Bram van Ginneken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8152480/publications.pdf

Version: 2024-02-01

418 papers

44,055 citations

87 h-index 195 g-index

428 all docs

428 docs citations

428 times ranked

35302 citing authors

#	Article	IF	CITATIONS
1	A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42, 60-88.	11.6	7,976
2	Ridge-Based Vessel Segmentation in Color Images of the Retina. IEEE Transactions on Medical Imaging, 2004, 23, 501-509.	8.9	2,914
3	Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199.	7.4	2,003
4	Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Transactions on Medical Imaging, 2016, 35, 1153-1159.	8.9	1,261
5	Reflectance and texture of real-world surfaces. ACM Transactions on Graphics, 1999, 18, 1-34.	7.2	1,065
6	Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks. IEEE Transactions on Medical Imaging, 2016, 35, 1160-1169.	8.9	926
7	Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets. IEEE Transactions on Medical Imaging, 2009, 28, 1251-1265.	8.9	848
8	Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports, 2016, 6, 26286.	3.3	764
9	Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis, 2017, 35, 303-312.	11.6	728
10	Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Medical Image Analysis, 2017, 42, 1-13.	11.6	710
11	CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19—Definition and Evaluation. Radiology, 2020, 296, E97-E104.	7. 3	693
12	Comparative study of retinal vessel segmentation methods on a new publicly available database. , 2004, 5370, 648.		496
13	Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Medical Image Analysis, 2014, 18, 359-373.	11.6	469
14	Computer analysis of computed tomography scans of the lung: a survey. IEEE Transactions on Medical Imaging, 2006, 25, 385-405.	8.9	460
15	Active shape model segmentation with optimal features. IEEE Transactions on Medical Imaging, 2002, 21, 924-933.	8.9	444
16	Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Medical Image Analysis, 2006, 10, 19-40.	11.6	433
17	Automatic detection of red lesions in digital color fundus photographs. IEEE Transactions on Medical Imaging, 2005, 24, 584-592.	8.9	422
18	Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs. IEEE Transactions on Medical Imaging, 2010, 29, 185-195.	8.9	414

#	Article	IF	CITATIONS
19	Computer-aided diagnosis in chest radiography: a survey. IEEE Transactions on Medical Imaging, 2001, 20, 1228-1241.	8.9	411
20	Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncology, The, 2020, 21, 233-241.	10.7	407
21	Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge. IEEE Transactions on Medical Imaging, 2011, 30, 1901-1920.	8.9	363
22	A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises. Proceedings of the IEEE, 2021, 109, 820-838.	21.3	339
23	Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images. IEEE Transactions on Medical Imaging, 2016, 35, 1273-1284.	8.9	335
24	Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans. IEEE Transactions on Medical Imaging, 2009, 28, 1000-1010.	8.9	330
25	Automated Detection and Differentiation of Drusen, Exudates, and Cotton-Wool Spots in Digital Color Fundus Photographs for Diabetic Retinopathy Diagnosis. , 2007, 48, 2260.		328
26	A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Medical Image Analysis, 2009, 13, 757-770.	11.6	270
27	From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 550-560.	8.9	269
28	Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nature Genetics, 2019, 51, 494-505.	21.4	257
29	The Medical Segmentation Decathlon. Nature Communications, 2022, 13, .	12.8	252
30	Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study. Medical Image Analysis, 2010, 14, 707-722.	11.6	245
31	Evaluation of a System for Automatic Detection of Diabetic Retinopathy From Color Fundus Photographs in a Large Population of Patients With Diabetes. Diabetes Care, 2008, 31, 193-198.	8.6	243
32	Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 2015, 26, 195-202.	11.6	236
33	Computer-aided Diagnosis: How to Move from the Laboratory to the Clinic. Radiology, 2011, 261, 719-732.	7.3	230
34	Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Scientific Reports, 2017, 7, 46479.	3.3	230
35	Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Medical Image Analysis, 2014, 18, 374-384.	11,6	214
36	GANs for medical image analysis. Artificial Intelligence in Medicine, 2020, 109, 101938.	6.5	211

#	Article	IF	Citations
37	Toward automated segmentation of the pathological lung in CT. IEEE Transactions on Medical Imaging, 2005, 24, 1025-1038.	8.9	205
38	Why rankings of biomedical image analysis competitions should be interpreted with care. Nature Communications, 2018, 9, 5217.	12.8	198
39	Deep learning for chest X-ray analysis: A survey. Medical Image Analysis, 2021, 72, 102125.	11.6	196
40	Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Transactions on Medical Imaging, 2002, 21, 139-149.	8.9	193
41	Segmentation of the Optic Disc, Macula and Vascular Arch in Fundus Photographs. IEEE Transactions on Medical Imaging, 2007, 26, 116-127.	8.9	192
42	Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Medical Physics, 2009, 36, 2934-2947.	3.0	191
43	Fast detection of the optic disc and fovea in color fundus photographs. Medical Image Analysis, 2009, 13, 859-870.	11.6	188
44	Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. European Radiology, 2021, 31, 3797-3804.	4.5	178
45	Automatic Calcium Scoring in Low-Dose Chest CT Using Deep Neural Networks With Dilated Convolutions. IEEE Transactions on Medical Imaging, 2018, 37, 615-625.	8.9	176
46	Extraction of Airways From CT (EXACT'09). IEEE Transactions on Medical Imaging, 2012, 31, 2093-2107.	8.9	173
47	Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities. Scientific Reports, 2017, 7, 5110.	3.3	171
48	Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Medical Image Analysis, 2019, 53, 142-155.	11.6	170
49	COVID-19 on Chest Radiographs: A Multireader Evaluation of an Artificial Intelligence System. Radiology, 2020, 296, E166-E172.	7.3	167
50	Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation. Lecture Notes in Computer Science, 2017, , 516-524.	1.3	167
51	Diffuse and Specular Reflectance from Rough Surfaces. Applied Optics, 1998, 37, 130.	2.1	159
52	Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Scientific Reports, 2018, 8, 15497.	3.3	155
53	Automated Measurement of the Arteriolar-to-Venular Width Ratio in Digital Color Fundus Photographs. IEEE Transactions on Medical Imaging, 2011, 30, 1941-1950.	8.9	153
54	Pulmonary Perifissural Nodules on CT Scans: Rapid Growth Is Not a Predictor of Malignancy. Radiology, 2012, 265, 611-616.	7.3	153

#	Article	IF	CITATIONS
55	Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. , 2015, , .		150
56	Coronary Artery Calcium Can Predict All-Cause Mortality and Cardiovascular Events on Low-Dose CT Screening for Lung Cancer. American Journal of Roentgenology, 2012, 198, 505-511.	2.2	146
57	Observer Variability for Classification of Pulmonary Nodules on Low-Dose CT Images and Its Effect on Nodule Management. Radiology, 2015, 277, 863-871.	7.3	145
58	Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Modern Pathology, 2018, 31, 1502-1512.	5.5	145
59	A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: What is the minimum increase in size to detect growth in repeated CT examinations. European Radiology, 2009, 19, 800-808.	4.5	144
60	CT-quantified emphysema in male heavy smokers: association with lung function decline. Thorax, 2011, 66, 782-787.	5.6	142
61	Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus. Medical Image Analysis, 2010, 14, 39-49.	11.6	139
62	A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Medical Image Analysis, 2006, 10, 247-258.	11.6	134
63	Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiological Physics and Technology, 2017, 10, 23-32.	1.9	133
64	Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Medical Image Analysis, 2014, 18, 1217-1232.	11.6	131
65	Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Medical Image Analysis, 2006, 10, 888-898.	11.6	128
66	Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. Journal of Medical Imaging, 2017, 4, 1.	1.5	126
67	Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomedical Optics Express, 2018, 9, 1545.	2.9	124
68	Identification of Chronic Obstructive Pulmonary Disease in Lung Cancer Screening Computed Tomographic Scans. JAMA - Journal of the American Medical Association, 2011, 306, 1775-81.	7.4	123
69	Computer-aided diagnosis in high resolution CT of the lungs. Medical Physics, 2003, 30, 3081-3090.	3.0	122
70	Comparing coronary artery calcium and thoracic aorta calcium for prediction of all-cause mortality and cardiovascular events on low-dose non-gated computed tomography in a high-risk population of heavy smokers. Atherosclerosis, 2010, 209, 455-462.	0.8	117
71	Automated measurement of fetal head circumference using 2D ultrasound images. PLoS ONE, 2018, 13, e0200412.	2.5	117
72	Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence. Radiology, 2021, 298, E18-E28.	7.3	116

#	Article	IF	CITATIONS
73	Automatic Coronary Calcium Scoring in Low-Dose Chest Computed Tomography. IEEE Transactions on Medical Imaging, 2012, 31, 2322-2334.	8.9	112
74	Use of Volumetry for Lung Nodule Management: Theory and Practice. Radiology, 2017, 284, 630-644.	7.3	111
75	Reflectance and texture of real-world surfaces. , 0, , .		110
76	Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review. Physics in Medicine and Biology, 2013, 58, R187-R220.	3.0	110
77	Automatic detection of large pulmonary solid nodules in thoracic CT images. Medical Physics, 2015, 42, 5642-5653.	3.0	109
78	Quantitative Computed Tomography in COPD: Possibilities and Limitations. Lung, 2012, 190, 133-145.	3.3	107
79	Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard. Scientific Reports, 2019, 9, 864.	3.3	107
80	Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks. Biomedical Optics Express, 2017, 8, 3292.	2.9	106
81	Interactive segmentation of abdominal aortic aneurysms in CTA images. Medical Image Analysis, 2004, 8, 127-138.	11.6	105
82	Information Fusion for Diabetic Retinopathy CAD in Digital Color Fundus Photographs. IEEE Transactions on Medical Imaging, 2009, 28, 775-785.	8.9	105
83	The importance of stain normalization in colorectal tissue classification with convolutional networks. , 2017, , .		105
84	On Combining Computer-Aided Detection Systems. IEEE Transactions on Medical Imaging, 2011, 30, 215-223.	8.9	103
85	Evaluation of a Computer-Aided Diagnosis System for Diabetic Retinopathy Screening on Public Data. , 2011, 52, 4866.		101
86	An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Scientific Reports, 2016, 6, 25265.	3.3	100
87	Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin. Neurolmage: Clinical, 2017, 14, 391-399.	2.7	99
88	Semi-automatic construction of reference standards for evaluation of image registration. Medical Image Analysis, 2011, 15, 71-84.	11.6	98
89	Towards a close computed tomography monitoring approach for screen detected subsolid pulmonary nodules?. European Respiratory Journal, 2015, 45, 765-773.	6.7	98
90	Automatic segmentation of lung fields in chest radiographs. Medical Physics, 2000, 27, 2445-2455.	3.0	97

#	Article	IF	CITATIONS
91	Adapting Active Shape Models for 3D Segmentation of Tubular Structures in Medical Images. Lecture Notes in Computer Science, 2003, 18 , $136-147$.	1.3	97
92	Timing-Invariant Imaging of Collateral Vessels in Acute Ischemic Stroke. Stroke, 2013, 44, 2194-2199.	2.0	93
93	Automated Staging of Age-Related Macular Degeneration Using Optical Coherence Tomography. , 2017, 58, 2318.		93
94	Reduced Bone Density and Vertebral Fractures in Smokers. Men and COPD Patients at Increased Risk. Annals of the American Thoracic Society, 2015, 12, 648-656.	3.2	92
95	A Novel Multiple-Instance Learning-Based Approach to Computer-Aided Detection of Tuberculosis on Chest X-Rays. IEEE Transactions on Medical Imaging, 2015, 34, 179-192.	8.9	92
96	Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. European Radiology, 2016, 26, 2139-2147.	4.5	87
97	Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system. Scientific Reports, 2020, 10, 5492.	3.3	85
98	Automatic Segmentation of the Pulmonary Lobes From Chest CT Scans Based on Fissures, Vessels, and Bronchi. IEEE Transactions on Medical Imaging, 2013, 32, 210-222.	8.9	84
99	Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Medical Physics, 2017, 44, 1017-1027.	3.0	84
100	Automatic Segmentation of Pulmonary Lobes Robust Against Incomplete Fissures. IEEE Transactions on Medical Imaging, 2010, 29, 1286-1296.	8.9	83
101	ESR/ERS statement paper on lung cancer screening. European Radiology, 2020, 30, 3277-3294.	4.5	83
102	Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease. Medical Physics, 2007, 34, 1450-1461.	3.0	81
103	Noise Reduction in Computed Tomography Scans Using 3-D Anisotropic Hybrid Diffusion With Continuous Switch. IEEE Transactions on Medical Imaging, 2009, 28, 1585-1594.	8.9	81
104	Relational Modeling for Robust and Efficient Pulmonary Lobe Segmentation in CT Scans. IEEE Transactions on Medical Imaging, 2020, 39, 2664-2675.	8.9	81
105	Computer-aided diagnosis in chest radiography: Beyond nodules. European Journal of Radiology, 2009, 72, 226-230.	2.6	80
106	Improving airway segmentation in computed tomography using leak detection with convolutional networks. Medical Image Analysis, 2017, 36, 52-60.	11.6	78
107	TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps. Physics in Medicine and Biology, 2011, 56, 3857-3872.	3.0	77
108	Diagnostic Accuracy of Computer-Aided Detection of Pulmonary Tuberculosis in Chest Radiographs: A Validation Study from Sub-Saharan Africa. PLoS ONE, 2014, 9, e106381.	2.5	77

#	Article	IF	CITATIONS
109	Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification. IEEE Transactions on Medical Imaging, 2006, 25, 602-611.	8.9	76
110	The Sensitivity and Specificity of Using a Computer Aided Diagnosis Program for Automatically Scoring Chest X-Rays of Presumptive TB Patients Compared with Xpert MTB/RIF in Lusaka Zambia. PLoS ONE, 2014, 9, e93757.	2.5	76
111	Automatic Segmentation of Pulmonary Segments From Volumetric Chest CT Scans. IEEE Transactions on Medical Imaging, 2009, 28, 621-630.	8.9	7 5
112	Local noise weighted filtering for emphysema scoring of low-dose CT images. IEEE Transactions on Medical Imaging, 2006, 25, 451-463.	8.9	71
113	Detection of tuberculosis using digital chest radiography: automated reading vs. interpretation by clinical officers. International Journal of Tuberculosis and Lung Disease, 2013, 17, 1613-1620.	1.2	71
114	Computed tomography-quantified emphysema distribution is associated with lung function decline. European Respiratory Journal, 2012, 40, 844-850.	6.7	70
115	Predictive Accuracy of the PanCan Lung Cancer Risk Prediction Model -External Validation based on CT from the Danish Lung Cancer Screening Trial. European Radiology, 2015, 25, 3093-3099.	4.5	70
116	Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and ageâ€related macular degeneration. Acta Ophthalmologica, 2020, 98, 368-377.	1.1	68
117	Computer-aided Detection of Lung Cancer on Chest Radiographs: Effect on Observer Performance. Radiology, 2010, 257, 532-540.	7.3	66
118	Supervised Enhancement Filters: Application to Fissure Detection in Chest CT Scans. IEEE Transactions on Medical Imaging, 2008, 27, $1-10$.	8.9	65
119	Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT. Radiology, 2021, 300, 438-447.	7.3	65
120	Timing-Invariant Reconstruction for Deriving High-Quality CT Angiographic Data from Cerebral CT Perfusion Data. Radiology, 2012, 263, 216-225.	7.3	64
121	Diagnosis of chronic obstructive pulmonary disease in lung cancer screening Computed Tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening. Respiratory Research, 2013, 14, 59.	3.6	63
122	Computer-aided Detection Improves Detection of Pulmonary Nodules in Chest Radiographs beyond the Support by Bone-suppressed Images. Radiology, 2014, 272, 252-261.	7.3	63
123	Automatic Detection of Tuberculosis in Chest Radiographs Using a Combination of Textural, Focal, and Shape Abnormality Analysis. IEEE Transactions on Medical Imaging, 2015, 34, 2429-2442.	8.9	62
124	Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Physics in Medicine and Biology, 2015, 60, 1307-1323.	3.0	61
125	Monitoring of Smoking-induced Emphysema with CT in a Lung Cancer Screening Setting: Detection of Real Increase in Extent of Emphysema. Radiology, 2007, 244, 890-897.	7.3	60
126	Automated Fetal Head Detection and Circumference Estimation from Free-Hand Ultrasound Sweeps Using Deep Learning in Resource-Limited Countries. Ultrasound in Medicine and Biology, 2019, 45, 773-785.	1.5	59

#	Article	IF	Citations
127	BIAS: Transparent reporting of biomedical image analysis challenges. Medical Image Analysis, 2020, 66, 101796.	11.6	59
128	How does artificial intelligence in radiology improve efficiency and health outcomes?. Pediatric Radiology, 2022, 52, 2087-2093.	2.0	59
129	Detection and quantification of the solid component in pulmonary subsolid nodules by semiautomatic segmentation. European Radiology, 2015, 25, 488-496.	4.5	58
130	Evaluation of a System for Automatic Detection of Diabetic Retinopathy From Color Fundus Photographs in a Large Population of Patients With Diabetes. Diabetes Care, 2008, 31, e64-e64.	8.6	57
131	ESR/ERS statement paper on lung cancer screening. European Respiratory Journal, 2020, 55, 1900506.	6.7	57
132	Early Identification of Small Airways Disease on Lung Cancer Screening CT: Comparison of Current Air Trapping Measures. Lung, 2012, 190, 629-633.	3.3	56
133	The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease. European Radiology, 2012, 22, 120-128.	4.5	56
134	Disease Progression Modeling in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 294-302.	5.6	56
135	Texture histograms as a function of irradiation and viewing direction. International Journal of Computer Vision, 1999, 31, 169-184.	15.6	55
136	Automated classification of hyperlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution CT of the lung. Medical Physics, 2006, 33, 2610-2620.	3.0	54
137	Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs. Scientific Reports, 2015, 5, 12215.	3.3	54
138	Automatic rib segmentation and labeling in computed tomography scans using a general framework for detection, recognition and segmentation of objects in volumetric data. Medical Image Analysis, 2007, 11, 35-46.	11.6	52
139	Normalizing computed tomography data reconstructed with different filter kernels: effect on emphysema quantification. European Radiology, 2016, 26, 478-486.	4.5	52
140	iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network. Scientific Reports, 2019, 9, 11591.	3.3	52
141	Coronary Artery Calcification Scoring in Low-Dose Ungated CT Screening for Lung Cancer: Interscan Agreement. American Journal of Roentgenology, 2010, 194, 1244-1249.	2.2	51
142	Normal Range of Emphysema and Air Trapping on CT in Young Men. American Journal of Roentgenology, 2012, 199, 336-340.	2,2	51
143	Long-Term Active Surveillance of Screening Detected Subsolid Nodules is a Safe Strategy to Reduce Overtreatment. Journal of Thoracic Oncology, 2018, 13, 1454-1463.	1.1	51
144	Filter learning: Application to suppression of bony structures from chest radiographs. Medical Image Analysis, 2006, 10, 826-840.	11.6	50

#	Article	IF	Citations
145	A method for the automatic quantification of the completeness of pulmonary fissures: evaluation in a database of subjects with severe emphysema. European Radiology, 2012, 22, 302-309.	4.5	50
146	Airway wall thickness associated with forced expiratory volume in 1 second decline and development of airflow limitation. European Respiratory Journal, 2015, 45, 644-651.	6.7	50
147	Image Level Training and Prediction: Intracranial Hemorrhage Identification in 3D Non-Contrast CT. IEEE Access, 2019, 7, 92355-92364.	4.2	48
148	Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children. Pediatric Radiology, 2020, 50, 482-491.	2.0	48
149	Airway wall thickening on CT: Relation to smoking status and severity of COPD. Respiratory Medicine, 2019, 146, 36-41.	2.9	47
150	Vessel segmentation in 3D spectral OCT scans of the retina. , 2008, , .		46
151	Automatic classification of retinal vessels into arteries and veins. Proceedings of SPIE, 2009, , .	0.8	46
152	Lung-RADS Category 4X: Does It Improve Prediction of Malignancy in Subsolid Nodules?. Radiology, 2017, 284, 264-271.	7.3	46
153	Observer variability for Lung-RADS categorisation of lung cancer screening CTs: impact on patient management. European Radiology, 2019, 29, 924-931.	4.5	46
154	Fusion of Local and Global Detection Systems to Detect Tuberculosis in Chest Radiographs. Lecture Notes in Computer Science, 2010, 13, 650-657.	1.3	46
155	Bag-of-Frequencies: A Descriptor of Pulmonary Nodules in Computed Tomography Images. IEEE Transactions on Medical Imaging, 2015, 34, 962-973.	8.9	45
156	On Combining Multiple-Instance Learning and Active Learning for Computer-Aided Detection of Tuberculosis. IEEE Transactions on Medical Imaging, 2016, 35, 1013-1024.	8.9	45
157	Evaluation of the diagnostic accuracy of Computer-Aided Detection of tuberculosis on Chest radiography among private sector patients in Pakistan. Scientific Reports, 2018, 8, 12339.	3.3	45
158	Machine Learning Characterization of COPD Subtypes. Chest, 2020, 157, 1147-1157.	0.8	44
159	Toward automatic regional analysis of pulmonary function using inspiration and expiration thoracic CT. Medical Physics, 2012, 39, 1650-1662.	3.0	43
160	Subphenotypes of Mild-to-Moderate COPD by Factor and Cluster Analysis of Pulmonary Function, CT Imaging and Breathomics in a Population-Based Survey. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2013, 10, 277-285.	1.6	43
161	Robust Segmentation and Anatomical Labeling of the Airway Tree from Thoracic CT Scans. Lecture Notes in Computer Science, 2008, 11, 219-226.	1.3	43
162	Supervised quality assessment of medical image registration: Application to intra-patient CT lung registration. Medical Image Analysis, 2012, 16, 1521-1531.	11.6	42

#	Article	lF	Citations
163	Solid, Part-Solid, or Non-Solid?. Investigative Radiology, 2015, 50, 168-173.	6.2	42
164	Software performance in segmenting ground-glass and solid components of subsolid nodules in pulmonary adenocarcinomas. European Radiology, 2016, 26, 4465-4474.	4.5	42
165	Malignancy risk estimation of screen-detected nodules at baseline CT: comparison of the PanCan model, Lung-RADS and NCCN guidelines. European Radiology, 2017, 27, 4019-4029.	4.5	42
166	Automatic detection of calcifications in the aorta from CT scans of the abdomen1. Academic Radiology, 2004, 11, 247-257.	2.5	41
167	Screening for Lung Cancer with Digital Chest Radiography: Sensitivity and Number of Secondary Work-up CT Examinations. Radiology, 2010, 255, 629-637.	7.3	41
168	Contextual computer-aided detection: Improving bright lesion detection in retinal images and coronary calcification identification in CT scans. Medical Image Analysis, 2012, 16, 50-62.	11.6	41
169	Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation. , 2016, , .		41
170	A Deep Learning Model for Segmentation of Geographic Atrophy to Study Its Long-Term Natural History. Ophthalmology, 2020, 127, 1086-1096.	5.2	41
171	Clavicle segmentation in chest radiographs. Medical Image Analysis, 2012, 16, 1490-1502.	11.6	40
172	Automatic Drusen Quantification and Risk Assessment of Age-Related Macular Degeneration on Color Fundus Images., 2013, 54, 3019.		40
173	Classification of CT Pulmonary Opacities as Perifissural Nodules: Reader Variability. Radiology, 2018, 288, 867-875.	7.3	40
174	Reducing inter-observer variability and interaction time of MR liver volumetry by combining automatic CNN-based liver segmentation and manual corrections. PLoS ONE, 2019, 14, e0217228.	2.5	40
175	The St. George's Respiratory Questionnaire Definition of Chronic Bronchitis May Be aÂBetter Predictor of COPD Exacerbations Compared With the Classic Definition. Chest, 2019, 156, 685-695.	0.8	40
176	Contribution of CT Quantified Emphysema, Air Trapping and Airway Wall Thickness on Pulmonary Function in Male Smokers With and Without COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2014, 11, 503-509.	1.6	39
177	CNN-based lung CT registration with multiple anatomical constraints. Medical Image Analysis, 2021, 72, 102139.	11.6	39
178	Evaluation of 4D-CT Lung Registration. Lecture Notes in Computer Science, 2009, 12, 747-754.	1.3	39
179	Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks. Peerl, 2019, 7, e8242.	2.0	39
180	Robust Segmentation of the Full Cerebral Vasculature in 4D CT of Suspected Stroke Patients. Scientific Reports, 2017, 7, 15622.	3.3	38

#	Article	IF	CITATIONS
181	Semi-automatic Reference Standard Construction for Quantitative Evaluation of Lung CT Registration. Lecture Notes in Computer Science, 2008, 11, 1006-1013.	1.3	38
182	Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression. Chest, 2018, 153, 65-76.	0.8	36
183	Brock malignancy risk calculator for pulmonary nodules: validation outside a lung cancer screening population. Thorax, 2018, 73, 857-863.	5.6	36
184	Automated aortic calcium scoring on lowâ€dose chest computed tomography. Medical Physics, 2010, 37, 714-723.	3.0	35
185	Detection of Subsolid Nodules in Lung Cancer Screening. Investigative Radiology, 2018, 53, 441-449.	6.2	35
186	Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis, 2021, 73, 102141.	11.6	35
187	Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT. Physics in Medicine and Biology, 2009, 54, 7009-7024.	3.0	34
188	Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography. IEEE Transactions on Medical Imaging, 2015, 34, 1965-1975.	8.9	34
189	Predicting Malignancy Risk of Screen-Detected Lung Nodules–Mean Diameter or Volume. Journal of Thoracic Oncology, 2019, 14, 203-211.	1.1	34
190	Content-Based Image Retrieval by Metric Learning From Radiology Reports: Application to Interstitial Lung Diseases. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 281-292.	6.3	33
191	Lung cancer risk to personalise annual and biennial follow-up computed tomography screening. Thorax, 2018, 73, 626-633.	5.6	33
192	Intracerebral Haemorrhage Segmentation in Non-Contrast CT. Scientific Reports, 2019, 9, 17858.	3.3	33
193	Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: ready for practice?. Translational Lung Cancer Research, 2021, 10, 2378-2388.	2.8	33
194	Computer-aided detection (CAD) of lung nodules and small tumours on chest radiographs. European Journal of Radiology, 2009, 72, 218-225.	2.6	32
195	Low-dose CT measurements of airway dimensions and emphysema associated with airflow limitation in heavy smokers: a cross sectional study. Respiratory Research, 2013, 14, 11.	3.6	32
196	Novel Genes for Airway Wall Thickness Identified with Combined Genome-Wide Association and Expression Analyses. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 547-556.	5.6	32
197	Automatic Identification of Reticular Pseudodrusen Using Multimodal Retinal Image Analysis. Investigative Ophthalmology and Visual Science, 2015, 56, 633-639.	3.3	32
198	Cardiomegaly Detection on Chest Radiographs: Segmentation Versus Classification. IEEE Access, 2020, 8, 94631-94642.	4.2	32

#	Article	IF	Citations
199	Anisotropic 3D Multi-Stream CNN for Accurate Prostate Segmentation from Multi-Planar MRI. Computer Methods and Programs in Biomedicine, 2021, 200, 105821.	4.7	32
200	mlVIRNET: Multilevel Variational Image Registration Network. Lecture Notes in Computer Science, 2019, , 257-265.	1.3	32
201	Rate of progression of CT-quantified emphysema in male current and ex-smokers: a follow-up study. Respiratory Research, 2013, 14, 55.	3.6	31
202	Automatic detection of pleural effusion in chest radiographs. Medical Image Analysis, 2016, 28, 22-32.	11.6	31
203	Active-shape-model-based segmentation of abdominal aortic aneurysms in CTA images. , 2002, , .		30
204	Automatic segmentation of intracranial arteries and veins in fourâ€dimensional cerebral CT perfusion scans. Medical Physics, 2010, 37, 2956-2966.	3.0	30
205	Automated age-related macular degeneration classification in OCT using unsupervised feature learning. Proceedings of SPIE, $2015, \ldots$	0.8	30
206	Computer Vision Tool and Technician as First Reader of Lung Cancer Screening CT Scans. Journal of Thoracic Oncology, 2016, 11, 709-717.	1.1	30
207	Computerâ€aided detection of interstitial abnormalities in chest radiographs using a reference standard based on computed tomography. Medical Physics, 2007, 34, 4798-4809.	3.0	29
208	Registration of 3D spectral OCT volumes using 3D SIFT feature point matching. Proceedings of SPIE, 2009, , .	0.8	29
209	Computer-Aided Segmentation and Volumetry of Artificial Ground-Glass Nodules at Chest CT. American Journal of Roentgenology, 2013, 201, 295-300.	2.2	29
210	Comparison of different methods for tissue segmentation in histopathological whole-slide images. , 2017, , .		29
211	Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans. Physics in Medicine and Biology, 2018, 63, 085003.	3.0	29
212	Parametric Response Mapping Adds Value to Current Computed Tomography Biomarkers in Diagnosing Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1084-1086.	5.6	28
213	Fleischner recommendations for the management of subsolid pulmonary nodules: high awareness but limited conformance – a survey study. European Radiology, 2016, 26, 3840-3849.	4.5	28
214	Malignancy risk estimation of pulmonary nodules in screening CTs: Comparison between a computer model and human observers. PLoS ONE, 2017, 12, e0185032.	2.5	28
215	Incidental perifissural nodules on routine chest computed tomography: lung cancer or not?. European Radiology, 2018, 28, 1095-1101.	4.5	28
216	Streaming Convolutional Neural Networks for End-to-End Learning With Multi-Megapixel Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 1581-1590.	13.9	28

#	Article	IF	Citations
217	Distribution of emphysema in heavy smokers: Impact on pulmonary function. Respiratory Medicine, 2010, 104, 76-82.	2.9	27
218	Bone suppressed images improve radiologists' detection performance for pulmonary nodules in chest radiographs. European Journal of Radiology, 2013, 82, 2399-2405.	2.6	26
219	Discriminating dominant computed tomography phenotypes in smokers without or with mild COPD. Respiratory Medicine, 2014, 108, 136-143.	2.9	26
220	Computed tomographic findings in subjects who died from respiratory disease in the National Lung Screening Trial. European Respiratory Journal, 2017, 49, 1601814.	6.7	26
221	Automatic detection of the foveal center in optical coherence tomography. Biomedical Optics Express, 2017, 8, 5160.	2.9	26
222	Google's lung cancer Al: a promising tool that needs further validation. Nature Reviews Clinical Oncology, 2019, 16, 532-533.	27.6	26
223	Lung Function Decline in Male Heavy Smokers Relates to Baseline Airflow Obstruction Severity. Chest, 2012, 142, 1530-1538.	0.8	25
224	Suppression of Translucent Elongated Structures: Applications in Chest Radiography. IEEE Transactions on Medical Imaging, 2013, 32, 2099-2113.	8.9	25
225	Semi-Automatic Quantification of Subsolid Pulmonary Nodules: Comparison with Manual Measurements. PLoS ONE, 2013, 8, e80249.	2.5	25
226	Automatic versus human reading of chest X-rays in the Zambia National Tuberculosis Prevalence Survey. International Journal of Tuberculosis and Lung Disease, 2017, 21, 880-886.	1.2	25
227	Sex Differences in Coronary Artery and Thoracic Aorta Calcification and Their Association With Cardiovascular Mortality in Heavy Smokers. JACC: Cardiovascular Imaging, 2019, 12, 1808-1817.	5.3	25
228	Dissimilarity-based classification in the absence of local ground truth: Application to the diagnostic interpretation of chest radiographs. Pattern Recognition, 2009, 42, 1768-1776.	8.1	24
229	Interscan variation of semi-automated volumetry of subsolid pulmonary nodules. European Radiology, 2015, 25, 1040-1047.	4.5	24
230	Accuracy of an automated system for tuberculosis detection on chest radiographs in high-risk screening. International Journal of Tuberculosis and Lung Disease, 2018, 22, 567-571.	1.2	24
231	Computer-assisted chest radiography reading for tuberculosis screening in people living with diabetes mellitus. International Journal of Tuberculosis and Lung Disease, 2018, 22, 1088-1094.	1.2	24
232	Lung cancer screening by nodule volume in Lung-RADS v1.1: negative baseline CT yields potential for increased screening interval. European Radiology, 2021, 31, 1956-1968.	4.5	24
233	Deep Learning for Lung Cancer Detection on Screening CT Scans: Results of a Large-Scale Public Competition and an Observer Study with 11 Radiologists. Radiology: Artificial Intelligence, 2021, 3, e210027.	5.8	24
234	Assessing the skeletal age from a hand radiograph: automating the Tanner-Whitehouse method. , 2003, , .		23

#	Article	IF	Citations
235	Automated localization of the optic disc and the fovea. , 2008, 2008, 3538-41.		23
236	DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration. Medical Image Analysis, 2014, 18, 449-459.	11.6	23
237	Cost-effectiveness of artificial intelligence aided vessel occlusion detection in acute stroke: an early health technology assessment. Insights Into Imaging, 2021, 12, 133.	3.4	23
238	Association of the transfer coefficient of the lung for carbon monoxide with emphysema progression in male smokers. European Respiratory Journal, 2011, 38, 1012-1018.	6.7	22
239	Timing-Invariant CT Angiography Derived from CT Perfusion Imaging in Acute Stroke: A Diagnostic Performance Study. American Journal of Neuroradiology, 2015, 36, 1834-1838.	2.4	22
240	Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT. Proceedings of SPIE, $2016, , .$	0.8	22
241	Quantitative Dose Dependency Analysis of Whole-Brain CT Perfusion Imaging. Radiology, 2016, 278, 190-197.	7.3	22
242	Iterative Augmentation of Visual Evidence for Weakly-Supervised Lesion Localization in Deep Interpretability Frameworks: Application to Color Fundus Images. IEEE Transactions on Medical Imaging, 2020, 39, 3499-3511.	8.9	22
243	Multi-scale texture classification from generalized locally orderless images. Pattern Recognition, 2003, 36, 899-911.	8.1	21
244	White Matter and Gray Matter Segmentation in 4D Computed Tomography. Scientific Reports, 2017, 7, 119.	3.3	21
245	Fully Automatic Volume Measurement of the Spleen at CT Using Deep Learning. Radiology: Artificial Intelligence, 2020, 2, e190102.	5.8	21
246	Improving hard exudate detection in retinal images through a combination of local and contextual information. , 2010, , .		20
247	Robust cranial cavity segmentation in CT and CT perfusion images of trauma and suspected stroke patients. Medical Image Analysis, 2017, 36, 216-228.	11.6	20
248	Development and Validation of a Convolutional Neural Network for Automated Detection of Scaphoid Fractures on Conventional Radiographs. Radiology: Artificial Intelligence, 2021, 3, e200260.	5.8	20
249	A non-linear gray-level appearance model improves active shape model segmentation. , 0, , .		19
250	Multi-scale Nodule Detection in Chest Radiographs. Lecture Notes in Computer Science, 2003, , 602-609.	1.3	19
251	Screening for pulmonary tuberculosis in a Tanzanian prison and computer-aided interpretation of chest X-rays. Public Health Action, 2015, 5, 249-254.	1.2	19
252	Automated estimation of progression of interstitial lung disease in CT images. Medical Physics, 2010, 37, 63-73.	3.0	18

#	Article	IF	Citations
253	Immunoglobulin E as a Biomarker for the Overlap of Atopic Asthma and Chronic Obstructive Pulmonary Disease. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2020, 7, 1-12.	0.7	18
254	Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal. , 2010, , .		17
255	Comparison of the effects of model-based iterative reconstruction and filtered back projection algorithms on software measurements in pulmonary subsolid nodules. European Radiology, 2017, 27, 3266-3274.	4.5	17
256	Stacked Bidirectional Convolutional LSTMs for Deriving 3D Non-Contrast CT From Spatiotemporal 4D CT. IEEE Transactions on Medical Imaging, 2020, 39, 985-996.	8.9	17
257	Imageâ€based automated Psoriasis Area Severity Index scoring by Convolutional Neural Networks. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 68-75.	2.4	17
258	Prostate 158 - An expert-annotated 3T MRI dataset and algorithm for prostate cancer detection. Computers in Biology and Medicine, 2022, 148, 105817.	7.0	17
259	Lung field segmentation from thin-slice CT scans in presence of severe pathology. , 2004, , .		16
260	Image Subtraction Facilitates Assessment of Volume and Density Change in Ground-Glass Opacities in Chest CT. Investigative Radiology, 2009, 44, 61-66.	6.2	16
261	Vessel tree extraction using locally optimal paths. , 2010, , .		16
262	Subsolid pulmonary nodule morphology and associated patient characteristics in a routine clinical population. European Radiology, 2017, 27, 689-696.	4.5	16
263	Interactive lung segmentation in CT scans with severe abnormalities. , 2010, , .		15
264	Chest Radiography: New Technological Developments and Their Applications. Seminars in Respiratory and Critical Care Medicine, 2014, 35, 003-016.	2.1	15
265	Smokers with emphysema and small airway disease on computed tomography have lower bone density. International Journal of COPD, 2016, 11, 1207.	2.3	15
266	The effect of late-phase contrast enhancement on semi-automatic software measurements of CT attenuation and volume of part-solid nodules in lung adenocarcinomas. European Journal of Radiology, 2016, 85, 1174-1180.	2.6	15
267	Malignancy estimation of Lung-RADS criteria for subsolid nodules on CT: accuracy of low and high risk spectrum when using NLST nodules. European Radiology, 2017, 27, 4672-4679.	4.5	15
268	Integrative Genomics Analysis Identifies ACVR1B as a Candidate Causal Gene of Emphysema Distribution. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 388-398.	2.9	15
269	Image-level detection of arterial occlusions in 4D-CTA of acute stroke patients using deep learning. Medical Image Analysis, 2020, 66, 101810.	11.6	15
270	Supervised Probabilistic Segmentation of Pulmonary Nodules in CT Scans. Lecture Notes in Computer Science, 2006, 9, 912-919.	1.3	15

#	Article	IF	Citations
271	Computer-Aided Detection of Ground Glass Nodules in Thoracic CT Images Using Shape, Intensity and Context Features. Lecture Notes in Computer Science, 2011, 14, 207-214.	1.3	15
272	Dimensionality reduction of image features using the canonical contextual correlation projection. Pattern Recognition, 2005, 38, 2409-2418.	8.1	14
273	Adaptive local multi-atlas segmentation: application to heart segmentation in chest CT scans., 2008,,.		14
274	Computed Tomography Structural Lung Changes in Discordant Airflow Limitation. PLoS ONE, 2013, 8, e65177.	2.5	14
275	Normalized emphysema scores on low dose CT: Validation as an imaging biomarker for mortality. PLoS ONE, 2017, 12, e0188902.	2.5	14
276	Asthma Is a Risk Factor for Respiratory Exacerbations Without Increased Rate of Lung Function Decline. Chest, 2018, 153, 368-377.	0.8	14
277	Automatic segmentation of the solid core and enclosed vessels in subsolid pulmonary nodules. Scientific Reports, 2018, 8, 646.	3.3	14
278	Visceral Adipose Tissue and Different Measures of Adiposity in Different Severities of Diffuse Idiopathic Skeletal Hyperostosis. Journal of Personalized Medicine, 2021, 11, 663.	2.5	14
279	Automatic Segmentation of the Pulmonary Lobes from Fissures, Airways, and Lung Borders: Evaluation of Robustness against Missing Data. Lecture Notes in Computer Science, 2009, 12, 263-271.	1.3	14
280	Global and Local Multi-valued Dissimilarity-Based Classification: Application to Computer-Aided Detection of Tuberculosis. Lecture Notes in Computer Science, 2009, 12, 724-731.	1.3	14
281	Automated detection of pulmonary nodules from low-dose computed tomography scans using a two-stage classification system based on local image features. , 2007, , .		13
282	Modified Chrispin-Norman chest radiography score for cystic fibrosis: observer agreement and correlation with lung function. European Radiology, 2011, 21, 722-729.	4.5	13
283	Interleaving cerebral CT perfusion with neck CT angiography. Part II: clinical implementation and image quality. European Radiology, 2017, 27, 2411-2418.	4.5	12
284	In vivo growth of 60 non-screening detected lung cancers: a computed tomography study. European Respiratory Journal, 2018, 51, 1702183.	6.7	12
285	Small airway segmentation in thoracic computed tomography scans: a machine learning approach. Physics in Medicine and Biology, 2018, 63, 155024.	3.0	12
286	Multiclass Brain Tissue Segmentation in 4D CT Using Convolutional Neural Networks. IEEE Access, 2019, 7, 51557-51569.	4.2	12
287	The Potential of Artificial Intelligence to Analyze Chest Radiographs for Signs of COVID-19 Pneumonia. Radiology, 2021, 299, E214-E215.	7.3	12
288	Active Learning for an Efficient Training Strategy of Computer-Aided Diagnosis Systems: Application to Diabetic Retinopathy Screening. Lecture Notes in Computer Science, 2010, 13, 603-610.	1.3	12

#	Article	IF	CITATIONS
289	Bone Suppression Increases the Visibility of Invasive Pulmonary Aspergillosis in Chest Radiographs. PLoS ONE, 2014, 9, e108551.	2.5	12
290	<title>Automatic delineation of ribs in frontal chest radiographs</title> ., 2000, 3979, 825.		11
291	Applications of Locally Orderless Images. Journal of Visual Communication and Image Representation, 2000, 11, 196-208.	2.8	11
292	Bony Structure Suppression in Chest Radiographs. Lecture Notes in Computer Science, 2006, , 166-177.	1.3	11
293	Improved texture analysis for automatic detection of tuberculosis (TB) on chest radiographs with bone suppression images. , $2013, , .$		11
294	A Bag of Words approach for discriminating between retinal images containing exudates or drusen. , 2013, , .		11
295	CT Air Trapping Is Independently Associated with Lung Function Reduction over Time. PLoS ONE, 2013, 8, e61783.	2.5	11
296	Fast interactive segmentation of the pulmonary lobes from thoracic computed tomography data. Physics in Medicine and Biology, 2017, 62, 6649-6665.	3.0	11
297	Supervised segmentation by iterated contextual pixel classification. , 0, , .		10
298	Interactive shape models. , 2003, 5032, 1206.		10
299	Model-based segmentation of abdominal aortic aneurysms in CTA images. , 2003, , .		10
300	Automated chest X-ray reading for tuberculosis in the Philippines to improve case detection: a cohort study. International Journal of Tuberculosis and Lung Disease, 2019, 23, 805-810.	1.2	10
301	Evaluation of computer aided detection of tuberculosis on chest radiography among people with diabetes in Karachi Pakistan. Scientific Reports, 2020, 10, 6276.	3.3	10
302	Computerâ€Aided Diagnosis in Thoracic Computed Tomography. Imaging Decisions (Berlin, Germany), 2008, 12, 11-22.	0.2	9
303	Rib suppression in chest radiographs to improve classification of textural abnormalities. , 2010, , .		9
304	Pulmonary function and CT biomarkers as risk factors for cardiovascular events in male lung cancer screening participants: the NELSON study. European Radiology, 2015, 25, 65-71.	4.5	9
305	Interleaving cerebral CT perfusion with neck CT angiography part I. Proof of concept and accuracy of cerebral perfusion values. European Radiology, 2017, 27, 2649-2656.	4. 5	9
306	Assisted versus Manual Interpretation of Low-Dose CT Scans for Lung Cancer Screening: Impact on Lung-RADS Agreement. Radiology Imaging Cancer, 2021, 3, e200160.	1.6	9

#	Article	IF	Citations
307	Dimensionality Reduction by Canonical Contextual Correlation Projections. Lecture Notes in Computer Science, 2004, , 562-573.	1.3	9
308	Handling label noise through model confidence and uncertainty: application to chest radiograph classification. , 2019, , .		9
309	Automated COVID-19 Grading With Convolutional Neural Networks in Computed Tomography Scans: A Systematic Comparison. IEEE Transactions on Artificial Intelligence, 2022, 3, 129-138.	4.7	9
310	Diffuse idiopathic skeletal hyperostosis is associated with incident stroke in patients with increased cardiovascular risk. Rheumatology, 2022, 61, 2867-2874.	1.9	9
311	Surface bidirectional reflection distribution function and the texture of bricks and tiles. Applied Optics, 1997, 36, 3717.	2.1	8
312	Anniversary Paper: Image processing and manipulation through the pages of <i>Medical Physics </i> Medical Physics, 2008, 35, 4488-4500.	3.0	8
313	Improved Arterial Visualization in Cerebral CT Perfusion–Derived Arteriograms Compared with Standard CT Angiography: A Visual Assessment Study. American Journal of Neuroradiology, 2012, 33, 2171-2177.	2.4	8
314	New methods for using computer-aided detection information for the detection of lung nodules on chest radiographs. British Journal of Radiology, 2014, 87, 20140015.	2.2	8
315	Automatic differentiation of color fundus images containing drusen or exudates using a contextual spatial pyramid approach. Biomedical Optics Express, 2016, 7, 709.	2.9	8
316	Follow-up of CT-derived airway wall thickness: Correcting for changes in inspiration level improves reliability. European Journal of Radiology, 2016, 85, 2008-2013.	2.6	8
317	Towards an Automatic Lung Cancer Screening System in Low Dose Computed Tomography. Lecture Notes in Computer Science, 2018, , 310-318.	1.3	8
318	Visual discrimination of screen-detected persistent from transient subsolid nodules: An observer study. PLoS ONE, 2018, 13, e0191874.	2.5	8
319	Deep Learning for Triage of Chest Radiographs: Should Every Institution Train Its Own System?. Radiology, 2019, 290, 545-546.	7.3	8
320	Typical CT Features of Intrapulmonary Lymph Nodes: A Review. Radiology: Cardiothoracic Imaging, 2020, 2, e190159.	2.5	8
321	Combining pulmonary and cardiac computed tomography biomarkers for disease-specific risk modelling in lung cancer screening. European Respiratory Journal, 2021, 58, 2003386.	6.7	8
322	Robust Segmentation Models Using an Uncertainty Slice Sampling-Based Annotation Workflow. IEEE Access, 2022, 10, 4728-4738.	4.2	8
323	Can the Extent of Low-Attenuation Areas on CT Scans Really Demonstrate Changes in the Severity of Emphysema?. Radiology, 2008, 247, 293-294.	7.3	7
324	A linking framework for pixel classification based retinal vessel segmentation. Proceedings of SPIE, 2009, , .	0.8	7

#	Article	lF	Citations
325	Automatic determination of the artery vein ratio in retinal images. Proceedings of SPIE, 2010, , .	0.8	7
326	Automated localization of costophrenic recesses and costophrenic angle measurement on frontal chest radiographs. Proceedings of SPIE, 2013, , .	0.8	7
327	Interactive lung segmentation in abnormal human and animal chest CT scans. Medical Physics, 2014, 41, 081915.	3.0	7
328	The Effect of Supplementary Bone-Suppressed Chest Radiographs on the Assessment of a Variety of Common Pulmonary Abnormalities. Journal of Thoracic Imaging, 2016, 31, 119-125.	1.5	7
329	Fast and effective quantification of symmetry in medical images for pathology detection: Application to chest radiography. Medical Physics, 2017, 44, 2242-2256.	3.0	7
330	Comparison Study of Low-Cost Ultrasound Devices for Estimation of Gestational Age in Resource-Limited Countries. Ultrasound in Medicine and Biology, 2018, 44, 2250-2260.	1.5	7
331	The Association Between Lung Hyperinflation and Coronary Artery Disease in Smokers. Chest, 2021, 160, 858-871.	0.8	7
332	Automated Segmentation of Abdominal Aortic Aneurysms in Multi-spectral MR Images. Lecture Notes in Computer Science, 2003, , 538-545.	1.3	6
333	Automatic detection of registration errors for quality assessment in medical image registration. Proceedings of SPIE, 2009, , .	0.8	6
334	Foreign object detection and removal to improve automated analysis of chest radiographs. Medical Physics, 2013, 40, 071901.	3.0	6
335	Semi-automatic classification of textures in thoracic CT scans. Physics in Medicine and Biology, 2016, 61, 5906-5924.	3.0	6
336	Automatic Placenta Localization From Ultrasound Imaging in a Resource-Limited Setting Using a Predefined Ultrasound Acquisition Protocol and Deep Learning. Ultrasound in Medicine and Biology, 2022, 48, 663-674.	1.5	6
337	Segmenting the posterior ribs in chest radiographs by iterated contextual pixel classification. , 2003, , .		5
338	Improving computer-aided diagnosis of interstitial disease in chest radiographs by combining one-class and two-class classifiers. , 2006, 6144, 1684.		5
339	Image Denoising with k-nearest Neighbor and Support Vector Regression. , 2006, , .		5
340	Improved Classification of Pulmonary Nodules by Automated Detection of Benign Subpleural Lymph Nodes. , 0, , .		5
341	Active learning approach for detection of hard exudates, cotton wool spots, and drusen in retinal images. , 2009, , .		5
342	Interactive annotation of textures in thoracic CT scans. Proceedings of SPIE, 2010, , .	0.8	5

#	Article	IF	CITATIONS
343	On Combining Algorithms for Deformable Image Registration. Lecture Notes in Computer Science, 2012, , 256-265.	1.3	5
344	Influence of study design in receiver operating characteristics studies: sequential versus independent reading. Journal of Medical Imaging, 2014, 1, 015501.	1.5	5
345	Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming. Medical Physics, 2014, 41, 071912.	3.0	5
346	Computed tomography quantification of tracheal abnormalities in COPD and their influence on airflow limitation. Medical Physics, 2017, 44, 3594-3603.	3.0	5
347	Computer-aided diagnosis of masses in breast computed tomography imaging: deep learning model with combined handcrafted and convolutional radiomic features. Journal of Medical Imaging, 2021, 8, 024501.	1.5	5
348	Iterative convolutional neural networks for automatic vertebra identification and segmentation in CT images. , 2018, , .		5
349	Scan-based competing death risk model for re-evaluating lung cancer computed tomography screening eligibility. European Respiratory Journal, 2022, 59, 2101613.	6.7	5
350	Automated estimation of total lung volume using chest radiographs and deep learning. Medical Physics, 2022, 49, 4466-4477.	3.0	5
351	REALISE: reconstruction of REALity from Image SEquences. , 1996, , .		4
352	Pixel position regression - application to medical image segmentation. , 2004, , .		4
353	Noise filtering in thin-slice 4D cerebral CT perfusion scans. , 2010, , .		4
354	Normalization of chest radiographs. , 2013, , .		4
355	Non-solid lung nodules on low-dose computed tomography: comparison of detection rate between 3 visualization techniques. Cancer Imaging, 2013, 13, 150-154.	2.8	4
356	A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols. Medical Physics, 2014, 41, 071907.	3.0	4
357	Organ detection in thorax abdomen CT using multi-label convolutional neural networks. , 2017, , .		4
358	Predicting all-cause and lung cancer mortality using emphysema score progression rate between baseline and follow-up chest CT images: A comparison of risk model performances. PLoS ONE, 2019, 14, e0212756.	2.5	4
359	Automatic detection of calcifications in the aorta from abdominal CT scans. International Congress Series, 2003, 1256, 1037-1042.	0.2	3
360	A pattern recognition approach to automated coronary calcium scoring. , 2004, , .		3

#	Article	IF	CITATIONS
361	Hybrid Diffusion Compared with Existing Diffusion Schemes on Simulated Low Dose CT Scans., 0,,.		3
362	Computer-aided detection as a decision assistant in chest radiography. , 2011, , .		3
363	DIRBoost: An algorithm for boosting deformable image registration. , 2012, , .		3
364	Improving mass candidate detection in mammograms via feature maxima propagation and local feature selection. Medical Physics, 2014, 41, 081904.	3.0	3
365	Multiple-instance learning for computer-aided detection of tuberculosis. Proceedings of SPIE, 2014, , .	0.8	3
366	Automatic cerebrospinal fluid segmentation in non-contrast CT images using a 3D convolutional network. , 2017, , .		3
367	Deep learning with robustness to missing data: A novel approach to the detection of COVID-19. PLoS ONE, 2021, 16, e0255301.	2.5	3
368	A step towards measuring the fetal head circumference with the use of obstetric ultrasound in a low resource setting. Proceedings of SPIE, 2017 , , .	0.8	3
369	Student beats the teacher: deep neural networks for lateral ventricles segmentation in brain MR. , 2018, , .		3
370	A 4D CT digital phantom of an individual human brain for perfusion analysis. PeerJ, 2016, 4, e2683.	2.0	3
371	Image Analysis for Moving Organ, Breast, and Thoracic Images. Lecture Notes in Computer Science, 2018, , .	1.3	3
372	Classifying convex sets for vessel detection in retinal images. , 0, , .		2
373	Static posterior probability fusion for signal detection: applications in the detection of interstitial diseases in chest radiographs. , 2004, , .		2
374	Detection of interstitial lung disease in PA chest radiographs. , 2004, , .		2
375	Automated coronary calcification detection and scoring. Proc Int Symp Image Signal Process Anal, 2005, , .	0.0	2
376	Image Classification from Generalized Image Distance Features: Application to Detection of Interstitial Disease in Chest Radiographs. , 2006, , .		2
377	Automatic classication of pulmonary function in COPD patients using trachea analysis in chest CT scans. Proceedings of SPIE, 2012, , .	0.8	2
378	Brain tissue segmentation in 4D CT using voxel classification. Proceedings of SPIE, 2012, , .	0.8	2

#	Article	IF	Citations
379	Automatic detection of spiculation of pulmonary nodules in computed tomography images., 2015,,.		2
380	Computer-aided detection of lung cancer: combining pulmonary nodule detection systems with a tumor risk prediction model. Proceedings of SPIE, 2015, , .	0.8	2
381	Simulation of Nodules and Diffuse Infiltrates in Chest Radiographs Using CT Templates. Lecture Notes in Computer Science, 2010, 13, 396-403.	1.3	2
382	Automatic segmentation and texture analysis of PA chest radiographs to detect abnormalities related to interstitial disease and tuberculosis., 2002,, 685-688.		2
383	Combining Automated Image Analysis with Obstetric Sweeps for Prenatal Ultrasound Imaging in Developing Countries. Lecture Notes in Computer Science, 2017, , 105-112.	1.3	2
384	Feasibility of end-to-end trainable two-stage U-Net for detection of axillary lymph nodes in contrast-enhanced CT based on sparse annotations. , 2020, , .		2
385	<title>Surface BRDF and texture of bricks</title> ., 1996,,.		1
386	A pattern recognition approach to enhancing structures in 3D CT data., 2006, 6144, 569.		1
387	Simulating nodules in chest radiographs with real nodules from multi-slice CT images. , 2006, , .		1
388	Special Issue on Pulmonary Imaging. IEEE Transactions on Medical Imaging, 2006, 25, 381-384.	8.9	1
389	Automated detection of nodules attached to the pleural and mediastinal surface in low-dose CT scans. Proceedings of SPIE, 2008, , .	0.8	1
390	Segmentation of arteries and veins on 4D CT perfusion scans for constructing arteriograms and venograms. , 2009, , .		1
391	Fast murine airway segmentation and reconstruction in micro-CT images. Proceedings of SPIE, 2009, , .	0.8	1
392	Automatic coronary calcium scoring in low-dose non-ECG-synchronized thoracic CT scans. Proceedings of SPIE, 2010, , .	0.8	1
393	Interactively learning a patient specific k-nearest neighbor classifier based on confidence weighted samples. , 2010, , .		1
394	Computer-aided diagnosis in chest imaging: How to improve performance and avoid reinventing the wheel. , $2010, \ldots$		1
395	Automatic localization of bifurcations and vessel crossings in digital fundus photographs using location regression. Proceedings of SPIE, 2011, , .	0.8	1
396	A pattern recognition framework for vessel segmentation in 4D CT of the brain. , 2013, , .		1

#	Article	IF	Citations
397	Normalization of CT scans reconstructed with different kernels to reduce variability in emphysema measurements. , $2013, \ldots$		1
398	Automatic age-related macular degeneration detection and staging. Proceedings of SPIE, 2013, , .	0.8	1
399	Impact of bone suppression imaging on the detection of lung nodules in chest radiographs: analysis of multiple reading sessions. Proceedings of SPIE, 2013, , .	0.8	1
400	Using the Fourth Dimension to Distinguish Between Structures for Anisotropic Diffusion Filtering in 4D CT Perfusion Scans. Lecture Notes in Computer Science, 2015, , 79-87.	1.3	1
401	Real-Life Artificial Intelligence Applications. Journal of the Belgian Society of Radiology, 2018, 102, .	0.3	1
402	Local noise reduction for emphysema scoring in low-dose CT images. , 2005, , .		0
403	Integrating local voxel classification and global shape models for medical image segmentation. Proceedings of SPIE, 2008, , .	0.8	0
404	Reply to Hochheggar etÂal Respiratory Medicine, 2010, 104, 1074.	2.9	0
405	Cluster Analysis Identifies COPD Subphenotypes By Combining Pulmonary Function, CT Imaging And Breathomics. , 2011, , .		0
406	Potential of a Standalone Computer-Aided Detection System for Breast Cancer Detection in Screening Mammography. Lecture Notes in Computer Science, 2012, , 682-689.	1.3	0
407	A hardware implementation of a levelset algorithm for carotid lumen segmentation in CTA. Proceedings of SPIE, 2013, , .	0.8	0
408	Effect of image variation on computer-aided detection systems. Proceedings of SPIE, 2014, , .	0.8	0
409	Automated detection and quantification of micronodules in thoracic CT scans to identify subjects at risk for silicosis. , $2014, $, .		0
410	Optimization Strategies for Interactive Classification of Interstitial Lung Disease Textures. Frontiers in ICT, $2016, 3, .$	3.6	0
411	Fovea detection in optical coherence tomography using convolutional neural networks. Proceedings of SPIE, 2017, , .	0.8	0
412	MA 14.11 Malignancy Risk Prediction of Pulmonary Nodule in Lung Cancer Screening – Diameter Or Volumetric Measurement. Journal of Thoracic Oncology, 2017, 12, S1859-S1860.	1.1	0
413	ES01.03 Deep Machine Learning for Screening LDCT. Journal of Thoracic Oncology, 2018, 13, S190.	1.1	0
414	MA20.09 Improved Lung Cancer and Mortality Prediction Accuracy Using Survival Models Based on Semi-Automatic CT Image Measurements. Journal of Thoracic Oncology, 2018, 13, S428.	1.1	0

#	Article	IF	CITATIONS
415	Detection of abnormal tissue in HRCT scans of the chest. , 2002, , 1101-1101.		O
416	Automatic Segmentation of Lung Fields in Chest Radiographs. Lecture Notes in Computer Science, 1999, , 184-191.	1.3	0
417	Bone density is associated with emphysema and air trapping on CT in smokers. , 2015, , .		O
418	Reproducibility of airway wall thickness measurements on CT in a lung cancer screening setting. , $2015, \ldots$		0