
Arthur W Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8152366/publications.pdf Version: 2024-02-01

ADTHUD W TAVIOR

#	Article	IF	CITATIONS
1	Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chemical Society Reviews, 2015, 44, 6733-6748.	18.7	176
2	Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet?. Chemical Society Reviews, 2012, 41, 2707.	18.7	157
3	Single-wall carbon nanotubes based anticancer drug delivery system. Chemical Physics Letters, 2009, 478, 200-205.	1.2	150
4	Macrophage-Derived Granulin Drives Resistance to Immune Checkpoint Inhibition in Metastatic Pancreatic Cancer. Cancer Research, 2018, 78, 4253-4269.	0.4	105
5	Preventing Plasmon Coupling between Gold Nanorods Improves the Sensitivity of Photoacoustic Detection of Labeled Stem Cells <i>in Vivo</i> . ACS Nano, 2016, 10, 7106-7116.	7.3	78
6	Non-invasive imaging reveals conditions that impact distribution and persistence of cells after in vivo administration. Stem Cell Research and Therapy, 2018, 9, 332.	2.4	66
7	Nano-structured rhodium doped SrTiO3–Visible light activated photocatalyst for water decontamination. Applied Catalysis B: Environmental, 2017, 206, 547-555.	10.8	65
8	Magnetic study of iron-containing carbon nanotubes: Feasibility for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2009, 321, 4067-4071.	1.0	58
9	Assessing the Efficacy of Nano- and Micro-Sized Magnetic Particles as Contrast Agents for MRI Cell Tracking. PLoS ONE, 2014, 9, e100259.	1.1	56
10	Photothermal Microscopy of the Core of Dextran-Coated Iron Oxide Nanoparticles During Cell Uptake. ACS Nano, 2012, 6, 5961-5971.	7.3	53
11	A carbon-wrapped nanoscaled thermometer for temperature control in biological environments. Nanomedicine, 2008, 3, 321-327.	1.7	47
12	Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. Npj Regenerative Medicine, 2017, 2, 28.	2.5	47
13	Overexpression of the MRI Reporter Genes Ferritin and Transferrin Receptor Affect Iron Homeostasis and Produce Limited Contrast in Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2015, 16, 15481-15496.	1.8	46
14	Tailoring the surface charge of dextran-based polymer coated SPIONs for modulated stem cell uptake and MRI contrast. Biomaterials Science, 2015, 3, 608-616.	2.6	44
15	SPIONs for cell labelling and tracking using MRI: magnetite or maghemite?. Biomaterials Science, 2018, 6, 101-106.	2.6	40
16	Cisplatin-loaded carbon-encapsulated iron nanoparticles and their in vitro effects in magnetic fluid hyperthermia. Carbon, 2010, 48, 2327-2334.	5.4	39
17	Influence of Nd:YAG Laser Irradiation on an Adhesive Restorative Procedure. Operative Dentistry, 2006, 31, 604-609.	0.6	35
18	Human Kidney-Derived Cells Ameliorate Acute Kidney Injury Without Engrafting into Renal Tissue. Stem Cells Translational Medicine. 2017. 6. 1373-1384.	1.6	32

ARTHUR W TAYLOR

#	Article	IF	CITATIONS
19	Functionalization of carbon encapsulated iron nanoparticles. Journal of Nanoparticle Research, 2010, 12, 513-519.	0.8	29
20	Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells. Advanced Healthcare Materials, 2016, 5, 841-849.	3.9	27
21	Multicolour In Vivo Bioluminescence Imaging Using a NanoLucâ€Based BRET Reporter in Combination with Firefly Luciferase. Contrast Media and Molecular Imaging, 2018, 2018, 1-10.	0.4	26
22	Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease. European Journal of Pharmacology, 2016, 790, 74-82.	1.7	25
23	Evaluating the effectiveness of transferrin receptorâ€1 (<i>TfR1</i>) as a magnetic resonance reporter gene. Contrast Media and Molecular Imaging, 2016, 11, 236-244.	0.4	25
24	Coâ€precipitation of DEAEâ€dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast. Contrast Media and Molecular Imaging, 2016, 11, 362-370.	0.4	24
25	Biocompatibility of Iron Filled Carbon Nanotubes <i>In Vitro</i> . Journal of Nanoscience and Nanotechnology, 2009, 9, 5709-5716.	0.9	20
26	Magnetic Resonance Imaging for Characterization of a Chick Embryo Model of Cancer Cell Metastases. Molecular Imaging, 2018, 17, 153601211880958.	0.7	19
27	Poly[2-(methacryloyloxy)ethylphosphorylcholine]-coated iron oxide nanoparticles: synthesis, colloidal stability and evaluation for stem cell labelling. Chemical Communications, 2012, 48, 9373.	2.2	18
28	<i>In vivo</i> fate of free and encapsulated iron oxide nanoparticles after injection of labelled stem cells. Nanoscale Advances, 2019, 1, 367-377.	2.2	16
29	Firefly luciferase offers superior performance to AkaLuc for tracking the fate of administered cell therapies. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 796-808.	3.3	16
30	MS-1 <i>magA</i> . Molecular Imaging, 2016, 15, 153601211664153.	0.7	14
31	Properties of chemically treated natural amorphous silica fibers as polyurethane reinforcement. Polymer Composites, 2006, 27, 582-590.	2.3	12
32	Mesenchymal stromal cells: what have we learned so far about their therapeutic potential and mechanisms of action?. Emerging Topics in Life Sciences, 2021, 5, 549-562.	1.1	12
33	Highâ€frequency electrical properties tomography at 9.4T as a novel contrast mechanism for brain tumors. Magnetic Resonance in Medicine, 2021, 86, 382-392.	1.9	11
34	Multimodal Imaging Techniques Show Differences in Homing Capacity Between Mesenchymal Stromal Cells and Macrophages in Mouse Renal Injury Models. Molecular Imaging and Biology, 2020, 22, 904-913.	1.3	10
35	Assessing Tumour Haemodynamic Heterogeneity and Response to Choline Kinase Inhibition Using Clustered Dynamic Contrast Enhanced MRI Parameters in Rodent Models of Glioblastoma. Cancers, 2022, 14, 1223.	1.7	3
36	Noninvasive imaging of nanoparticle-labeled transplant populations within polymer matrices for neural cell therapy. Nanomedicine, 2018, 13, 1333-1348.	1.7	2

3

#	Article	IF	CITATIONS
37	Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors. , 2011, , 97-124.		1