
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8153380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomaterials & amp; scaffolds for tissue engineering. Materials Today, 2011, 14, 88-95.	8.3	2,695
2	The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 2010, 31, 461-466.	5.7	1,635
3	The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 2005, 26, 433-441.	5.7	1,144
4	Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials, 2004, 25, 1077-1086.	5.7	647
5	Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Materials Today, 2015, 18, 313-325.	8.3	629
6	Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 2010, 4, 377-381.	1.1	453
7	The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technology and Health Care, 2006, 15, 3-17.	0.5	286
8	Staphylococcal Osteomyelitis: Disease Progression, Treatment Challenges, and Future Directions. Clinical Microbiology Reviews, 2018, 31, .	5.7	270
9	Crosslinking and Mechanical Properties Significantly Influence Cell Attachment, Proliferation, and Migration Within Collagen Glycosaminoglycan Scaffolds. Tissue Engineering - Part A, 2011, 17, 1201-1208.	1.6	265
10	Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomaterialia, 2019, 89, 47-59.	4.1	245
11	Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 53-62.	1.5	228
12	Cell-scaffold interactions in the bone tissue engineering triad. , 2013, 26, 120-132.		228
13	A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomaterialia, 2014, 10, 1996-2004.	4.1	223
14	The effect of dehydrothermal treatment on the mechanical and structural properties of collagenâ€GAG scaffolds. Journal of Biomedical Materials Research - Part A, 2009, 89A, 363-369.	2.1	220
15	Novel Freeze-Drying Methods to Produce a Range of Collagen–Clycosaminoglycan Scaffolds with Tailored Mean Pore Sizes. Tissue Engineering - Part C: Methods, 2010, 16, 887-894.	1.1	211
16	A Collagen-glycosaminoglycan Scaffold Supports Adult Rat Mesenchymal Stem Cell Differentiation Along Osteogenic and Chondrogenic Routes. Tissue Engineering, 2006, 12, 459-468.	4.9	209
17	The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials, 2010, 31, 9232-9243.	5.7	204
18	Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials, 2015, 52, 358-366.	5.7	200

#	Article	IF	CITATIONS
19	Scaffold Mean Pore Size Influences Mesenchymal Stem Cell Chondrogenic Differentiation and Matrix Deposition. Tissue Engineering - Part A, 2015, 21, 486-497.	1.6	195
20	In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskeletal Disorders, 2011, 12, 31.	0.8	194
21	The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 202-209.	1.5	192
22	Microcrack accumulation at different intervals during fatigue testing of compact bone. Journal of Biomechanics, 2003, 36, 973-980.	0.9	187
23	Development of collagen–hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. Journal of Controlled Release, 2015, 198, 71-79.	4.8	187
24	Life in 3D is never flat: 3D models to optimise drug delivery. Journal of Controlled Release, 2015, 215, 39-54.	4.8	184
25	Innovative Collagen Nanoâ€Hydroxyapatite Scaffolds Offer a Highly Efficient Nonâ€Viral Gene Delivery Platform for Stem Cellâ€Mediated Bone Formation. Advanced Materials, 2012, 24, 749-754.	11.1	182
26	Detecting microdamage in bone. Journal of Anatomy, 2003, 203, 161-172.	0.9	175
27	Influence of Shear Stress in Perfusion Bioreactor Cultures for the Development of Three-Dimensional Bone Tissue Constructs: A Review. Tissue Engineering - Part B: Reviews, 2010, 16, 587-601.	2.5	175
28	Development of a biomimetic collagenâ€hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 584-591.	1.6	173
29	Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomaterialia, 2016, 32, 149-160.	4.1	170
30	The effect of bone microstructure on the initiation and growth of microcracks. Journal of Orthopaedic Research, 2005, 23, 475-480.	1.2	167
31	The Response of Bone Marrow-Derived Mesenchymal Stem Cells to Dynamic Compression Following TGF-β3 Induced Chondrogenic Differentiation. Annals of Biomedical Engineering, 2010, 38, 2896-2909.	1.3	165
32	Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2010, 21, 2293-2298.	1.7	162
33	Primary Ciliaâ€Mediated Mechanotransduction in Human Mesenchymal Stem Cells. Stem Cells, 2012, 30, 2561-2570.	1.4	156
34	Combinatorial Gene Therapy Accelerates Bone Regeneration: Nonâ€Viral Dual Delivery of VEGF and BMP2 in a Collagenâ€Nanohydroxyapatite Scaffold. Advanced Healthcare Materials, 2015, 4, 223-227.	3.9	151
35	The benefits and limitations of animal models for translational research in cartilage repair. Journal of Experimental Orthopaedics, 2016, 3, 1.	0.8	146
36	Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials, 2019, 197, 405-416.	5.7	146

#	Article	IF	CITATIONS
37	Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials, 2014, 35, 6850-6858.	5.7	140
38	Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials, 2016, 87, 69-81.	5.7	135
39	Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 41-52.	1.5	134
40	Chitosan for Gene Delivery and Orthopedic Tissue Engineering Applications. Molecules, 2013, 18, 5611-5647.	1.7	133
41	Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration. Acta Biomaterialia, 2016, 36, 55-62.	4.1	133
42	The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation. Scientific Reports, 2017, 7, 2922.	1.6	131
43	Staphylococcus aureus Protein A Binds to Osteoblasts and Triggers Signals That Weaken Bone in Osteomyelitis. PLoS ONE, 2011, 6, e18748.	1.1	130
44	Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochemical and Biophysical Research Communications, 2008, 369, 1076-1081.	1.0	129
45	The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 512-521.	1.5	127
46	Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomaterialia, 2016, 43, 160-169.	4.1	123
47	Chondrogenic Priming of Human Bone Marrow Stromal Cells: A Better Route to Bone Repair?. Tissue Engineering - Part C: Methods, 2009, 15, 285-295.	1.1	121
48	Staphylococcus aureus Protein A Plays a Critical Role in Mediating Bone Destruction and Bone Loss in Osteomyelitis. PLoS ONE, 2012, 7, e40586.	1.1	118
49	Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nature Reviews Rheumatology, 2022, 18, 67-84.	3.5	117
50	Visualisation of three-dimensional microcracks in compact bone. Journal of Anatomy, 2000, 197, 413-420.	0.9	116
51	Recapitulating endochondral ossification: a promising route to <i>in vivo</i> bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 889-902.	1.3	112
52	The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo. Acta Biomaterialia, 2013, 9, 9303-9316.	4.1	111
53	A collagen–hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Acta Biomaterialia, 2014, 10, 2250-2258.	4.1	108
54	Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen–GAG scaffold. Acta Biomaterialia, 2010, 6, 4305-4313.	4.1	107

#	Article	IF	CITATIONS
55	Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells. Biomaterials, 2015, 73, 296-307.	5.7	106
56	Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials, 2017, 149, 116-127.	5.7	106
57	Gene Delivery of TGF-β3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering. Tissue Engineering - Part A, 2016, 22, 776-787.	1.6	105
58	Long-term controlled delivery of rhBMP-2 from collagen–hydroxyapatite scaffolds for superior bone tissue regeneration. Journal of Controlled Release, 2015, 207, 112-119.	4.8	104
59	An improved labelling technique for monitoring microcrack growth in compact bone. Journal of Biomechanics, 2002, 35, 523-526.	0.9	103
60	Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2008, 377, 458-462.	1.0	103
61	The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technology and Health Care, 2007, 15, 3-17.	0.5	100
62	Osteoblast activity on collagenâ€GAG scaffolds is affected by collagen and GAG concentrations. Journal of Biomedical Materials Research - Part A, 2009, 91A, 92-101.	2.1	95
63	Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds. Journal of Controlled Release, 2015, 210, 84-94.	4.8	95
64	Delivering Nucleicâ€Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. Advanced Materials, 2016, 28, 5447-5469.	11.1	95
65	Advances in Nerve Guidance Conduit-Based Therapeutics for Peripheral Nerve Repair. ACS Biomaterials Science and Engineering, 2017, 3, 1221-1235.	2.6	95
66	Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor. Biotechnology and Bioengineering, 2012, 109, 1583-1594.	1.7	94
67	The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine (PEI) and collagen-based scaffolds. Journal of Controlled Release, 2012, 158, 304-311.	4.8	93
68	Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. Journal of Controlled Release, 2019, 301, 13-27.	4.8	93
69	Advanced Strategies for Articular Cartilage Defect Repair. Materials, 2013, 6, 637-668.	1.3	92
70	The synthesis and characterization of nanophase hydroxyapatite using a novel dispersantâ€aided precipitation method. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1142-1149.	2.1	91
71	Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues. Biomaterials, 2019, 188, 63-73.	5.7	91
72	The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials, 2015, 66, 53-66.	5.7	90

#	Article	IF	CITATIONS
73	Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1097-1109.	1.3	88
74	Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomaterialia, 2014, 10, 4400-4409.	4.1	86
75	A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells. Journal of Controlled Release, 2015, 200, 42-51.	4.8	85
76	Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model. Medical Engineering and Physics, 2009, 31, 420-427.	0.8	84
77	Freezeâ€Ðrying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds. Advanced Healthcare Materials, 2017, 6, 1700598.	3.9	84
78	The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioengineering, 2019, 3, 041501.	3.3	84
79	Bioreactors in tissue engineering. Technology and Health Care, 2011, 19, 55-69.	0.5	82
80	Mechanical Stimulation of Osteoblasts Using Steady and Dynamic Fluid Flow. Tissue Engineering - Part A, 2008, 14, 1213-1223.	1.6	81
81	Electroconductive Biohybrid Collagen/Pristine Graphene Composite Biomaterials with Enhanced Biological Activity. Advanced Materials, 2018, 30, e1706442.	11.1	81
82	Innovations in gene and growth factor delivery systems for diabetic wound healing. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e296-e312.	1.3	81
83	Osteonal crack barriers in ovine compact bone. Journal of Anatomy, 2006, 208, 81-89.	0.9	79
84	Gene expression by marrow stromal cells in a porous collagen–glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. Journal of Materials Science: Materials in Medicine, 2008, 19, 3455-3463.	1.7	79
85	Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds. Journal of Biotechnology, 2008, 133, 490-496.	1.9	77
86	A Comparative Study of Shear Stresses in Collagen-Glycosaminoglycan and Calcium Phosphate Scaffolds in Bone Tissue-Engineering Bioreactors. Tissue Engineering - Part A, 2009, 15, 1141-1149.	1.6	77
87	A novel collagen scaffold supports human osteogenesis—applications for bone tissue engineering. Cell and Tissue Research, 2010, 340, 169-177.	1.5	76
88	Novel Microhydroxyapatite Particles in a Collagen Scaffold: A Bioactive Bone Void Filler?. Clinical Orthopaedics and Related Research, 2014, 472, 1318-1328.	0.7	76
89	Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection. Microbiology (United Kingdom), 2013, 159, 147-154.	0.7	74
90	Content-Dependent Osteogenic Response of Nanohydroxyapatite: An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds. ACS Applied Materials & Interfaces, 2016, 8, 23477-23488.	4.0	70

#	Article	IF	CITATIONS
91	Towards in vitro vascularisation of collagen-GAG scaffolds. , 2011, 21, 15-30.		70
92	A prediction of cell differentiation and proliferation within a collagen–glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. Journal of Biomechanics, 2010, 43, 618-626.	0.9	69
93	Effect of collagenâ€glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. Journal of Biomedical Materials Research - Part A, 2016, 104, 291-304.	2.1	68
94	Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis. Scientific Reports, 2016, 6, 27941.	1.6	68
95	An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs <i>In Vivo</i> . Tissue Engineering - Part A, 2016, 22, 556-567.	1.6	68
96	Coupling Freshly Isolated CD44 ⁺ Infrapatellar Fat Padâ€Derived Stromal Cells with a TGFâ€Î²3 Eluting Cartilage ECMâ€Derived Scaffold as a Singleâ€Stage Strategy for Promoting Chondrogenesis. Advanced Healthcare Materials, 2015, 4, 1043-1053.	3.9	67
97	Influence of a novel calcium-phosphate coating on the mechanical properties of highly porous collagen scaffolds for bone repair. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 138-146.	1.5	65
98	Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomaterialia, 2017, 55, 226-238.	4.1	65
99	Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties. Journal of Biomechanics, 2008, 41, 2589-2596.	0.9	64
100	Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb ischaemia. Journal of Controlled Release, 2012, 161, 73-80.	4.8	64
101	Hyperthermiaâ€Induced Drug Delivery from Thermosensitive Liposomes Encapsulated in an Injectable Hydrogel for Local Chemotherapy. Advanced Healthcare Materials, 2014, 3, 854-859.	3.9	64
102	Investigating the interplay between substrate stiffness and ligand chemistry in directing mesenchymal stem cell differentiation within 3D macro-porous substrates. Biomaterials, 2018, 171, 23-33.	5.7	64
103	Biomaterialâ€Enhanced Cell and Drug Delivery: Lessons Learned in the Cardiac Field and Future Perspectives. Advanced Materials, 2016, 28, 5648-5661.	11.1	63
104	Bone as a composite material: The role of osteons as barriers to crack growth in compact bone. International Journal of Fatigue, 2007, 29, 1051-1056.	2.8	60
105	Osteomimicry of Mammary Adenocarcinoma Cells In Vitro; Increased Expression of Bone Matrix Proteins and Proliferation within a 3D Collagen Environment. PLoS ONE, 2012, 7, e41679.	1.1	60
106	Macrophage Polarization in Response to Collagen Scaffold Stiffness Is Dependent on Cross-Linking Agent Used To Modulate the Stiffness. ACS Biomaterials Science and Engineering, 2019, 5, 544-552.	2.6	60
107	Microcracks in cortical bone: How do they affect bone biology?. Current Osteoporosis Reports, 2005, 3, 39-45.	1.5	59
108	Biomechanical properties across trabeculae from the proximal femur of normal and ovariectomised sheep. Journal of Biomechanics, 2009, 42, 498-503.	0.9	59

#	Article	IF	CITATIONS
109	Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair. Journal of Controlled Release, 2018, 283, 20-31.	4.8	58
110	A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents. Acta Biomaterialia, 2017, 48, 110-119.	4.1	57
111	Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2017, 23, 55-68.	1.6	57
112	Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing. Acta Biomaterialia, 2015, 23, 82-90.	4.1	55
113	Scaffoldâ€Based microRNA Therapies in Regenerative Medicine and Cancer. Advanced Healthcare Materials, 2018, 7, 1700695.	3.9	55
114	DNA Origami: Folded DNAâ€Nanodevices That Can Direct and Interpret Cell Behavior. Advanced Materials, 2016, 28, 5509-5524.	11.1	54
115	Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation. Biochemical and Biophysical Research Communications, 2015, 459, 118-123.	1.0	53
116	The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold. Biomaterials, 2016, 85, 111-127.	5.7	53
117	Functionalising Collagen-Based Scaffolds With Platelet-Rich Plasma for Enhanced Skin Wound Healing Potential. Frontiers in Bioengineering and Biotechnology, 2019, 7, 371.	2.0	53
118	Bone biomaterials for overcoming antimicrobial resistance: Advances in non-antibiotic antimicrobial approaches for regeneration of infected osseous tissue. Materials Today, 2021, 46, 136-154.	8.3	53
119	Compression data on bovine bone confirms that a "stressed volume―principle explains the variability of fatigue strength results. Journal of Biomechanics, 1999, 32, 1199-1203.	0.9	52
120	High levels of ephrinB2 over-expression increases the osteogenic differentiation of human mesenchymal stem cells and promotes enhanced cell mediated mineralisation in a polyethyleneimine-ephrinB2 gene-activated matrix. Journal of Controlled Release, 2013, 165, 173-182.	4.8	52
121	A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair. Advanced Healthcare Materials, 2017, 6, 1700954.	3.9	51
122	Highly versatile cell-penetrating peptide loaded scaffold for efficient and localised gene delivery to multiple cell types: From development to application in tissue engineering. Biomaterials, 2019, 216, 119277.	5.7	51
123	The nature of fatigue damage in bone. International Journal of Fatigue, 2000, 22, 847-853.	2.8	49
124	Biomechanics and mechanobiology in osteochondral tissues. Regenerative Medicine, 2008, 3, 743-759.	0.8	49
125	Incorporation of fibrin into a collagen–glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction. Acta Biomaterialia, 2015, 26, 205-214.	4.1	49
126	A physiologically relevant 3D collagen-based scaffold–neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomaterialia, 2018, 70, 84-97.	4.1	49

#	Article	IF	CITATIONS
127	Controlling the dose-dependent, synergistic and temporal effects of NGF and GDNF by encapsulation in PLGA microparticles for use in nerve guidance conduits for the repair of large peripheral nerve defects. Journal of Controlled Release, 2019, 304, 51-64.	4.8	49
128	Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Journal of Anatomy, 2015, 227, 732-745.	0.9	46
129	Effects of ovariectomy on bone turnover, porosity, and biomechanical properties in ovine compact bone 12 months postsurgery. Journal of Orthopaedic Research, 2009, 27, 303-309.	1.2	45
130	Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes. Journal of Controlled Release, 2014, 187, 158-166.	4.8	45
131	Enhanced bone healing using collagen-hydroxyapatite scaffold implantation in the treatment of a large multiloculated mandibular aneurysmal bone cyst in a thoroughbred filly. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1193-1199.	1.3	45
132	Collagen scaffolds for orthopedic regenerative medicine. Jom, 2011, 63, 66-73.	0.9	44
133	Formulation and Evaluation of Anisamide-Targeted Amphiphilic Cyclodextrin Nanoparticles To Promote Therapeutic Gene Silencing in a 3D Prostate Cancer Bone Metastases Model. Molecular Pharmaceutics, 2017, 14, 42-52.	2.3	44
134	Microcracks in compact bone: a three-dimensional view. Journal of Anatomy, 2006, 209, 119-124.	0.9	43
135	Orchestrating osteogenic differentiation of mesenchymal stem cells—identification of placental growth factor as a mechanosensitive gene with a pro-osteogenic role. Stem Cells, 2013, 31, 2420-2431.	1.4	43
136	Osteoblast Response to Rest Periods During Bioreactor Culture of Collagen–Glycosaminoglycan Scaffolds. Tissue Engineering - Part A, 2010, 16, 943-951.	1.6	42
137	A collagen cardiac patch incorporating alginate microparticles permits the controlled release of hepatocyte growth factor and insulin-like growth factor-1 to enhance cardiac stem cell migration and proliferation. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e384-e394.	1.3	42
138	In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun. Acta Biomaterialia, 2018, 75, 115-128.	4.1	41
139	Non-viral gene-activated matrices. Organogenesis, 2013, 9, 22-28.	0.4	40
140	Pro-angiogenic impact of SDF- $1\hat{l}$ ± gene-activated collagen-based scaffolds in stem cell driven angiogenesis. International Journal of Pharmaceutics, 2018, 544, 372-379.	2.6	40
141	Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration. Frontiers in Cardiovascular Medicine, 2018, 5, 86.	1.1	40
142	The behaviour of microcracks in compact bone. European Journal of Morphology, 2005, 42, 71-79.	1.4	38
143	The Hounsfield value for cortical bone geometry in the proximal humerus—an in vitro study. Skeletal Radiology, 2012, 41, 557-568.	1.2	38
144	Differentiation of Vascular Stem Cells Contributes to Ectopic Calcification of Atherosclerotic Plaque. Stem Cells, 2016, 34, 913-923.	1.4	38

#	Article	IF	CITATIONS
145	Identification of the mechanisms by which age alters the mechanosensitivity of mesenchymal stromal cells on substrates of differing stiffness: Implications for osteogenesis and angiogenesis. Acta Biomaterialia, 2017, 53, 59-69.	4.1	38
146	Bioinspired Star-Shaped Poly(<scp>l</scp> -lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells. Molecular Pharmaceutics, 2018, 15, 1878-1891.	2.3	38
147	Rapid healing of a criticalâ€sized bone defect using a collagenâ€hydroxyapatite scaffold to facilitate low dose, combinatorial growth factor delivery. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1843-1853.	1.3	38
148	Harnessing an Inhibitory Role of miR-16 in Osteogenesis by Human Mesenchymal Stem Cells for Advanced Scaffold-Based Bone Tissue Engineering. Tissue Engineering - Part A, 2019, 25, 24-33.	1.6	37
149	Collagen-based biomaterials for tissue regeneration and repair. , 2018, , 127-150.		36
150	Flexor tendon repair: a comparative study between a knotless barbed suture repair and a traditional four-strand monofilament suture repair. Journal of Hand Surgery: European Volume, 2014, 39, 40-45.	0.5	35
151	3D-Printed Gelatin Methacrylate Scaffolds with Controlled Architecture and Stiffness Modulate the Fibroblast Phenotype towards Dermal Regeneration. Polymers, 2021, 13, 2510.	2.0	35
152	Creep Does Not Contribute to Fatigue in Bovine Trabecular Bone. Journal of Biomechanical Engineering, 2004, 126, 321-329.	0.6	34
153	Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy. Stem Cells International, 2017, 2017, 1-10.	1.2	34
154	Scaffoldâ€Based Delivery of Nucleic Acid Therapeutics for Enhanced Bone and Cartilage Repair. Journal of Orthopaedic Research, 2019, 37, 1671-1680.	1.2	34
155	Effects of estrogen deficiency and bisphosphonate therapy on osteocyte viability and microdamage accumulation in an ovine model of osteoporosis. Journal of Orthopaedic Research, 2011, 29, 419-424.	1.2	33
156	Incorporation of TGFâ€Beta 3 within Collagen–Hyaluronic Acid Scaffolds Improves their Chondrogenic Potential. Advanced Healthcare Materials, 2015, 4, 1175-1179.	3.9	33
157	Tissue engineered extracellular matrices (ECMs) in urology: Evolution and future directions. Journal of the Royal College of Surgeons of Edinburgh, 2018, 16, 55-65.	0.8	33
158	Part 1: Scaffolds and Surfaces. Technology and Health Care, 2008, 16, 305-317.	0.5	32
159	Temporal Changes in Bone Composition, Architecture, and Strength Following Estrogen Deficiency in Osteoporosis. Calcified Tissue International, 2012, 91, 440-449.	1.5	32
160	Estrogen Withdrawal from Osteoblasts and Osteocytes Causes Increased Mineralization and Apoptosis. Hormone and Metabolic Research, 2014, 46, 537-545.	0.7	32
161	Towards 3D in vitro models for the study of cardiovascular tissues and disease. Drug Discovery Today, 2016, 21, 1437-1445.	3.2	31
162	Growth plate extracellular matrix-derived scaffolds for large bone defect healing. , 2017, 33, 130-142.		31

#	Article	IF	CITATIONS
163	The effects of increased intracortical remodeling on microcrack behaviour in compact bone. Bone, 2008, 43, 889-893.	1.4	30
164	Chondrogenically primed mesenchymal stem cell-seeded alginate hydrogels promote early bone formation in critically-sized defects. European Polymer Journal, 2015, 72, 464-472.	2.6	30
165	Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. International Journal of Pharmaceutics, 2016, 511, 1058-1069.	2.6	30
166	Rapid bone repair with the recruitment of CD206+M2-like macrophages using non-viral scaffold-mediated miR-133a inhibition of host cells. Acta Biomaterialia, 2020, 109, 267-279.	4.1	30
167	Effects of ageing, prolonged estrogen deficiency and zoledronate on bone tissue mineral distribution. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 161-170.	1.5	29
168	Activation of the SOXâ€5, SOXâ€6, and SOXâ€9 Trio of Transcription Factors Using a Geneâ€Activated Scaffold Stimulates Mesenchymal Stromal Cell Chondrogenesis and Inhibits Endochondral Ossification. Advanced Healthcare Materials, 2020, 9, e1901827.	3.9	29
169	Pristine graphene induces innate immune training. Nanoscale, 2020, 12, 11192-11200.	2.8	28
170	Advances in polymeric islet cell encapsulation technologies to limit the foreign body response and provide immunoisolation. Current Opinion in Pharmacology, 2017, 36, 66-71.	1.7	27
171	Transfection of autologous host cells in vivo using gene activated collagen scaffolds incorporating star-polypeptides. Journal of Controlled Release, 2019, 304, 191-203.	4.8	27
172	Extracellular Vesicles Enhance the Remodeling of Cell-Free Silk Vascular Scaffolds in Rat Aortae. ACS Applied Materials & Interfaces, 2020, 12, 26955-26965.	4.0	27
173	Tissue differentiation in an inÂvivo bioreactor: inÂsilico investigations of scaffold stiffness. Journal of Materials Science: Materials in Medicine, 2010, 21, 2331-2336.	1.7	26
174	The pre-vascularisation of a collagen-chondroitin sulphate scaffold using human amniotic fluid-derived stem cells to enhance and stabilise endothelial cell-mediated vessel formation. Acta Biomaterialia, 2015, 26, 263-273.	4.1	26
175	Raman spectroscopy predicts the link between claw keratin and bone collagen structure in a rodent model of oestrogen deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 398-406.	1.8	26
176	Layered Double Hydroxide as a Potent Non-viral Vector for Nucleic Acid Delivery Using Gene-Activated Scaffolds for Tissue Regeneration Applications. Pharmaceutics, 2020, 12, 1219.	2.0	26
177	Mechanical, compositional and morphological characterisation of the human male urethra for the development of a biomimetic tissue engineered urethral scaffold. Biomaterials, 2021, 269, 120651.	5.7	26
178	Evaluation of early healing events around mesenchymal stem cell-seeded collagen–glycosaminoglycan scaffold. An experimental study in Wistar rats. Oral and Maxillofacial Surgery, 2011, 15, 31-39.	0.6	25
179	The Marineâ€derived, Multiâ€mineral formula, Aquamin, Enhances Mineralisation of Osteoblast Cells <i>In Vitro</i> . Phytotherapy Research, 2012, 26, 375-380.	2.8	25
180	Platelet-rich plasma releasate differently stimulates cellular commitment toward the chondrogenic lineage according to concentration. Journal of Tissue Engineering, 2015, 6, 204173141559412.	2.3	25

#	Article	IF	CITATIONS
181	Respiratory Tissue Engineering: Current Status and Opportunities for the Future. Tissue Engineering - Part B: Reviews, 2015, 21, 323-344.	2.5	25
182	Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: A recent update on lung, breast and prostate cancer models. Acta Biomaterialia, 2021, 132, 360-378.	4.1	25
183	Stimulation of osteoblasts using rest periods during bioreactor culture on collagen-glycosaminoglycan scaffolds. Journal of Materials Science: Materials in Medicine, 2010, 21, 2325-2330.	1.7	24
184	An efficient, non-viral dendritic vector for gene delivery in tissue engineering. Gene Therapy, 2017, 24, 681-691.	2.3	24
185	Three hours of perfusion culture prior to 28 days of static culture, enhances osteogenesis by human cells in a collagen GAG scaffold. Biotechnology and Bioengineering, 2011, 108, 1203-1210.	1.7	23
186	Hierarchical biofabrication of biomimetic collagen-elastin vascular grafts with controllable properties via lyophilisation. Acta Biomaterialia, 2020, 112, 52-61.	4.1	23
187	The effects of estrogen deficiency and bisphosphonate treatment on tissue mineralisation and stiffness in an ovine model of osteoporosis. Journal of Biomechanics, 2011, 44, 386-390.	0.9	22
188	Functionalization of a Collagen–Hydroxyapatite Scaffold with Osteostatin to Facilitate Enhanced Bone Regeneration. Advanced Healthcare Materials, 2015, 4, 2649-2656.	3.9	22
189	Pre-culture of mesenchymal stem cells within RGD-modified hyaluronic acid hydrogel improves their resilience to ischaemic conditions. Acta Biomaterialia, 2020, 107, 78-90.	4.1	22
190	The use of nanovibration to discover specific and potent bioactive metabolites that stimulate osteogenic differentiation in mesenchymal stem cells. Science Advances, 2021, 7, .	4.7	22
191	Evaluation of the ability of collagen–glycosaminoglycan scaffolds with or without mesenchymal stem cells to heal bone defects in Wistar rats. Oral and Maxillofacial Surgery, 2012, 16, 47-55.	0.6	21
192	Olfactory Derived Stem Cells Delivered in a Biphasic Conduit Promote Peripheral Nerve Repair In Vivo. Stem Cells Translational Medicine, 2017, 6, 1894-1904.	1.6	21
193	SDF-1α Gene-Activated Collagen Scaffold Restores Pro-Angiogenic Wound Healing Features in Human Diabetic Adipose-Derived Stem Cells. Biomedicines, 2021, 9, 160.	1.4	21
194	Incorporation of polymeric microparticles into collagen-hydroxyapatite scaffolds for the delivery of a pro-osteogenic peptide for bone tissue engineering. APL Materials, 2015, 3, .	2.2	20
195	An endochondral ossification approach to early stage bone repair: Use of tissueâ€engineered hypertrophic cartilage constructs as primordial templates for weightâ€bearing bone repair. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e2147-e2150.	1.3	20
196	Collagen/GAG scaffolds activated by RALA-siMMP-9 complexes with potential for improved diabetic foot ulcer healing. Materials Science and Engineering C, 2020, 114, 111022.	3.8	20
197	Gene activated scaffolds incorporating star-shaped polypeptide-pDNA nanomedicines accelerate bone tissue regeneration <i>in vivo</i> . Biomaterials Science, 2021, 9, 4984-4999.	2.6	20
198	Effects of High Bone Turnover on the Biomechanical Properties of the L3 Vertebra in an Ovine Model of Early Stage Osteoporosis. Spine, 2008, 33, 2518-2523.	1.0	19

#	Article	IF	CITATIONS
199	Variation of trabecular microarchitectural parameters in cranial, caudal and midâ€vertebral regions of the ovine L3 vertebra. Journal of Anatomy, 2009, 214, 729-735.	0.9	19
200	A Natural, Calcium-Rich Marine Multi-mineral Complex Preserves Bone Structure, Composition and Strength in an Ovariectomised Rat Model of Osteoporosis. Calcified Tissue International, 2017, 101, 445-455.	1.5	19
201	Scaffolds Functionalized with Matrix from Induced Pluripotent Stem Cell Fibroblasts for Diabetic Wound Healing. Advanced Healthcare Materials, 2020, 9, e2000307.	3.9	19
202	Biomimetic Scaffolds for Spinal Cord Applications Exhibit Stiffnessâ€Dependent Immunomodulatory and Neurotrophic Characteristics. Advanced Healthcare Materials, 2022, 11, e2101663.	3.9	19
203	Development of a collagen calcium-phosphate scaffold as a novel bone graft substitute. Studies in Health Technology and Informatics, 2008, 133, 11-20.	0.2	19
204	Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomaterials Science, 2022, 10, 2462-2483.	2.6	19
205	Upper urinary tract pressures in endourology: a systematic review of range, variables and implications. BJU International, 2023, 131, 267-279.	1.3	19
206	Estrogen Plus Estrogen Receptor Antagonists Alter Mineral Production by Osteoblasts In Vitro. Hormone and Metabolic Research, 2012, 44, 47-53.	0.7	18
207	Identification of stiffness-induced signalling mechanisms in cells from patent and fused sutures associated with craniosynostosis. Scientific Reports, 2017, 7, 11494.	1.6	18
208	Controlled Nonâ€Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. Advanced Therapeutics, 2018, 1, 1800038.	1.6	18
209	The Use of Genipin as an Effective, Biocompatible, Antiâ€Inflammatory Crossâ€Linking Method for Nerve Guidance Conduits. Advanced Biology, 2020, 4, e1900212.	3.0	18
210	Substrate Stiffness Modulates the Crosstalk Between Mesenchymal Stem Cells and Macrophages. Journal of Biomechanical Engineering, 2021, 143, .	0.6	18
211	The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 190.	2.0	17
212	Mechanobiology-informed regenerative medicine: Dose-controlled release of placental growth factor from a functionalized collagen-based scaffold promotes angiogenesis and accelerates bone defect healing. Journal of Controlled Release, 2021, 334, 96-105.	4.8	17
213	3D Printed Scaffolds Incorporated with Plateletâ€Rich Plasma Show Enhanced Angiogenic Potential while not Inducing Fibrosis. Advanced Functional Materials, 2022, 32, 2109915.	7.8	17
214	Repair of large osteochondritis dissecans lesions using a novel multilayered tissue engineered construct in an equine athlete. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2785-2795.	1.3	16
215	Retinoic Acid-Loaded Collagen-Hyaluronate Scaffolds: A Bioactive Material for Respiratory Tissue Regeneration. ACS Biomaterials Science and Engineering, 2017, 3, 1381-1393.	2.6	16
216	Stem cells display a donor dependent response to escalating levels of growth factor release from extracellular matrix-derived scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2979-2987.	1.3	16

#	Article	IF	CITATIONS
217	Biocompatible polypeptide-based interpenetrating network (IPN) hydrogels with enhanced mechanical properties. Journal of Materials Chemistry B, 2020, 8, 7785-7791.	2.9	16
218	Comparison of synthetic mesh erosion and chronic pain rates after surgery for pelvic organ prolapse and stress urinary incontinence: a systematic review. International Urogynecology Journal, 2021, 32, 573-580.	0.7	16
219	Incorporation of the natural marine multi-mineral dietary supplement Aquamin enhances osteogenesis and improves the mechanical properties of a collagen-based bone graft substitute. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 114-123.	1.5	15
220	Effect of cross-linking and hydration on microscale flat punch indentation contact to collagen-hyaluronic acid films in the viscoelastic limit. Acta Biomaterialia, 2020, 111, 279-289.	4.1	15
221	Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-11± Delivery for Enhanced Angiogenesis in Tissue Engineering Applications. International Journal of Molecular Sciences, 2022, 23, 1460.	1.8	15
222	Visualizing feasible operating ranges within tissue engineering systems using a "windows of operation―approach: A perfusionâ€scaffold bioreactor case study. Biotechnology and Bioengineering, 2012, 109, 3161-3171.	1.7	14
223	Staphylococcus aureus protein A causes osteoblasts to hyper-mineralise in a 3D extra-cellular matrix environment. PLoS ONE, 2018, 13, e0198837.	1.1	14
224	Hydroxyapatite Particle Shape and Size Influence MSC Osteogenesis by Directing the Macrophage Phenotype in Collagen-Hydroxyapatite Scaffolds. ACS Applied Bio Materials, 2020, 3, 7562-7574.	2.3	14
225	The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling. Marine Drugs, 2020, 18, 74.	2.2	14
226	Multi-factorial nerve guidance conduit engineering improves outcomes in inflammation, angiogenesis and large defect nerve repair. Matrix Biology, 2022, 106, 34-57.	1.5	14
227	Structural adaptation and intracortical bone turnover in an ovine model of osteoporosis. Journal of Orthopaedic Research, 2010, 28, 248-251.	1.2	13
228	Local and regional mechanical characterisation of a collagen-glycosaminoglycan scaffold using high-resolution finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 292-302.	1.5	13
229	Porous Scaffolds Derived from Devitalized Tissue Engineered Cartilaginous Matrix Support Chondrogenesis of Adult Stem Cells. ACS Biomaterials Science and Engineering, 2017, 3, 1075-1082.	2.6	13
230	SDFâ€1α geneâ€activated collagen scaffold drives functional differentiation of human Schwann cells for wound healing applications. Biotechnology and Bioengineering, 2021, 118, 725-736.	1.7	13
231	Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics, 2021, 13, 2161.	2.0	13
232	An Experimental Investigation of the Effect of Mechanical and Biochemical Stimuli on Cell Migration Within a Decellularized Vascular Construct. Annals of Biomedical Engineering, 2014, 42, 2029-2038.	1.3	12
233	Staphylococcus epidermidis serine–aspartate repeat protein G (SdrG) binds to osteoblast integrin alpha V beta 3. Microbes and Infection, 2015, 17, 395-401.	1.0	12
234	Facile Approach to Covalent Copolypeptide Hydrogels and Hybrid Organohydrogels. ACS Macro Letters, 2018, 7, 944-949.	2.3	12

#	Article	IF	CITATIONS
235	Distribution of microcrack lengths in bone in vivo and in vitro. Journal of Theoretical Biology, 2012, 304, 164-171.	0.8	11
236	Plateletâ€derived growth factor stabilises vascularisation in collagenâ€glycosaminoglycan scaffolds <i>in vitro</i> . Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 261-273.	1.3	11
237	Systematic Comparison of Biomaterialsâ€Based Strategies for Osteochondral and Chondral Repair in Large Animal Models. Advanced Healthcare Materials, 2021, 10, e2100878.	3.9	11
238	The development of natural polymer scaffold-based therapeutics for osteochondral repair. Biochemical Society Transactions, 2020, 48, 1433-1445.	1.6	11
239	Subchondral trabecular structural changes in the proximal tibia in an ovine model of increased bone turnover. Journal of Anatomy, 2011, 218, 619-624.	0.9	10
240	Non-viral Gene Delivery of Interleukin-1 Receptor Antagonist Using Collagen-Hydroxyapatite Scaffold Protects Rat BM-MSCs From IL-1β-Mediated Inhibition of Osteogenesis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 582012.	2.0	10
241	Development of collagen-poly(caprolactone)-based core-shell scaffolds supplemented with proteoglycans and glycosaminoglycans for ligament repair. Materials Science and Engineering C, 2021, 120, 111657.	3.8	10
242	Antimicrobial and degradable triazolinedione (TAD) crosslinked polypeptide hydrogels. Journal of Materials Chemistry B, 2021, 9, 5456-5464.	2.9	10
243	Examination of osteoarthritis and subchondral bone alterations within the stifle joint of an ovariectomised ovine model. Journal of Anatomy, 2013, 222, 588-597.	0.9	9
244	<i>In vitro</i> vascularization of tissue engineered constructs by non-viral delivery of pro-angiogenic genes. Biomaterials Science, 2021, 9, 2067-2081.	2.6	9
245	A highly porous type II collagen containing scaffold for the treatment of cartilage defects enhances MSC chondrogenesis and early cartilaginous matrix deposition. Biomaterials Science, 2022, 10, 970-983.	2.6	9
246	Subchondral osteopenia and accelerated bone remodelling postâ€ovariectomy – a possible mechanism for subchondral microfractures in the aetiology of spontaneous osteonecrosis of the knee?. Journal of Anatomy, 2013, 222, 231-238.	0.9	8
247	The Osteogenic Potential of the Marine-Derived Multi-Mineral Formula Aquamin Is Enhanced by the Presence of Vitamin D. Phytotherapy Research, 2014, 28, 678-684.	2.8	8
248	Anti-Ageing Protein β-Klotho Rejuvenates Diabetic Stem Cells for Improved Gene-Activated Scaffold Based Wound Healing. Journal of Personalized Medicine, 2021, 11, 4.	1.1	8
249	A Theoretical Model for the Simulation of Microdamage Accumulation and Repair in Compact Bone*. Meccanica, 2002, 37, 397-406.	1.2	7
250	Stress Urinary Incontinence and Pelvic Organ Prolapse: Biologic Graft Materials Revisited. Tissue Engineering - Part B: Reviews, 2020, 26, 475-483.	2.5	7
251	A step closer to elastogenesis on demand; Inducing mature elastic fibre deposition in a natural biomaterial scaffold. Materials Science and Engineering C, 2021, 120, 111788.	3.8	7
252	Layer-specific stem cell differentiation in tri-layered tissue engineering biomaterials: Towards development of a single-stage cell-based approach for osteochondral defect repair. Materials Today Bio, 2021, 12, 100173.	2.6	7

#	Article	lF	CITATIONS
253	Anti-Aging β-Klotho Gene-Activated Scaffold Promotes Rejuvenative Wound Healing Response in Human Adipose-Derived Stem Cells. Pharmaceuticals, 2021, 14, 1168.	1.7	7
254	Enamel Matrix Derivative has No Effect on the Chondrogenic Differentiation of Mesenchymal Stem Cells. Frontiers in Bioengineering and Biotechnology, 2014, 2, 29.	2.0	6
255	Investigating the effect of hypoxic culture on the endothelial differentiation of human amniotic fluidâ€derived stem cells. Journal of Anatomy, 2015, 227, 767-780.	0.9	6
256	Accelerating bone healing in vivo by harnessing the age-altered activation of c-Jun N-terminal kinase 3. Biomaterials, 2021, 268, 120540.	5.7	6
257	Incorporation of hydroxyapatite into collagen scaffolds enhances the therapeutic efficacy of rhBMP-2 in a weight-bearing femoral defect model. Materials Today Communications, 2021, 29, 102933.	0.9	6
258	The role of mechanobiology in bone and cartilage model systems in characterizing initiation and progression of osteoarthritis. APL Bioengineering, 2022, 6, .	3.3	6
259	SDF-1α gene-activated collagen scaffold enhances provasculogenic response in a coculture of human endothelial cells with human adipose-derived stromal cells. Journal of Materials Science: Materials in Medicine, 2021, 32, 26.	1.7	5
260	The Impact of the Extracellular Matrix Environment on Sost Expression by the MLO-Y4 Osteocyte Cell Line. Bioengineering, 2022, 9, 35.	1.6	5
261	Part 1: scaffolds and surfaces. Technology and Health Care, 2008, 16, 305-17.	0.5	5
262	Highly Porous Type II Collagen-Containing Scaffolds for Enhanced Cartilage Repair with Reduced Hypertrophic Cartilage Formation. Bioengineering, 2022, 9, 232.	1.6	5
263	Contemporary trends for urological training and management of stress urinary incontinence in Ireland. International Urogynecology Journal, 2021, 32, 2841-2846.	0.7	4
264	The role of synovial fluid constituents in the lubrication of collagen-glycosaminoglycan scaffolds for cartilage repair. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 118, 104445.	1.5	4
265	Tracking the changes in unloaded bone: Morphology and gene expression. European Journal of Morphology, 2006, 42, 208-216.	1.4	3
266	Development of magnetically active scaffolds as intrinsically-deformable bioreactors. MRS Communications, 2017, 7, 367-374.	0.8	3
267	The lubricating effect of iPS-reprogrammed fibroblasts on collagen-GAG scaffolds for cartilage repair applications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104174.	1.5	3
268	Mechanical Stimulation of Osteoblasts Using Steady and Dynamic Fluid Flow. Tissue Engineering - Part A, 2008, .	1.6	3
269	Chondrogenic Priming of Human Bone Marrow Stromal Cells: A Better Route to Bone Repair?. Tissue Engineering - Part A, O, , 110306231138043.	1.6	3
270	Interleukin-1 receptor antagonist enhances the therapeutic efficacy of a low dose of rhBMP-2 in a weight-bearing rat femoral defect model. Acta Biomaterialia, 2022, 149, 189-197.	4.1	3

#	Article	IF	CITATIONS
271	New embedding medium for sectioning undecalcified bone. Biotechnic and Histochemistry, 2006, 81, 99-103.	0.7	2
272	The Development of Tissue Engineering Scaffolds Using Matrix from iPS-Reprogrammed Fibroblasts. Methods in Molecular Biology, 2021, , 273-283.	0.4	2
273	A Fatigue-Based Model of Disuse Osteoporosis. Computer Methods in Biomechanics and Biomedical Engineering, 2001, 4, 413-420.	0.9	1
274	The effects of cross-linking methods on osteogenesis within a collagen GAG scaffold. Bone, 2009, 44, S266.	1.4	1
275	Estrogen Plus Estrogen Receptor Antagonists Alter Mineral Production by Osteoblasts In Vitro. Hormone and Metabolic Research, 2012, 44, 154-154.	0.7	1
276	Editorial. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 1-2.	1.5	1
277	A Tissue-Engineered Tracheobronchial In Vitro Co-Culture Model for Determining Epithelial Toxicological and Inflammatory Responses. Biomedicines, 2021, 9, 631.	1.4	1
278	Biomechanical comparison of the pullout properties of external skeletal fixation pins in the tibiae of intact and ovariectomised ewes. Veterinary and Comparative Orthopaedics and Traumatology, 2008, 21, 418-426.	0.2	1
279	Royal academy of medicine in Ireland section of bioengineering. Irish Journal of Medical Science, 1998, 167, 256-276.	0.8	0
280	How Does Bone Detect Cracks?. Key Engineering Materials, 2007, 348-349, 57-60.	0.4	0
281	ESTROGEN DEPLETION AND ZOLEDRONIC ACID THERAPY: EFFECTS ON OSTEOCYTE APOPTOSIS AND MICRODAMAGE. Journal of Biomechanics, 2008, 41, S127.	0.9	Ο
282	FABRICATION METHODOLOGIES REGULATE THE INITIAL MECHANICAL PROPERTIES OF CELL SEEDED HYDROGELS. Journal of Biomechanics, 2008, 41, S383.	0.9	0
283	Subchondral structural changes in the proximal tibia in an ovariectomised ovine model. Bone, 2009, 44, S282-S283.	1.4	Ο
284	ENHANCED ENDOCHONDRAL OSSIFICATION IN VESSEL DERIVED STEM CELLS BY ATHEROSCLEROTIC ENVIRONMENT. Heart, 2012, 98, A9.3-A9.	1.2	0
285	A Short History of Bioengineering Research in Ireland. Journal of Biomechanical Engineering, 2018, 140, .	0.6	0
286	microRNA Modulation. , 2019, , 1-66.		0
287	Editorial: Novel Composites and Multi-Material Assembly Approaches for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 680.	2.0	0
288	Scaffold Considerations for Osteochondral Tissue Engineering. , 2012, , 779-801.		0

#	Article	IF	CITATIONS
289	In Vitro Vascularization: Tissue Engineering Constructs. , 0, , 4043-4062.		0
290	In vitroVascularization: Tissue Engineering Constructs. , 2017, , 723-742.		0
291	microRNA Modulation. , 2020, , 511-576.		Ο