity and Hydrophobicity Control of Plasmaâ€Treated Surfaces via Fractal Parameters. Advanced Materials Interfaces, 2021, 8, 2100724.	1.9	14
95	Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomaterialia, 2022, 147, 34-49.	4.1	14
96	The Electrical Properties of Plasma-Deposited Thin Films Derived from Pelargonium graveolens. Electronics (Switzerland), 2017, 6, 86.	1.8	13
97	Miniaturized Plasma Sources: Can Technological Solutions Help Electric Micropropulsion?. IEEE Transactions on Plasma Science, 2018, 46, 230-238.	0.6	13
98	Hierarchical Doped Gelatin-Derived Carbon Aerogels: Three Levels of Porosity for Advanced Supercapacitors. Nanomaterials, 2020, 10, 1178.	1.9	13
99	Iodine powers low-cost engines for satellites. Nature, 2021, 599, 373-374.	13.7	13
100	Bactericidal vertically aligned graphene networks derived from renewable precursor. Carbon Trends, 2022, 7, 100157.	1.4	13
101	Analyzing hysteresis behavior of capacitance–voltage characteristics of IZO/C60/pentacene/Au diodes with a hole-transport electron-blocking polyterpenol layer by electric-field-induced optical second-harmonic generation measurement. Chemical Physics Letters, 2013, 572, 150-153.	1.2	12
102	RF plasma polymerised thin films from natural resources. International Journal of Modern Physics Conference Series, 2014, 32, 1460319.	0.7	12
103	Concept of a Magnetically Enhanced Vacuum Arc Thruster With Controlled Distribution of Ion Flux. IEEE Transactions on Plasma Science, 2018, 46, 304-310.	0.6	12
104	Ultra-low reflective black silicon photovoltaics by high density inductively coupled plasmas. Solar Energy, 2018, 171, 841-850.	2.9	12
105	Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies. Trends in Biotechnology, 2020, 38, 558-571.	4.9	12
106	Solubility and Surface Interactions of RF Plasma Polymerized Polyterpenol Thin Films. Materials Express, 2012, 2, 285-293.	0.2	11
107	Plasmonic platform based on nanoporous alumina membranes: order control <i>via</i> self-assembly. Journal of Materials Chemistry A, 2019, 7, 9565-9577.	5.2	11
108	Functional Nanomaterials from Waste and Lowâ€Value Natural Products: A Technological Approach Level. Advanced Materials Technologies, 2022, 7, .	3.0	11

#	Article	IF	CITATIONS
109	Nanotribological and nanomechanical properties of plasma-polymerized polyterpenol thin films. Journal of Materials Research, 2011, 26, 2952-2961.	1.2	10
110	Effect of Atmospheric-Pressure Plasmas on Drug Resistant Melanoma: The Challenges of Translating In vitro Outcomes into Animal Models. Plasma Medicine, 2016, 6, 67-83.	0.2	10
111	Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics. Scientific Reports, 2016, 6, 38571.	1.6	10
112	Hall Thrusters With Permanent Magnets: Current Solutions and Perspectives. IEEE Transactions on Plasma Science, 2018, 46, 239-251.	0.6	10
113	Control of radial propagation and polarity in a plasma jet in surrounding Ar. Physics of Plasmas, 2018, 25, .	0.7	10
114	Tailoring terpenoid plasma polymer properties by controlling the substrate temperature during PECVD. Journal of Applied Polymer Science, 2018, 135, 45771.	1.3	10
115	Facile synthesis of Ag/Zn1-xCuxO nanoparticle compound photocatalyst for high-efficiency photocatalytic degradation: Insights into the synergies and antagonisms between Cu and Ag. Ceramics International, 2021, 47, 48-56.	2.3	10
116	Additive manufacturing enables personalised porous high-density polyethylene surgical implant manufacturing with improved tissue and vascular ingrowth. Applied Materials Today, 2021, 22, 100965.	2.3	10
117	Biowaste valorization by conversion to nanokeratin-urea composite fertilizers for sustainable and controllable nutrient release. Carbon Trends, 2021, 5, 100083.	1.4	10
118	Electrical conduction in plasma polymerized thin films of γâ€ŧerpinene. Journal of Applied Polymer Science, 2015, 132, .	1.3	8
119	Electrically Insulating Plasma Polymer/ZnO Composite Films. Materials, 2019, 12, 3099.	1.3	8
120	Fabrication and Characterization of RF Plasma Polymerized Thin Films from 3,7-Dimethyl-1,6-octadien-3-ol for Electronic and Biomaterial Applications. Advanced Materials Research, 2010, 123-125, 323-326.	0.3	7
121	RF Plasma Polymerization of Orange Oil and Characterization of the Polymer Thin Films. Journal of Polymers and the Environment, 2018, 26, 2925-2933.	2.4	7
122	Radial constraints and the polarity mechanism of plasma plume. Physics of Plasmas, 2018, 25, .	0.7	7
123	Miniaturized rotating magnetic field–driven plasma system: proof-of-concept experiments. Plasma Sources Science and Technology, 2021, 30, 065003.	1.3	7
124	A Study of a Retention of Antimicrobial Activity by Plasma Polymerized Terpinen-4-ol Thin Films. Materials Science Forum, 2010, 654-656, 2261-2264.	0.3	6
125	Plasma Polymerization: Electronics and Biomedical Application. , 2017, , 593-657.		6
126	Lowâ€Temperature Synthesis of Graphene by ICPâ€Assisted Amorphous Carbon Sputtering. ChemistrySelect, 2018, 3, 8779-8785.	0.7	6

#	Article	IF	CITATIONS
127	Effect of multi-modal environmental stress on dose-dependent cytotoxicity of nanodiamonds in Saccharomyces cerevisiae cells. Sustainable Materials and Technologies, 2019, 22, e00123.	1.7	6
128	In-Situ Surface Modification of Terpinen-4-ol Plasma Polymers for Increased Antibacterial Activity. Materials, 2020, 13, 586.	1.3	6
129	Plasma meets metamatertials: three ways to advance space micropropulsion systems. Advances in Physics: X, 2021, 6, 1834452.	1.5	6
130	Controlled Deposition of Nanostructured Hierarchical TiO2 Thin Films by Low Pressure Supersonic Plasma Jets. Nanomaterials, 2022, 12, 533.	1.9	6
131	Hierarchical Carbon Nanocone-Silica Metamaterials: Implications for White Light Photoluminescence. ACS Applied Nano Materials, 2022, 5, 4787-4800.	2.4	6
132	Surface modification of biomaterials for biofilm control. , 2015, , 103-132.		5
133	Ion irradiation as a tool for modifying the surface and optical properties of plasma polymerised thin films. Nuclear Instruments & Methods in Physics Research B, 2015, 360, 54-59.	0.6	4
134	Organic bioelectronic plasma polymerised polyterpenol thin films: preservation of properties relevant to biomedical and organic electronic applications following exposure to sterilising doses of gamma radiation. Journal of Materials Science: Materials in Electronics, 2018, 29, 801-812.	1.1	4
135	Optimization, Test and Diagnostics of Miniaturized Hall Thrusters. Journal of Visualized Experiments, 2019, , .	0.2	4
136	Comparative Study of Natural Terpenoid Precursors in Reactive Plasmas for Thin Film Deposition. Molecules, 2021, 26, 4762.	1.7	4
137	Decontamination-Induced Modification of Bioactivity in Essential Oil-Based Plasma Polymer Coatings. Molecules, 2021, 26, 7133.	1.7	4
138	Effect of Iodine Doping on Surface and Optical Properties of Polyterpenol Thin Films. Materials Science Forum, 0, 654-656, 1764-1767.	0.3	3
139	Translocation of silica nanospheres through giant unilamellar vesicles (GUVs) induced by a high frequency electromagnetic field. RSC Advances, 2021, 11, 31408-31420.	1.7	3
140	Complex permittivity measurements of RF plasma polymerized polyterpenol organic thin films employing split post dielectric resonator. Journal of Polymer Engineering, 2011, 31, .	0.6	2
141	Introduction to biomaterials and implantable device design. , 2014, , 1-31.		2
142	Formation of nanocrystalline and amorphous carbon by high fluence swift heavy ion irradiation of a plasma polymerized polyterpenol thin film precursor. Journal of Applied Polymer Science, 2018, 135, 46498.	1.3	2
143	Effect of organic gate dielectric material properties on interfacial charging and discharging of pentacene MIM device. Physics Procedia, 2011, 14, 62-66.	1.2	1
144	Highly tunable electronic properties in plasma-synthesized B-doped microcrystalline-to-amorphous silicon nanostructure for solar cell applications. Journal of Applied Physics, 2017, 122, 133112.	1.1	1

#	Article	IF	CITATIONS
145	Inelastic deformation of plasma polymerised thin films facilitated by transient dense plasma focus irradiation. Materials Research Express, 2017, 4, 096407.	0.8	1
146	Materials for Space Technology: Advanced Materials for Nextâ€Generation Spacecraft (Adv. Mater.) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 5
147	Chemo-Radiative Stress of Plasma as a Modulator of Charge-Dependent Nanodiamond Cytotoxicity. ACS Applied Bio Materials, 2020, 3, 7202-7210.	2.3	1
148	Cytotoxic Effects and Biocompatibility of Antimicrobial Materials. , 2015, , 113-147.		1
149	Hydrophilicity and Hydrophobicity Control of Plasmaâ€Treated Surfaces via Fractal Parameters (Adv.) Tj ETQq1 1	0.784314	rgBT /Overle
150	Metamaterials: Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Selfâ€Assembly at the Nanoscale (Adv. Mater. 2/2018). Advanced Materials, 2018, 30, 1870009.	11.1	0
151	3Dâ€Printed Multilayered Reinforced Material System for Gas Supply in CubeSats and Small Satellites. Advanced Engineering Materials, 2019, 21, 1970036.	1.6	Ο
152	Advanced Concepts and Architectures for Plasma-Enabled Material Processing. Synthesis Lectures on Emerging Engineering Technologies, 2020, 5, 1-90.	0.2	0
153	Where Physics Meets (BIO-)Chemistry: Reactive Plasmas for Sustainable Processing and Activation. , 2020		0