
Lihong Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8152785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: Behaviours and mechanisms. Applied Surface Science, 2017, 393, 457-466.	6.1	164
2	Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe 3 O 4 @SiO 2 magnetic nano-adsorbent. Journal of Colloid and Interface Science, 2016, 462, 235-242.	9.4	96
3	Synthesis of amino-functionalization magnetic multi-metal organic framework (Fe 3 O 4 /MIL-101(Al 0.9) Tj ETQq1 Institute of Chemical Engineers, 2018, 87, 64-72.	1 0.7843 5.3	14 rgBT /O 39
4	Effect of Lithium Doping on the Structures and CO ₂ Adsorption Properties of Metalâ€Organic Frameworks HKUSTâ€1. ChemistrySelect, 2018, 3, 12865-12870.	1.5	34
5	Acid modified mesoporous Cu/SBA-15 for simultaneous adsorption/oxidation of hydrogen sulfide and phosphine. Chemical Engineering Journal, 2016, 302, 69-76.	12.7	33
6	Adsorption-oxidation of hydrogen sulfide on Fe/walnut-shell activated carbon surface modified by NH 3 -plasma. Journal of Environmental Sciences, 2018, 64, 216-226.	6.1	32
7	Removal of Cu(II) Ions from Aqueous Solution by Magnetic Chitosan-Tripolyphosphate Modified Silica-Coated Adsorbent: Characterization and Mechanisms. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	31
8	Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid. Environmental Pollution, 2018, 232, 615-623.	7.5	26
9	Simultaneous removal of NO x and SO2 by low-temperature selective catalytic reduction over modified activated carbon catalysts. Russian Journal of Physical Chemistry A, 2017, 91, 490-499.	0.6	23
10	Catalytic hydrolysis of carbonyl sulphide and carbon disulphide over Fe2O3 cluster: Competitive adsorption and reaction mechanism. Scientific Reports, 2017, 7, 14452.	3.3	21
11	Density functional theory analysis of selective adsorption of AsH3 on transition metal-doped graphene. Journal of Molecular Modeling, 2019, 25, 145.	1.8	15
12	The hydrolysis mechanism and kinetic analysis for COS hydrolysis: A DFT study. Russian Journal of Physical Chemistry B, 2016, 10, 427-434.	1.3	14
13	Influence of the preparation conditions of MgAlCe catalysts on the catalytic hydrolysis of carbonyl sulfide at low temperature. RSC Advances, 2015, 5, 20530-20537.	3.6	11
14	Low Temperature Catalytic Hydrolysis of Carbon Disulfide on Activated Carbon Fibers Modified by Non-thermal Plasma. Plasma Chemistry and Plasma Processing, 2017, 37, 1175-1191.	2.4	10
15	Low temperature catalytic hydrolysis of carbon disulfide over nano-active carbon based catalysts prepared by liquid phase deposition. RSC Advances, 2017, 7, 40354-40361.	3.6	8
16	The Kinetic Model of Simultaneous Catalytic Hydrolysis of Carbon Disulfide and Carbonyl Sulfide over Modified Walnut Shell Biochar. Journal of Chemical Engineering of Japan, 2017, 50, 115-121.	0.6	7
17	Influence of Ca doping and calcination temperature on selective catalytic oxidation of NO over Mn–Ca–O _x –(CO ₃) _y catalysts. New Journal of Chemistry, 2017, 41, 11742-11749.	2.8	6
18	Fe/MCSAC catalysts surface modified with nitrogen DBD nonâ€ŧhermal plasma for carbonyl sulfide catalytic hydrolysis activity enhancement. Surface and Interface Analysis, 2017, 49, 766-775.	1.8	5

#	Article	IF	CITATIONS
19	Simultaneous Adsorption/Oxidation of NO and SO ₂ over Al–Cu Composite Metal Oxides Supported on MCM-41 at Low Temperature. Journal of Chemical Engineering of Japan, 2017, 50, 376-382.	0.6	5
20	Structure, energetics, and bonding of novel potential high energy density materials Rh2(N5)4: A DFT study. Chemical Physics Letters, 2015, 639, 166-171.	2.6	4
21	The crucial role of water clusters (H 2 O) n (n = 0–5) on the catalytic oxidation of AsH 3 : An accurate theoretical investigation. Computational and Theoretical Chemistry, 2017, 1115, 69-79.	2.5	2