Rahul Shrivastava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8153835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decoding Acinetobacter baumannii biofilm dynamics and associated protein markers: proteomic and bioinformatics approach. Archives of Microbiology, 2022, 204, 200.	2.2	3
2	Knockdown of the Type-II Fatty acid synthase gene hadC in mycobacterium fortuitum does not affect its growth, biofilm formation, and survival under stress. International Journal of Mycobacteriology, 2022, 11, 159.	0.6	5
3	Evaluation of the Ability of Endophytic Fungi from <i>Cupressus torulosa</i> to Decolorize Synthetic Textile Dyes. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	2.0	7
4	Response surface modeling integrated microtiter plate assay for <i>Mycobacterium fortuitum</i> biofilm quantification. Biofouling, 2021, 37, 830-843.	2.2	5
5	Identification and in silico characterization of transcription termination/antitermination protein NusA of Mycobacterium fortuitum. Biologia (Poland), 2021, 76, 3855.	1.5	0
6	In Vitro Efficacy of Lipid Conjugated Peptidomimetics Against Mycobacterium smegmatis. International Journal of Peptide Research and Therapeutics, 2020, 26, 531-537.	1.9	2
7	Random insertion transposon mutagenesis of Mycobacterium fortuitum identified mutant defective in biofilm formation. Biochemical and Biophysical Research Communications, 2020, 521, 991-996.	2.1	8
8	Bioremediation Approaches for Degradation and Detoxification of Polycyclic Aromatic Hydrocarbons. , 2019, , 99-119.		8
9	Cationic antimicrobial peptide and its poly-N-substituted glycine congener: Antibacterial and antibiofilm potential against A.Âbaumannii. Biochemical and Biophysical Research Communications, 2019, 518, 472-478.	2.1	21
10	Ribosomal maturation factor (RimP) is essential for survival of nontuberculous mycobacteria Mycobacterium fortuitum under in vitro acidic stress conditions. 3 Biotech, 2019, 9, 127.	2.2	15
11	Bioinformatics Database Resources. , 2019, , 84-119.		0
12	In vivo infection and In vitro stress survival studies of acid susceptible mutant of Mycobacterium fortuitum. International Journal of Mycobacteriology, 2019, 8, 390.	0.6	2
13	Molecular characterization of diarrheagenic <i>Escherichia coli</i> pathotypes: Association of virulent genes, serogroups, and antibiotic resistance among moderateâ€toâ€severe diarrhea patients. Journal of Clinical Laboratory Analysis, 2018, 32, e22388.	2.1	20
14	Engineering Yeast as Cellular Factory. , 2017, , 173-208.		1
15	Nanomaterial in Diverse Biological Applications. , 2017, , 293-317.		0
16	Factories for Antibody Generation. , 2017, , 351-370.		0
17	Bioinformatics Database Resources. Advances in Library and Information Science, 2017, , 45-90.	0.2	3
18	Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech, 2016, 6, 15.	2.2	153

RAHUL SHRIVASTAVA

#	Article	IF	CITATIONS
19	Mycobacterium aurum is Unable to Survive Mycobacterium tuberculosis Latency Associated Stress Conditions: Implications as Non-suitable Model Organism. Indian Journal of Microbiology, 2016, 56, 198-204.	2.7	12
20	A lacZ Reporter-Based Strategy for Rapid Expression Analysis and Target Validation of Mycobacterium tuberculosis Latent Infection Genes. Current Microbiology, 2016, 72, 213-219.	2.2	6
21	Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3 Biotech, 2015, 5, 853-866.	2.2	29
22	Promoter trap strategy for gene expression analysis under stress conditions of M. tuberculosis latency. BMC Infectious Diseases, 2014, 14, O13.	2.9	0
23	Can Mycobacterial Genomics Generate Novel Targets as Speed-Breakers Against the Race for Drug Resistance. Current Pharmaceutical Design, 2013, 20, 4319-4345.	1.9	2
24	In vivo activity of thiophene-containing trisubstituted methanes against acute and persistent infection of non-tubercular Mycobacterium fortuitum in a murine infection model. Journal of Antimicrobial Chemotherapy, 2012, 67, 1188-1197.	3.0	41
25	A transposon insertion mutant of Mycobacterium fortuitum attenuated in virulence and persistence in a murine infection model that is complemented by Rv3291c of Mycobacterium tuberculosis. Microbial Pathogenesis, 2008, 45, 370-376.	2.9	19
26	<i>Mycobacterium fortuitum fabG4</i> knockdown studies: Implication as pellicle and biofilm specific drug target. Journal of Basic Microbiology, 0, , .	3.3	4