
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8153604/publications.pdf Version: 2024-02-01

FDAN RABANI

#	Article	IF	CITATIONS
1	Drying-mediated self-assembly of nanoparticles. Nature, 2003, 426, 271-274.	13.7	866
2	Heavily Doped Semiconductor Nanocrystal Quantum Dots. Science, 2011, 332, 77-81.	6.0	657
3	Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nature Materials, 2005, 4, 855-863.	13.3	526
4	Real-Time Path Integral Approach to Nonequilibrium Many-Body Quantum Systems. Physical Review Letters, 2008, 100, 176403.	2.9	288
5	Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium. Journal of Chemical Physics, 1999, 110, 5355-5369.	1.2	235
6	Single-particle mapping of nonequilibrium nanocrystal transformations. Science, 2016, 354, 874-877.	6.0	204
7	Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods. Nature Communications, 2016, 7, 10413.	5.8	184
8	Structure and electrostatic properties of passivated CdSe nanocrystals. Journal of Chemical Physics, 2001, 115, 1493-1497.	1.2	154
9	Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy. ACS Nano, 2012, 6, 2078-2085.	7.3	152
10	Electrostatic Force Microscopy Study of Single Auâ^'CdSe Hybrid Nanodumbbells: Evidence for Light-Induced Charge Separation. Nano Letters, 2009, 9, 2031-2039.	4.5	132
11	An interatomic pair potential for cadmium selenide. Journal of Chemical Physics, 2002, 116, 258.	1.2	126
12	Calculating the hopping rate for self-diffusion on rough potential energy surfaces: Cage correlations. Journal of Chemical Physics, 1997, 107, 6867-6876.	1.2	118
13	Memory effects in nonequilibrium quantum impurity models. Physical Review B, 2011, 84, .	1.1	117
14	Breaking the Theoretical Scaling Limit for Predicting Quasiparticle Energies: The Stochastic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>G</mml:mi><mml:mi>W</mml:mi>Approach. Physical Review Letters, 2014, 113, 076402.</mml:math 	2.9	113
15	Numerically exact long-time magnetization dynamics at the nonequilibrium Kondo crossover of the Anderson impurity model. Physical Review B, 2013, 87, .	1.1	111
16	Can imaginary instantaneous normal mode frequencies predict barriers to self-diffusion?. Journal of Chemical Physics, 1997, 107, 4618-4627.	1.2	99
17	Mechanisms of the Wurtzite to Rocksalt Transformation in CdSe Nanocrystals. Physical Review Letters, 2006, 96, 255701.	2.9	98
18	Distribution of Multiexciton Generation Rates in CdSe and InAs Nanocrystals. Nano Letters, 2008, 8, 4488-4492.	4.5	92

#	Article	IF	CITATIONS
19	Near-field manipulation of spectroscopic selection rules on the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8016-8019.	3.3	92
20	The calculation of transport properties in quantum liquids using the maximum entropy numerical analytic continuation method: Application to liquid para-hydrogen. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1129-1133.	3.3	89
21	The Electronic Structure of CdSe/CdS Core/Shell Seeded Nanorods: Type-I or Quasi-Type-II?. Nano Letters, 2013, 13, 5880-5885.	4.5	89
22	Bistability in a nonequilibrium quantum system with electron-phonon interactions. Physical Review B, 2013, 88, .	1.1	88
23	Vibronic spectra in condensed matter: A comparison of exact quantum mechanical and various semiclassical treatments for harmonic baths. Journal of Chemical Physics, 1998, 108, 1407-1422.	1.2	86
24	Nonequilibrium quantum systems with electron-phonon interactions: Transient dynamics and approach to steady state. Physical Review B, 2014, 89, .	1.1	86
25	Quantum fluctuations can promote or inhibit glassÂformation. Nature Physics, 2011, 7, 134-137.	6.5	84
26	Theory of multiexciton generation in semiconductor nanocrystals. Chemical Physics Letters, 2010, 496, 227-235.	1.2	82
27	Self-Averaging Stochastic Kohn-Sham Density-Functional Theory. Physical Review Letters, 2013, 111, 106402.	2.9	81
28	Direct Observation of Stretched-Exponential Relaxation in Low-Temperature Lennard-Jones Systems Using the Cage Correlation Function. Physical Review Letters, 1999, 82, 3649-3652.	2.9	73
29	On the Adequacy of Mixed Quantum-Classical Dynamics in Condensed Phase Systems. Journal of Physical Chemistry B, 1999, 103, 10978-10991.	1.2	72
30	Quantum mechanical canonical rate theory: A new approach based on the reactive flux and numerical analytic continuation methods. Journal of Chemical Physics, 2000, 112, 2605-2614.	1.2	72
31	Theory of resonance energy transfer involving nanocrystals: The role of high multipoles. Journal of Chemical Physics, 2008, 128, 184710.	1.2	71
32	Expeditious Stochastic Approach for MP2 Energies in Large Electronic Systems. Journal of Chemical Theory and Computation, 2013, 9, 24-27.	2.3	68
33	Stochastic GW Calculations for Molecules. Journal of Chemical Theory and Computation, 2017, 13, 4997-5003.	2.3	68
34	Nonradiative relaxation processes in condensed phases: Quantum versus classical baths. Journal of Chemical Physics, 1999, 110, 5238-5248.	1.2	64
35	Self-Consistent Mode-Coupling Theory for Self-Diffusion in Quantum Liquids. Physical Review Letters, 2001, 87, 265702.	2.9	61
36	A self-consistent mode-coupling theory for dynamical correlations in quantum liquids: Application to liquidpara-hydrogen. Journal of Chemical Physics, 2002, 116, 6279-6285.	1.2	60

#	Article	IF	CITATIONS
37	Self-Assembly of Nanoparticles into Rings:Â A Lattice-Gas Model. Journal of Physical Chemistry B, 2006, 110, 20965-20972.	1.2	59
38	Giant Light-Emission Enhancement in Lead Halide Perovskites by Surface Oxygen Passivation. Nano Letters, 2018, 18, 6967-6973.	4.5	59
39	Self-Assembly of Nanoparticles in Three-Dimensions: Formation of Stalagmitesâ€. Journal of Physical Chemistry B, 2005, 109, 6741-6747.	1.2	58
40	Colloidal Atomic Layer Deposition with Stationary Reactant Phases Enables Precise Synthesis of "Digital―II–VI Nano-heterostructures with Exquisite Control of Confinement and Strain. Journal of the American Chemical Society, 2019, 141, 13487-13496.	6.6	58
41	Constructing spin interference devices from nanometric rings. Physical Review B, 2007, 76, .	1.1	57
42	Communication: Embedded fragment stochastic density functional theory. Journal of Chemical Physics, 2014, 141, 041102.	1.2	57
43	Long-Range Electronic-to-Vibrational Energy Transfer from Nanocrystals to Their Surrounding Matrix Environment. Physical Review Letters, 2008, 100, 057404.	2.9	54
44	Metastability in Pressure-Induced Structural Transformations of CdSe/ZnS Core/Shell Nanocrystals. Nano Letters, 2013, 13, 1367-1372.	4.5	54
45	Electron–Hole Correlations Govern Auger Recombination in Nanostructures. Nano Letters, 2018, 18, 7889-7895.	4.5	54
46	Solvophobic and Solvophilic Effects on the Potential of Mean Force between Two Nanoparticles in Binary Mixtures. Nano Letters, 2002, 2, 69-72.	4.5	53
47	A self-consistent mode-coupling theory for dynamical correlations in quantum liquids: Rigorous formulation. Journal of Chemical Physics, 2002, 116, 6271-6278.	1.2	52
48	Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. Science, 2021, 373, 448-452.	6.0	52
49	Semiconductor Seeded Nanorods with Graded Composition Exhibiting High Quantum-Yield, High Polarization, and Minimal Blinking. Nano Letters, 2017, 17, 2524-2531.	4.5	51
50	A Parallel Electromagnetic Molecular Logic Gate. Journal of the American Chemical Society, 2005, 127, 1648-1649.	6.6	50
51	Comparison of Dynamical Heterogeneity in Hard-Sphere and Attractive Glass Formersâ€. Journal of Physical Chemistry B, 2005, 109, 14654-14658.	1.2	49
52	Charge Carrier Dynamics in Photocatalytic Hybrid Semiconductor–Metal Nanorods: Crossover from Auger Recombination to Charge Transfer. Nano Letters, 2018, 18, 5211-5216.	4.5	49
53	A fully self-consistent treatment of collective fluctuations in quantum liquids. Journal of Chemical Physics, 2004, 120, 1458-1465.	1.2	47
54	Generalized projected dynamics for non-system observables of non-equilibrium quantum impurity models. New Journal of Physics, 2013, 15, 073018.	1.2	47

#	Article	IF	CITATIONS
55	Time-dependent stochastic Bethe-Salpeter approach. Physical Review B, 2015, 91, .	1.1	47
56	Dynamics and kinetics of molecular high Rydberg states in the presence of an electrical field: An experimental and classical computational study. Journal of Chemical Physics, 1995, 102, 1619-1638.	1.2	46
57	Magnetoresistance of Nanoscale Molecular Devices. Accounts of Chemical Research, 2006, 39, 109-117.	7.6	45
58	Transferable pair potentials for CdS and ZnS crystals. Journal of Chemical Physics, 2012, 136, 234111.	1.2	44
59	Interactions between passivated nanoparticles in solutions: Beyond the continuum model. Journal of Chemical Physics, 2001, 115, 3437-3440.	1.2	42
60	Carbon nanotube closed-ring structures. Physical Review B, 2003, 67, .	1.1	42
61	Expeditious Stochastic Calculation of Random-Phase Approximation Energies for Thousands of Electrons in Three Dimensions. Journal of Physical Chemistry Letters, 2013, 4, 1172-1176.	2.1	42
62	Stochastic density functional theory at finite temperatures. Physical Review B, 2018, 97, .	1.1	42
63	Swift <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>Wbeyond 10,000 electrons using sparse stochastic compression. Physical Review B, 2018, 98, .</mml:mi></mml:mrow></mml:math 	:mi> √/mml:r	nro#2>
64	Sublinear scaling for time-dependent stochastic density functional theory. Journal of Chemical Physics, 2015, 142, 034106.	1.2	41
65	Very Large Electronic Structure Calculations Using an Out-of-Core Filter-Diagonalization Method. Journal of Computational Physics, 2002, 180, 256-269.	1.9	40
66	Can Impact Excitation Explain Efficient Carrier Multiplication in Carbon Nanotube Photodiodes?. Nano Letters, 2010, 10, 3277-3282.	4.5	40
67	Application of a semiclassical model for the second-quantized many-electron Hamiltonian to nonequilibrium quantum transport: The resonant level model. Journal of Chemical Physics, 2011, 134, 164103.	1.2	40
68	Expeditious Stochastic Calculation of Multiexciton Generation Rates in Semiconductor Nanocrystals. Nano Letters, 2012, 12, 2123-2128.	4.5	40
69	Classical Approximation to Nonradiative Electronic Relaxation in Condensed Phase Systems. Journal of Physical Chemistry A, 1999, 103, 9539-9544.	1.1	39
70	Integral Equation Theory for the Interactions between Passivated Nanocrystals in Supercritical Fluids:  Solvophobic and Solvophilic Cases. Journal of Physical Chemistry B, 2002, 106, 6771-6778.	1.2	39
71	Drying-Mediated Hierarchical Self-Assembly of Nanoparticles:  A Dynamical Coarse-Grained Approach. Journal of Physical Chemistry C, 2008, 112, 4498-4506.	1.5	39
72	Dynamics of high molecular Rydberg states in the presence of a weak dc field. Chemical Physics Letters, 1994, 221, 473-481.	1.2	38

#	Article	IF	CITATIONS
73	A comparison of exact quantum mechanical and various semiclassical treatments for the vibronic absorption spectrum: The case of fast vibrational relaxation. Journal of Chemical Physics, 1998, 109, 6376-6381.	1.2	38
74	Molecular hydrodynamic approach to dynamical correlations in quantum liquids. Physical Review E, 2002, 65, 036111.	0.8	38
75	Resilient Pathways to Atomic Attachment of Quantum Dot Dimers and Artificial Solids from Faceted CdSe Quantum Dot Building Blocks. ACS Nano, 2019, 13, 12322-12344.	7.3	36
76	On the Phase Behavior of Binary Mixtures of Nanoparticles. ACS Nano, 2013, 7, 978-986.	7.3	35
77	Unraveling the Impurity Location and Binding in Heavily Doped Semiconductor Nanocrystals: The Case of Cu in InAs Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 13688-13696.	1.5	35
78	Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory. Journal of Physical Chemistry A, 2016, 120, 3071-3078.	1.1	35
79	Determination of the In-Plane Exciton Radius in 2D CdSe Nanoplatelets <i>via</i> Magneto-optical Spectroscopy. ACS Nano, 2019, 13, 8589-8596.	7.3	35
80	Out-of-Equilibrium Self-Assembly of Binary Mixtures of Nanoparticles. Advanced Materials, 2006, 18, 565-571.	11.1	34
81	Theory and simulations of quantum glass forming liquids. Journal of Chemical Physics, 2012, 136, 074511.	1.2	34
82	QUANTUM MODE-COUPLING THEORY: Formulation and Applications to Normal and Supercooled Quantum Liquids. Annual Review of Physical Chemistry, 2005, 56, 157-185.	4.8	33
83	Sub-Ohmic to super-Ohmic crossover behavior in nonequilibrium quantum systems with electron-phonon interactions. Physical Review B, 2015, 92, .	1.1	33
84	A Guided Stochastic Energy-Domain Formulation of the Second Order MÃ,ller–Plesset Perturbation Theory. Journal of Physical Chemistry Letters, 2014, 5, 185-189.	2.1	32
85	Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model. Journal of Chemical Physics, 2015, 143, 234110.	1.2	32
86	Effect of Thermal Fluctuations on the Radiative Rate in Core/Shell Quantum Dots. Nano Letters, 2017, 17, 1629-1636.	4.5	32
87	Long lifetimes of high molecular Rydberg states in crossed magnetic and electric fields: An experimental and classical computational study. Physical Review A, 1995, 51, 3922-3933.	1.0	31
88	Feasible Nanometric Magnetoresistance Devices. Journal of Physical Chemistry B, 2004, 108, 14807-14810.	1.2	30
89	Magnetoresistance of nanoscale molecular devices based on Aharonov–Bohm interferometry. Journal of Physics Condensed Matter, 2008, 20, 383201.	0.7	30
90	Stochastic Formulation of the Resolution of Identity: Application to Second Order MÃller–Plesset Perturbation Theory. Journal of Chemical Theory and Computation, 2017, 13, 4605-4610.	2.3	30

#	Article	IF	CITATIONS
91	Auger Recombination Lifetime Scaling for Type I and Quasi-Type II Core/Shell Quantum Dots. Journal of Physical Chemistry Letters, 2020, 11, 5132-5138.	2.1	30
92	Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices. ACS Nano, 2021, 15, 2251-2262.	7.3	30
93	Dielectric Confinement and Excitonic Effects in Two-Dimensional Nanoplatelets. ACS Nano, 2020, 14, 8257-8265.	7.3	29
94	On the memory kernel and the reduced system propagator. Journal of Chemical Physics, 2018, 149, 104105.	1.2	28
95	Analytic continuation for quantum nonadiabatic rate constants. Journal of Chemical Physics, 2003, 118, 457-460.	1.2	27
96	Temperature dependence of light scattering from neat benzene with femtosecond pulses: are we seeing molecules librate?. The Journal of Physical Chemistry, 1992, 96, 10842-10848.	2.9	26
97	Calculating the hopping rate for diffusion in molecular liquids: CS2. Journal of Chemical Physics, 1999, 110, 3444-3452.	1.2	26
98	A Short-Time Quantum Mechanical Expansion Approach to Vibrational Relaxationâ€. Journal of Physical Chemistry B, 2001, 105, 6550-6555.	1.2	26
99	Collective and single-particle dynamics in liquid ortho -deuterium: A quantum mode-coupling approach. Europhysics Letters, 2002, 60, 656-662.	0.7	25
100	Inelastic Effects in Aharonov-Bohm Molecular Interferometers. Physical Review Letters, 2006, 97, 266803.	2.9	25
101	Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials. Journal of Chemical Physics, 2019, 150, 034106.	1.2	25
102	Area and thickness dependence of Auger recombination in nanoplatelets. Journal of Chemical Physics, 2020, 153, 054104.	1.2	25
103	Spatial Delocalization inpara-H2Clustersâ€. Journal of Physical Chemistry B, 2006, 110, 18893-18897.	1.2	23
104	Stochastic density functional theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1412.	6.2	23
105	Solute–solute potential of mean force in supercritical solvents: A nonlocal integral equation study. Journal of Chemical Physics, 2001, 115, 617-620.	1.2	22
106	Coarse-grained lattice models for drying-mediated self-assembly of nanoparticles. Journal of Materials Chemistry, 2009, 19, 2872.	6.7	22
107	Landauer current and mutual information. Physical Review B, 2015, 91, .	1.1	22
108	Theory of highly efficient multiexciton generation in type-II nanorods. Nature Communications, 2016, 7, 13178.	5.8	22

#	Article	IF	CITATIONS
109	The dynamics of Rydberg states of molecules in the intermediate regime: The role of the vibrations. Journal of Chemical Physics, 1996, 104, 1937-1952.	1.2	21
110	Uncovering the Role of Hole Traps in Promoting Hole Transfer from Multiexcitonic Quantum Dots to Molecular Acceptors. ACS Nano, 2021, 15, 2281-2291.	7.3	21
111	Response to "Comment on a critique of the instantaneous normal mode (INM) approach to diffusion― [J. Chem. Phys. 109, 4693 (1998)]. Journal of Chemical Physics, 1998, 109, 4695-4696.	1.2	20
112	Path-integral diffusion Monte Carlo: Calculation of observables of many-body systems in the ground state. Journal of Chemical Physics, 1999, 110, 6143-6153.	1.2	20
113	Multiexciton Generation in IV–VI Nanocrystals: The Role of Carrier Effective Mass, Band Mixing, and Phonon Emission. Journal of Physical Chemistry Letters, 2013, 4, 317-322.	2.1	20
114	Phonon dynamics in correlated quantum systems driven away from equilibrium. Physical Review B, 2014, 90, .	1.1	20
115	Universal Inverse Scaling of Exciton–Exciton Annihilation Coefficient with Exciton Lifetime. Nano Letters, 2021, 21, 424-429.	4.5	20
116	Lattice Gas Model for the Drying-Mediated Self-Assembly of Nanorods. Journal of Physical Chemistry C, 2010, 114, 11040-11049.	1.5	19
117	Steady state conductance in a double quantum dot array: The nonequilibrium equation-of-motion Green function approach. Journal of Chemical Physics, 2013, 138, 164125.	1.2	19
118	Equilibrium configurations of large nanostructures using the embedded saturated-fragments stochastic density functional theory. Journal of Chemical Physics, 2017, 146, 224111.	1.2	19
119	Linear-Response Time-Dependent Density Functional Theory with Stochastic Range-Separated Hybrids. Journal of Chemical Theory and Computation, 2020, 16, 1064-1072.	2.3	19
120	Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals. Nature Communications, 2021, 12, 1860.	5.8	19
121	Dynamics of Very High Molecular Rydberg States: The Intramolecular Processes. The Journal of Physical Chemistry, 1994, 98, 8834-8843.	2.9	18
122	A Quantitative Model for the Dynamics of High Rydberg States of Molecules: The Iterated Map and its Kinetic Limit. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 310-322.	0.9	18
123	Transport properties of normal liquid helium: Comparison of various methodologies. Journal of Chemical Physics, 2005, 123, 184506.	1.2	18
124	Formation of symmetric and asymmetric metal–semiconductor hybrid nanoparticles. Physica Status Solidi (B): Basic Research, 2006, 243, 3952-3958.	0.7	18
125	Sub-Bandgap Photoinduced Transient Absorption Features in CdSe Nanostructures: The Role of Trapped Holes. Journal of Physical Chemistry C, 2020, 124, 17372-17378.	1.5	18
126	Engineering Exciton Recombination Pathways in Bilayer WSe ₂ for Bright Luminescence. ACS Nano, 2022, 16, 1339-1345.	7.3	18

#	Article	IF	CITATIONS
127	A quasi-classical mapping approach to vibrationally coupled electron transport in molecular junctions. Journal of Chemical Physics, 2014, 140, 104110.	1.2	17
128	Stochastic Resolution of Identity for Real-Time Second-Order Green's Function: Ionization Potential and Quasi-Particle Spectrum. Journal of Chemical Theory and Computation, 2019, 15, 6703-6711.	2.3	17
129	A coarse-grained model for a nanometer-scale molecular pump. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14661-14665.	3.3	16
130	Ultrahigh Hot Carrier Transient Photocurrent in Nanocrystal Arrays by Auger Recombination. Nano Letters, 2019, 19, 4804-4810.	4.5	16
131	Nonmonotonic temperature dependence of the rates of ion-molecule reactions. The Journal of Physical Chemistry, 1991, 95, 10551-10553.	2.9	15
132	Analytic continuation average spectrum method for quantum liquids. Journal of Chemical Physics, 2009, 131, 054502.	1.2	15
133	Quasiparticle spectra from molecules to bulk. Physical Review Materials, 2018, 2, .	0.9	15
134	Simulating Lattice Spin Models on Graphics Processing Units. Journal of Chemical Theory and Computation, 2010, 6, 3293-3301.	2.3	14
135	Communication: Biexciton generation rates in CdSe nanorods are length independent. Journal of Chemical Physics, 2013, 138, 051102.	1.2	14
136	A Cartesian quasi-classical model to nonequilibrium quantum transport: The Anderson impurity model. Journal of Chemical Physics, 2013, 138, 104110.	1.2	14
137	Assemblies of CdS Quantum Particles Studied by the Attenuated Low Energy Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2000, 104, 8631-8634.	1.2	13
138	Coverage-dependent self-organized ordering of Co- and Ti-silicide nanoislands along step-bunch edges of vicinal Si(111). Physical Review B, 2011, 83, .	1.1	13
139	A semiclassical model for the non-equilibrium quantum transport of a many-electron Hamiltonian coupled to phonons. Molecular Physics, 2012, 110, 743-750.	0.8	13
140	Spontaneous Charge Carrier Localization in Extended One-Dimensional Systems. Physical Review Letters, 2016, 116, 186401.	2.9	13
141	Simple eigenvalue-self-consistent ΔÂ ⁻ GW. Journal of Chemical Physics, 2018, 149, 174107.	1.2	13
142	Interplay of Surface and Interior Modes in Exciton–Phonon Coupling at the Nanoscale. Nano Letters, 2021, 21, 8741-8748.	4.5	13
143	Energy window stochastic density functional theory. Journal of Chemical Physics, 2019, 151, 114116.	1.2	12
144	Stochastic embedding DFT: Theory and application to <i>p</i> -nitroaniline in water. Journal of Chemical Physics, 2019, 151, 174115.	1.2	12

#	Article	IF	CITATIONS
145	Simulations of nonradiative processes in semiconductor nanocrystals. Journal of Chemical Physics, 2022, 157, .	1.2	12
146	Magnetoresistance devices based on single-walled carbon nanotubes. Journal of Chemical Physics, 2005, 123, 051103.	1.2	10
147	Symmetry breaking and restoration using the equation-of-motion technique for nonequilibrium quantum impurity models. Journal of Physics Condensed Matter, 2013, 25, 115302.	0.7	10
148	Transition to metallization in warm dense helium-hydrogen mixtures using stochastic density functional theory within the Kubo-Greenwood formalism. Physical Review B, 2019, 100, .	1.1	10
149	Chemical equilibrium in supercritical fluids: Solvent effects on the dimerization equilibrium constant. Journal of Chemical Physics, 2002, 116, 8447.	1.2	9
150	Periodic negative differential conductance in a single metallic nanocage. Physical Review B, 2012, 86, .	1.1	9
151	Stochastic resolution of identity second-order Matsubara Green's function theory. Journal of Chemical Physics, 2019, 151, 044114.	1.2	9
152	Stochastic Vector Techniques in Ground-State Electronic Structure. Annual Review of Physical Chemistry, 2022, 73, 255-272.	4.8	9
153	Classical mapping for Hubbard operators: Application to the double-Anderson model. Journal of Chemical Physics, 2014, 140, 204106.	1.2	8
154	Stochastic density functional theory: Real- and energy-space fragmentation for noise reduction. Journal of Chemical Physics, 2021, 154, 204108.	1.2	8
155	Response theory for nonequilibrium steady states of open quantum systems. Physical Review Research, 2021, 3, .	1.3	8
156	Rabani, Gezelter, and Berne Reply:. Physical Review Letters, 2000, 85, 467-467.	2.9	7
157	Multiexciton Generation in Seeded Nanorods. Journal of Physical Chemistry Letters, 2014, 5, 2580-2585.	2.1	7
158	First-principles spectra of Au nanoparticles: from quantum to classical absorption. Molecular Physics, 2018, 116, 2506-2511.	0.8	7
159	Absence of Coulomb Blockade in the Anderson Impurity Model at the Symmetric Point. Journal of Physical Chemistry C, 2019, 123, 13538-13544.	1.5	7
160	Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots. Journal of Physical Chemistry C, 2022, 126, 7576-7587.	1.5	7
161	Analytic continuation average spectrum method for transport in quantum liquids. Chemical Physics, 2010, 370, 132-136.	0.9	6
162	On the mode-coupling treatment of collective density fluctuations for quantum liquids: Para-hydrogen and normal liquid helium. Journal of Chemical Physics, 2011, 134, 044528.	1.2	6

#	Article	IF	CITATIONS
163	A complete quasiclassical map for the dynamics of interacting fermions. Journal of Chemical Physics, 2019, 150, 234112.	1.2	6
164	Range-separated stochastic resolution of identity: Formulation and application to second-order Green's function theory. Journal of Chemical Physics, 2020, 153, 074113.	1.2	6
165	Efficient Langevin dynamics for "noisy―forces. Journal of Chemical Physics, 2020, 152, 161103.	1.2	6
166	Mode-coupling theory for reaction dynamics in liquids. Journal of Chemical Physics, 2004, 120, 6642-6647.	1.2	5
167	Quantum mode-coupling theory for binary mixtures. Journal of Chemical Physics, 2005, 122, 034502.	1.2	5
168	Dopant levels in large nanocrystals using stochastic optimally tuned range-separated hybrid density functional theory. Physical Review B, 2020, 102, .	1.1	5
169	Nonuniqueness of generalized quantum master equations for a single observable. Journal of Chemical Physics, 2021, 155, 156101.	1.2	5
170	Nonmonotonic band gap evolution in bent phosphorene nanosheets. Physical Review Materials, 2019, 3,	0.9	5
171	Forces from Stochastic Density Functional Theory under Nonorthogonal Atom-Centered Basis Sets. Journal of Chemical Theory and Computation, 2022, 18, 1458-1466.	2.3	5
172	Errors and Error Tolerance in Irreversible Multistep Growth of Nanostructures. Journal of Physical Chemistry C, 2011, 115, 5181-5198.	1.5	4
173	Analytical continuation approaches to electronic transport: The resonant level model. Journal of Chemical Physics, 2012, 137, 214107.	1.2	3
174	Localization dynamics in a centrally coupled system. Physical Review B, 2021, 103, .	1.1	3
175	Tempering stochastic density functional theory. Journal of Chemical Physics, 2021, 155, 204105.	1.2	3
176	Energy Dissipation in Nonlinear Systems Coupled to a Bath:Â On the Use of Perturbative Maps. Journal of Physical Chemistry A, 1998, 102, 9380-9389.	1.1	2
177	Quantum Mode Coupling Theory and Path Integral Monte Carlo. AIP Conference Proceedings, 2003, , .	0.3	2
178	Negative differential spin conductance by population switching. Molecular Physics, 2008, 106, 341-347.	0.8	2
179	Stochastically Realized Observables for Excitonic Molecular Aggregates. Journal of Physical Chemistry A, 2020, 124, 10111-10120.	1.1	2
180	Structural relaxation in quantum supercooled liquids: A mode-coupling approach. Journal of Chemical Physics, 2021, 154, 014502.	1.2	2

#	Article	IF	CITATIONS
181	Long-time memory effects in a localizable central spin problem. New Journal of Physics, 2022, 24, 013025.	1.2	2
182	Tagged particle dynamics in supercooled quantum liquids. Physical Review E, 2022, 105, .	0.8	2
183	Foreword by the Guest Editors: Computational Chemistry of Quantum Mechanical Processes. Israel Journal of Chemistry, 2002, 42, i-i.	1.0	0
184	Guest Editorial: Nanochemistry: Special Issue in Honor of the Wolf Prize Laureates in Chemistry for 2012, Professors A.â€Paul Alivisatos and Charlesâ€M. Lieber. Israel Journal of Chemistry, 2012, 52, 971-971.	1.0	0
185	This special thematic issue of chemical physics â€ [~] Energy and entropy of change: From elementary processes to biology' celebrates the 80th birthday of Prof. Raphael D. Levine, known as Raphy. Chemical Physics, 2018, 514, 1-3.	0.9	0
186	Frequency-dependent specific heat in quantum supercooled liquids: A mode-coupling study. Journal of Chemical Physics, 2021, 154, 164512.	1.2	0