
Yigong Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8153062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Serine/Threonine Phosphatases: Mechanism through Structure. Cell, 2009, 139, 468-484.	13.5	1,292
2	Molecular Architecture of the SARS-CoV-2 Virus. Cell, 2020, 183, 730-738.e13.	13.5	793
3	Sampling the conformational space of the catalytic subunit of human \hat{I}^3 -secretase. ELife, 2015, 4, .	2.8	556
4	An atomic structure of human Î ³ -secretase. Nature, 2015, 525, 212-217.	13.7	490
5	Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature, 2015, 517, 50-55.	13.7	391
6	Three-dimensional structure of human \hat{I}^3 -secretase. Nature, 2014, 512, 166-170.	13.7	317
7	Structure of a yeast spliceosome at 3.6-angstrom resolution. Science, 2015, 349, 1182-1191.	6.0	314
8	Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nature Reviews Molecular Cell Biology, 2017, 18, 655-670.	16.1	314
9	Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E476-E485.	3.3	277
10	Common Folds and Transport Mechanisms of Secondary Active Transporters. Annual Review of Biophysics, 2013, 42, 51-72.	4.5	266
11	Structure of a yeast activated spliceosome at 3.5 Ã resolution. Science, 2016, 353, 904-911.	6.0	246
12	Recognition of the amyloid precursor protein by human \hat{I}^3 -secretase. Science, 2019, 363, .	6.0	229
13	A Glimpse of Structural Biology through X-Ray Crystallography. Cell, 2014, 159, 995-1014.	13.5	227
14	An Atomic Structure of the Human Spliceosome. Cell, 2017, 169, 918-929.e14.	13.5	215
15	Atomic structure of the apoptosome: mechanism of cytochrome <i>c</i> - and dATP-mediated activation of Apaf-1. Genes and Development, 2015, 29, 2349-2361.	2.7	201
16	Structural basis of Notch recognition by human \hat{I}^3 -secretase. Nature, 2019, 565, 192-197.	13.7	194
17	An atomic structure of the human 26S proteasome. Nature Structural and Molecular Biology, 2016, 23, 778-785.	3.6	189

18 Structure of the human PKD1-PKD2 complex. Science, 2018, 361, .

6.0 173

YIGONG SHI

#	Article	IF	CITATIONS
19	Structure of a yeast catalytic step I spliceosome at 3.4 Ã resolution. Science, 2016, 353, 895-904.	6.0	172
20	Structural basis of pre-mRNA splicing. Science, 2015, 349, 1191-1198.	6.0	170
21	Structural and functional diversity calls for a new classification of ABC transporters. FEBS Letters, 2020, 594, 3767-3775.	1.3	169
22	Structure of the human activated spliceosome in three conformational states. Cell Research, 2018, 28, 307-322.	5.7	163
23	The 3.8 Ã structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis. Science, 2016, 351, 466-475.	6.0	142
24	Structure of a yeast step II catalytically activated spliceosome. Science, 2017, 355, 149-155.	6.0	131
25	Structure of a human catalytic step I spliceosome. Science, 2018, 359, 537-545.	6.0	118
26	Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032409.	2.3	117
27	Structural basis of Î ³ -secretase inhibition and modulation by small molecule drugs. Cell, 2021, 184, 521-533.e14.	13.5	100
28	Structural basis of human Î ³ -secretase assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6003-6008.	3.3	97
29	Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1542-1547.	3.3	95
30	TIPE3 Is the Transfer Protein of Lipid Second Messengers that Promote Cancer. Cancer Cell, 2014, 26, 465-478.	7.7	93
31	Structures of the human pre-catalytic spliceosome and its precursor spliceosome. Cell Research, 2018, 28, 1129-1140.	5.7	85
32	Molecular determinants of caspase-9 activation by the Apaf-1 apoptosome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16254-16261.	3.3	81
33	The Spliceosome: A Protein-Directed Metalloribozyme. Journal of Molecular Biology, 2017, 429, 2640-2653.	2.0	81
34	Crystal structures of the Lsm complex bound to the 3′ end sequence of U6 small nuclear RNA. Nature, 2014, 506, 116-120.	13.7	77
35	Structure of an Intron Lariat Spliceosome from Saccharomyces cerevisiae. Cell, 2017, 171, 120-132.e12.	13.5	77
36	Structures of the fully assembled <i>Saccharomyces cerevisiae</i> spliceosome before activation. Science, 2018, 360, 1423-1429.	6.0	77

YIGONG SHI

#	Article	IF	CITATIONS
37	Structure of the Post-catalytic Spliceosome from Saccharomyces cerevisiae. Cell, 2017, 171, 1589-1598.e8.	13.5	76
38	Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2642-2647.	3.3	75
39	Structures of the human spliceosomes before and after release of the ligated exon. Cell Research, 2019, 29, 274-285.	5.7	74
40	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	4.5	71
41	Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching. Cell, 2019, 177, 339-351.e13.	13.5	64
42	How Is Precursor Messenger RNA Spliced by the Spliceosome?. Annual Review of Biochemistry, 2020, 89, 333-358.	5.0	64
43	Crystal structure of the γ-secretase component nicastrin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13349-13354.	3.3	59
44	Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from <i>Drosophila</i> . Genes and Development, 2015, 29, 277-287.	2.7	55
45	Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3828-3833.	3.3	55
46	Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex. Cell Research, 2020, 30, 532-540.	5.7	51
47	Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex by cryo-electron microscopy single particle analysis. Cell Research, 2020, 30, 520-531.	5.7	51
48	Assembly and structure of protein phosphatase 2A. Science in China Series C: Life Sciences, 2009, 52, 135-146.	1.3	46
49	Molecular choreography of pre-mRNA splicing by the spliceosome. Current Opinion in Structural Biology, 2019, 59, 124-133.	2.6	45
50	Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
51	Structure of the cytoplasmic ring of the <i>Xenopus laevis</i> nuclear pore complex. Science, 2022, 376, .	6.0	44
52	Structural biology of intramembrane proteases: mechanistic insights from rhomboid and S2P to \hat{I}^3 -secretase. Current Opinion in Structural Biology, 2016, 37, 97-107.	2.6	43
53	Structure of the activated human minor spliceosome. Science, 2021, 371, .	6.0	43
54	Structural and biochemical analysis of Bcl-2 interaction with the hepatitis B virus protein HBx. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2074-2079.	3.3	42

YIGONG SHI

#	Article	IF	CITATIONS
55	Dominant negative effect of the loss-of-function Î ³ -secretase mutants on the wild-type enzyme through heterooligomerization. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12731-12736.	3.3	41
56	Mechanism of spliceosome remodeling by the ATPase/helicase Prp2 and its coactivator Spp2. Science, 2021, 371, .	6.0	35
57	Functional characterization of human equilibrative nucleoside transporter 1. Protein and Cell, 2017, 8, 284-295.	4.8	27
58	Quenching Dynamics of Ultraviolet-Light Perception by UVR8 Photoreceptor. Journal of Physical Chemistry Letters, 2014, 5, 69-72.	2.1	24
59	Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12734-12739.	3.3	21
60	Crystal structure and biochemical analysis of the heptameric Lsm1-7 complex. Cell Research, 2014, 24, 497-500.	5.7	20
61	Cryo-EM structures of human Î ³ -secretase. Current Opinion in Structural Biology, 2017, 46, 55-64.	2.6	20
62	Macromolecular complex in recognition and proteolysis of amyloid precursor protein in Alzheimer's disease. Current Opinion in Structural Biology, 2020, 61, 1-8.	2.6	15
63	Mechanism of exon ligation by human spliceosome. Molecular Cell, 2022, 82, 2769-2778.e4.	4.5	14
64	Bax inhibitor 1 is a γ-secretase–independent presenilin-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 141-147.	3.3	12
65	Structural basis for Ca2+ activation of the heteromeric PKD1L3/PKD2L1 channel. Nature Communications, 2021, 12, 4871.	5.8	10
66	Pyridoxamine is a substrate of the energy-coupling factor transporter HmpT. Cell Discovery, 2015, 1, 15014.	3.1	6
67	Modulation of amyloid precursor protein cleavage by γ-secretase activating protein through phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122292119.	3.3	5
68	A glimpse of life science research at Tsinghua. Science China Life Sciences, 2014, 57, 1-3.	2.3	4
69	Biological cryoâ€electron microscopy in China. Protein Science, 2017, 26, 16-31.	3.1	3
70	Ray Wu: united we prevail. Science in China Series C: Life Sciences, 2009, 52, 130-132.	1.3	2
71	The spirit of science. National Science Review, 2014, 1, 471-471.	4.6	1
72	Arnold J. Levine and my career development. Journal of Molecular Cell Biology, 2019, 11, 546-550.	1.5	0