Alexandra G Fraga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8152598/publications.pdf

Version: 2024-02-01

393982 454577 1,454 32 19 30 citations g-index h-index papers 33 33 33 2077 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multiple facets and functions of the toxin mycolactone produced by Mycobacterium ulcerans. , 2022, , $271-290$.		O
2	Genetics in the Host―Mycobacterium ulcerans interaction. Immunological Reviews, 2021, 301, 222-241.	2.8	0
3	Genetic variants in human BCL2L11 (BIM) are associated with ulcerative forms of Buruli ulcer. Emerging Microbes and Infections, 2021, 10, 223-225.	3.0	4
4	Individual and clinical variables associated with the risk of Buruli ulcer acquisition: AÂsystematic review and meta-analysis. PLoS Neglected Tropical Diseases, 2020, 14, e0008161.	1.3	4
5	Antimicrobial activity of Mycobacteriophage D29 Lysin B during Mycobacterium ulcerans infection. PLoS Neglected Tropical Diseases, 2019, 13, e0007113.	1.3	25
6	Increasing the potential of cell-penetrating peptides for cancer therapy using a new pentagonal scaffold. European Journal of Pharmacology, 2019, 860, 172554.	1.7	7
7	K2 Capsule Depolymerase Is Highly Stable, Is Refractory to Resistance, and Protects Larvae and Mice from Acinetobacter baumannii Sepsis. Applied and Environmental Microbiology, 2019, 85, .	1.4	38
8	The Immunology of Buruli Ulcer. , 2019, , 135-158.		3
9	Immune-evasion Strategies of Mycobacteria and Their Implications for the Protective Immune Response. Current Issues in Molecular Biology, 2018, 25, 169-198.	1.0	12
10	Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. Reactive and Functional Polymers, 2017, 114, 38-48.	2.0	16
11	Preparation and biological evaluation of ethionamide-mesoporous silicon nanoparticles against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 403-405.	1.0	11
12	Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer. PLoS Neglected Tropical Diseases, 2016, 10, e0004671.	1.3	35
13	Clinical Epidemiology of Buruli Ulcer from Benin (2005-2013): Effect of Time-Delay to Diagnosis on Clinical Forms and Severe Phenotypes. PLoS Neglected Tropical Diseases, 2015, 9, e0004005.	1.3	23
14	Spontaneous Healing of Mycobacterium ulcerans Lesions in the Guinea Pig Model. PLoS Neglected Tropical Diseases, 2015, 9, e0004265.	1.3	18
15	BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4+IL-17+TNF+IL-2+ T cells. Vaccine, 2015, 33, 85-91.	1.7	42
16	Proteomic Analysis of the Action of the Mycobacterium ulcerans Toxin Mycolactone: Targeting Host Cells Cytoskeleton and Collagen. PLoS Neglected Tropical Diseases, 2014, 8, e3066.	1.3	27
17	Phage Therapy Is Effective against Infection by Mycobacterium ulcerans in a Murine Footpad Model. PLoS Neglected Tropical Diseases, 2013, 7, e2183.	1.3	91
18	Corticosteroid-Induced Immunosuppression Ultimately Does Not Compromise the Efficacy of Antibiotherapy in Murine Mycobacterium ulcerans Infection. PLoS Neglected Tropical Diseases, 2012, 6, e1925.	1.3	13

#	Article	IF	CITATIONS
19	Local and Regional Re-Establishment of Cellular Immunity during Curative Antibiotherapy of Murine Mycobacterium ulcerans Infection. PLoS ONE, 2012, 7, e32740.	1.1	21
20	Cellular Immunity Confers Transient Protection in Experimental Buruli Ulcer following BCG or Mycolactone-Negative Mycobacterium ulcerans Vaccination. PLoS ONE, 2012, 7, e33406.	1.1	38
21	<i>Mycobacterium ulcerans</i> Triggers T-Cell Immunity followed by Local and Regional but Not Systemic Immunosuppression. Infection and Immunity, 2011, 79, 421-430.	1.0	41
22	IFN-γ–Dependent Activation of Macrophages during Experimental Infections by <i>Mycobacterium ulcerans</i> Is Impaired by the Toxin Mycolactone. Journal of Immunology, 2010, 184, 947-955.	0.4	50
23	Response to Treatment in a Prospective Cohort of Patients with Large Ulcerated Lesions Suspected to Be Buruli Ulcer (Mycobacterium ulcerans Disease). PLoS Neglected Tropical Diseases, 2010, 4, e736.	1.3	53
24	Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with <i>Mycobacterium tuberculosis</i>). Journal of Experimental Medicine, 2010, 207, 1609-1616.	4.2	230
25	Fine-Needle Aspiration, an Efficient Sampling Technique for Bacteriological Diagnosis of Nonulcerative Buruli Ulcer. Journal of Clinical Microbiology, 2009, 47, 1700-1704.	1.8	58
26	Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. International Journal of Antimicrobial Agents, 2008, 31, 37-45.	1.1	85
27	New Foci of Buruli Ulcer, Angola and Democratic Republic of Congo. Emerging Infectious Diseases, 2008, 14, 1790-1792.	2.0	17
28	Developments on Drug Delivery Systems for the Treatment of Mycobacterial Infections. Current Topics in Medicinal Chemistry, 2008, 8, 579-591.	1.0	45
29	First Cultivation and Characterization of Mycobacterium ulcerans from the Environment. PLoS Neglected Tropical Diseases, 2008, 2, e178.	1.3	175
30	Mycolactone-Mediated Inhibition of Tumor Necrosis Factor Production by Macrophages Infected with Mycobacterium ulcerans Has Implications for the Control of Infection. Infection and Immunity, 2007, 75, 3979-3988.	1.0	88
31	Evidence for an Intramacrophage Growth Phase of Mycobacterium ulcerans. Infection and Immunity, 2007, 75, 977-987.	1.0	91
32	Infection with Mycobacterium ulcerans Induces Persistent Inflammatory Responses in Mice. Infection and Immunity, 2005, 73, 6299-6310.	1.0	92