Takanori Kitamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8154128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 2011, 475, 222-225.	13.7	2,286
2	Immune cell promotion of metastasis. Nature Reviews Immunology, 2015, 15, 73-86.	10.6	967
3	CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. Journal of Experimental Medicine, 2015, 212, 1043-1059.	4.2	520
4	SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genetics, 2007, 39, 467-475.	9.4	258
5	Suppression of Colon Cancer Metastasis by Aes through Inhibition of Notch Signaling. Cancer Cell, 2011, 19, 125-137.	7.7	183
6	Targeting Tumor-Associated Macrophages as a Potential Strategy to Enhance the Response to Immune Checkpoint Inhibitors. Frontiers in Cell and Developmental Biology, 2018, 6, 38.	1.8	171
7	Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13063-13068.	3.3	154
8	Stromal Fibroblasts Activated by Tumor Cells Promote Angiogenesis in Mouse Gastric Cancer. Journal of Biological Chemistry, 2008, 283, 19864-19871.	1.6	149
9	Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors. Frontiers in Immunology, 2018, 9, 2629.	2.2	136
10	Macrophage targeting: opening new possibilities for cancer immunotherapy. Immunology, 2018, 155, 285-293.	2.0	123
11	Monocytes Differentiate to Immune Suppressive Precursors of Metastasis-Associated Macrophages in Mouse Models of Metastatic Breast Cancer. Frontiers in Immunology, 2017, 8, 2004.	2.2	122
12	Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats. Diabetologia, 2003, 46, 1698-1705.	2.9	98
13	Proinsulin C-peptide rapidly stimulates mitogen-activated protein kinases in Swiss 3T3 fibroblasts: requirement of protein kinase C, phosphoinositide 3-kinase and pertussis toxin-sensitive G-protein. Biochemical Journal, 2001, 355, 123-129.	1.7	81
14	A Functional Chemiluminescent Probe for in Vivo Imaging of Natural Killer Cell Activity Against Tumours. Angewandte Chemie - International Edition, 2021, 60, 5699-5703.	7.2	81
15	Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells. Biochemical Journal, 2002, 366, 737-744.	1.7	63
16	Proinsulin C-peptide rapidly stimulates mitogen-activated protein kinases in Swiss 3T3 fibroblasts: requirement of protein kinase C, phosphoinositide 3-kinase and pertussis toxin-sensitive G-protein. Biochemical Journal, 2001, 355, 123.	1.7	61
17	Reduced Level of Smoothened Suppresses Intestinal Tumorigenesis by Down-Regulation of Wnt Signaling. Gastroenterology, 2009, 137, 629-638.	0.6	59
18	Induction and Down-regulation of Sox17 and Its Possible Roles During the Course of Gastrointestinal Tumorigenesis. Gastroenterology, 2009, 137, 1346-1357.	0.6	59

Takanori Kitamura

#	Article	IF	CITATIONS
19	<i>In vivo</i> subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. Intravital, 2015, 4, 1-11.	2.0	54
20	Therapeutic potential of chemokine signal inhibition for metastatic breast cancer. Pharmacological Research, 2015, 100, 266-270.	3.1	49
21	A Fluorescent Activatable ANDâ€Gate Chemokine CCL2 Enables In Vivo Detection of Metastasisâ€Associated Macrophages. Angewandte Chemie - International Edition, 2019, 58, 16894-16898.	7.2	41
22	Keeping Out the Bad Guys: Gateway to Cellular Target Therapy. Cancer Research, 2007, 67, 10099-10102.	0.4	38
23	Hepatocyte growth factor activates endothelial nitric oxide synthase by Ca2+- and phosphoinositide 3-kinase/Akt-dependent phosphorylation in aortic endothelial cells. Biochemical Journal, 2003, 374, 63-69.	1.7	35
24	Matrix metalloproteinase 7 is required for tumor formation, but dispensable for invasion and fibrosis in SMAD4-deficient intestinal adenocarcinomas. Laboratory Investigation, 2009, 89, 98-105.	1.7	32
25	Molecular mechanisms of liver metastasis. International Journal of Clinical Oncology, 2011, 16, 464-472.	1.0	27
26	Optical Windows for Imaging the Metastatic Tumour Microenvironment in vivo. Trends in Biotechnology, 2017, 35, 5-8.	4.9	26
27	A fluorogenic probe for granzyme B enables in-biopsy evaluation and screening of response to anticancer immunotherapies. Nature Communications, 2022, 13, 2366.	5.8	26
28	Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window. Journal of Visualized Experiments, 2016, , .	0.2	22
29	Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β. , 2021, 9, e001740.		18
30	Mammary Tumor Cells with High Metastatic Potential Are Hypersensitive to Macrophage-Derived HGF. Cancer Immunology Research, 2019, 7, 2052-2064.	1.6	15
31	Hepatocyte growth factor/scatter factor suppresses TNF-α-induced E-selectin expression in human umbilical vein endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1644, 9-15.	1.9	13
32	A Fluorescent Activatable ANDâ€Gate Chemokine CCL2 Enables In Vivo Detection of Metastasisâ€Associated Macrophages. Angewandte Chemie, 2019, 131, 17050-17054.	1.6	13
33	Molecular Cloning of Canine Membrane-Anchored Inhibitor of Matrix Metalloproteinase, RECK. Journal of Veterinary Medical Science, 2005, 67, 385-391.	0.3	12
34	A Functional Chemiluminescent Probe for in Vivo Imaging of Natural Killer Cell Activity Against Tumours. Angewandte Chemie, 2021, 133, 5763-5767.	1.6	8
35	Proinsulin C peptide obviates sympathetically mediated suppression of splenic lymphocyte activity in rats. Diabetologia, 2000, 43, 1512-1517.	2.9	7
36	Real Time Detection of In Vitro Tumor Cell Apoptosis Induced by CD8 ⁺ T Cells to Study Immune Suppressive Functions of Tumor-infiltrating Myeloid Cells. Journal of Visualized Experiments, 2019, , .	0.2	7

Takanori Kitamura

#	Article	IF	CITATIONS
37	Generation of mouse bone marrow-derived macrophages using tumor coculture assays to mimic the tumor microenvironment. Methods in Enzymology, 2020, 632, 91-111.	0.4	4
38	A negative regulator of metastasis promoting macrophages. Journal of Emergency and Critical Care Medicine, 2018, 2, 56-56.	0.7	2
39	CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. Journal of Cell Biology, 2015, 209, 2096OIA117.	2.3	1
40	Abstract B62: In vivo subcellular resolution optical imaging in the lung reveals early metastastic proliferation, motility and tumor cell - macrophage interaction. , 2016, , .		0
41	Abstract PR17: CCL2-induced chemokine cascade promotes breast cancer metastasis via retention of metastasis-associated macrophages. , 2016, , .		0
42	Abstract 2808: Investigating the role of macrophage-mediated suppression in the efficacy of NK cell immunotherapy for metastatic outgrowth of breast cancer cells. , 2019, , .		0