
MercÃ" Granados

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8154102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Speciation of the Ionizable Antibiotic Sulfamethazine on Black Carbon (Biochar). Environmental Science & Technology, 2011, 45, 10020-10027.	4.6	407
2	Analytical procedures for the determination of organotin compounds in sediment and biota: a critical review. Journal of Chromatography A, 1997, 788, 1-49.	1.8	147
3	Predicting Contaminant Adsorption in Black Carbon (Biochar)-Amended Soil for the Veterinary Antimicrobial Sulfamethazine. Environmental Science & Technology, 2013, 47, 6197-6205.	4.6	104
4	High-throughput multiclass method for antibiotic residue analysis by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2008, 1213, 189-199.	1.8	98
5	Polyphenols and their potential role to fight viral diseases: An overview. Science of the Total Environment, 2021, 801, 149719.	3.9	92
6	Analysis of macrolide antibiotics in river water by solid-phase extraction and liquid chromatography–mass spectrometry. Journal of Chromatography A, 2006, 1114, 73-81.	1.8	83
7	Analysis of trace levels of sulfonamides in surface water and soil samples by liquid chromatography-fluorescence. Journal of Chromatography A, 2007, 1172, 186-193.	1.8	73
8	Antibiotics in food: Legislation and validation of analytical methodologies. Analytical and Bioanalytical Chemistry, 2009, 395, 877-891.	1.9	72
9	Determination of quinolones in water samples by solid-phase extraction and liquid chromatography with fluorimetric detection. Journal of Chromatography A, 2004, 1041, 27-33.	1.8	67
10	Targeted analysis with benchtop quadrupole–orbitrap hybrid mass spectrometer: Application to determination of synthetic hormones in animal urine. Analytica Chimica Acta, 2013, 780, 65-73.	2.6	61
11	Estimation of figures of merit using univariate statistics for quantitative second-order multivariate curve resolution. Analytica Chimica Acta, 2001, 432, 241-251.	2.6	57
12	Restricted access materials for sample clean-up in the analysis of trace levels of tetracyclines by liquid chromatography. Journal of Chromatography A, 2008, 1181, 1-8.	1.8	55
13	Sorption of tetracyclines onto natural soils: data analysis and prediction. Environmental Science and Pollution Research, 2012, 19, 3087-3095.	2.7	52
14	Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery. Antioxidants, 2020, 9, 1074.	2.2	52
15	Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods, 2022, 11, 362.	1.9	52
16	Determination of triphenyltin in sea-water by excitation–emission matrix fluorescence and multivariate curve resolution. Analytica Chimica Acta, 2000, 409, 237-245.	2.6	50
17	Analysis of antimicrobial agents in animal feed. TrAC - Trends in Analytical Chemistry, 2011, 30, 1042-1064.	5.8	50
18	Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods. Antioxidants, 2019, 8, 523.	2.2	49

MercÃ" Granados

#	Article	IF	CITATIONS
19	Detection techniques in speciation analysis of organotin compounds by liquid chromatography. TrAC - Trends in Analytical Chemistry, 2003, 22, 26-33.	5.8	48
20	Fruit and vegetable processing wastes as natural sources of antioxidant-rich extracts: Evaluation of advanced extraction technologies by surface response methodology. Journal of Environmental Chemical Engineering, 2021, 9, 105330.	3.3	41
21	Simultaneous determination of Cd(ii), Cu(ii) and Pb(ii) in surface waters by solid phase extraction and flow injection analysis with spectrophotometric detection. Analyst, The, 2001, 126, 1149-1153.	1.7	40
22	Determination of flumequine and oxolinic acid in sediments and soils by microwave-assisted extraction and liquid chromatography-fluorescence. Analytica Chimica Acta, 2006, 567, 229-235.	2.6	40
23	Assessment of Different Fluorimetric Reactions for Cyanide Determination in Flow Systems. Analyst, The, 1997, 122, 553-558.	1.7	39
24	Determination of ivermectin and transformation products in environmental waters using hollow fibre-supported liquid membrane extraction and liquid chromatography–mass spectrometry/mass spectrometry. Journal of Chromatography A, 2008, 1187, 275-280.	1.8	37
25	Determination of metal-cyanide complexes by ion-interaction chromatography with fluorimetric detection. Analytica Chimica Acta, 2000, 403, 197-204.	2.6	35
26	New method for the analysis of lipophilic marine biotoxins in fresh and canned bivalves by liquid chromatography coupled to high resolution mass spectrometry: A quick, easy, cheap, efficient, rugged, safe approach. Journal of Chromatography A, 2015, 1386, 62-73.	1.8	34
27	Liquid-supported membranes in chromium(VI) optical sensing: transport modelling. Analytica Chimica Acta, 2002, 464, 197-208.	2.6	32
28	Validation of a method for the analysis of quinolones residues in bovine muscle by liquid chromatography with electrospray ionisation tandem mass spectrometry detection. Talanta, 2007, 72, 269-276.	2.9	32
29	Recovery of Rare Earth Elements from acidic mine waters by integration of a selective chelating ion-exchanger and a solvent impregnated resin. Journal of Environmental Chemical Engineering, 2021, 9, 105906.	3.3	31
30	Recovery of rare earth elements from acidic mine waters: An unknown secondary resource. Science of the Total Environment, 2022, 810, 152258.	3.9	31
31	Determination of triorganotin species in water samples by liquid chromatography–electrospray-mass spectrometry. Journal of Chromatography A, 2002, 946, 1-8.	1.8	30
32	Development and validation of an enzyme linked immunosorbent assay for fluoroquinolones in animal feeds. Food Control, 2015, 57, 195-201.	2.8	29
33	Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing. Journal of Environmental Management, 2022, 307, 114555.	3.8	29
34	Solid-phase extraction and spectrofluorimetric determination of triphenyltin in environmental samples. Analytica Chimica Acta, 1993, 283, 272-279.	2.6	27
35	Analysis of non-steroidal anti-inflammatory drugs in milk using QuEChERS and liquid chromatography coupled to mass spectrometry: triple quadrupole versus Q-Orbitrap mass analyzers. Analytical and Bioanalytical Chemistry, 2016, 408, 5769-5778.	1.9	27
36	Determination of avermectins: A QuEChERS approach to the analysis of food samples. Food Chemistry, 2015, 181, 57-63.	4.2	26

MercÃ^{..} Granados

#	Article	IF	CITATIONS
37	Liquid Chromatographic determination of triphenyltin and tributyltin using fluorimetric detection. Analytica Chimica Acta, 1995, 314, 175-182.	2.6	24
38	Determination of triphenyltin in sea water samples by liquid chromatography with fluorimetric detection. Analytica Chimica Acta, 1995, 302, 185-191.	2.6	23
39	Determination of Tetracyclines in Water Samples Using Liquid Chromatography with Fluorimetric Detection. Chromatographia, 2005, 61, 471-477.	0.7	22
40	Sorption of Enrofloxacin and Ciprofloxacin in Agricultural Soils: Effect of Organic Matter. Adsorption Science and Technology, 2014, 32, 153-163.	1.5	19
41	Monitoring UF membrane performance treating surface-groundwater blends: Limitations of FEEM-PARAFAC on the assessment of the organic matter role. Chemical Engineering Journal, 2017, 317, 961-971.	6.6	19
42	Determination of tributyltin and triphenyltin in sediments by liquid chromatography with fluorimetric detection. Journal of Chromatography A, 1999, 846, 413-423.	1.8	18
43	Studies on the extraction of sulfonamides from agricultural soils. Analytical and Bioanalytical Chemistry, 2010, 397, 807-814.	1.9	18
44	Speciation of organotin compounds in shellfish by liquid chromatography — fluorimetric detection. Analytica Chimica Acta, 2001, 443, 183-190.	2.6	17
45	Recovery of Added-Value Compounds from Orange and Spinach Processing Residues: Green Extraction of Phenolic Compounds and Evaluation of Antioxidant Activity. Antioxidants, 2021, 10, 1800.	2.2	17
46	Use of gel permeation chromatography for clean-up in the analysis of coccidiostats in eggs by liquid chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 4777-4786.	1.9	16
47	Liquid chromatography with fluorimetric detection of triorganotin compounds in marine biological materials. Journal of Chromatography A, 1998, 809, 39-46.	1.8	15
48	Determination of butyltin and phenyltin species by reversed-phase liquid chromatography and fluorimetric detection. Journal of Chromatography A, 2000, 878, 69-76.	1.8	15
49	Solid-phase extraction-liquid chromatography-fluorimetry for organotin speciation in natural waters. Chromatographia, 2002, 55, 19-24.	0.7	15
50	High-throughput method for the determination of nitroimidazoles in muscle samples by liquid chromatography coupled to mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 4411-4421.	1.9	15
51	A green approach to phenolic compounds recovery from olive mill and winery wastes. Science of the Total Environment, 2022, 835, 155552.	3.9	14
52	Extraction and analysis of avermectines in agricultural soils by microwave assisted extraction and ultra high performance liquid chromatography coupled to tandem mass spectrometry. Analytica Chimica Acta, 2011, 697, 32-37.	2.6	10
53	Integration of Nanofiltration and Reverse Osmosis Technologies in Polyphenols Recovery Schemes from Winery and Olive Mill Wastes by Aqueous-Based Processing. Membranes, 2022, 12, 339.	1.4	10
54	Analytical Methods for Exploring Nutraceuticals Based on Phenolic Acids and Polyphenols. Applied Sciences (Switzerland), 2021, 11, 8276.	1.3	9

MercÃ^{..} Granados

#	Article	IF	CITATIONS
55	Labelling of organotin compounds for fluorimetric detection. Talanta, 1995, 42, 1165-1170.	2.9	8
56	Photodissociation/gas-diffusion separation and fluorimetric detection for the analysis of total and labile cyanide in a flow system. Fresenius' Journal of Analytical Chemistry, 1999, 365, 516-520.	1.5	7
57	Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes. Membranes, 2022, 12, 669.	1.4	6
58	Separation of butyltin and phenyltin species by ion-exchange chromatography with complexing mobile phases. Chromatographia, 2000, 51, 443-449.	0.7	5
59	Analysis of corticosteroids in samples of animal origin using QuEChERS and ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 449-457.	1.9	4
60	Copper interference on the spectrophotometric determination of iron and their simultaneous determination using bathophenantroline-disulfonic acid disodium salt. Fresenius' Journal of Analytical Chemistry, 1998, 360, 263-265.	1.5	3
61	Metal cyanide control in hydrometallurgical processing of gold ores by multivariate calibration procedures. Analytica Chimica Acta, 1997, 353, 123-131.	2.6	2
62	Fluoroquinolones in soils: Assessment of extraction methods. International Journal of Environmental Analytical Chemistry, 2011, 91, 1353-1366.	1.8	2
63	Total Polyphenol Content in Food Samples and Nutraceuticals: Antioxidant Indices versus High Performance Liquid Chromatography. Antioxidants, 2022, 11, 324.	2.2	2
64	Characterization of Polyphenolic Composition of Extracts from Winery Wastes by HPLC-UV-MS/MS. , 0, , .		1
65	Assessment of the Polyphenolic Composition of Orange Waste from Agri-Food Industries by HPLC-UV-MS/MS. , 2021, 6, .		0