Baoshan Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8152100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 2007, 150, 243-250.	7.5	1,481
2	Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environmental Science & Technology, 2008, 42, 5580-5585.	10.0	981
3	Adsorption of Organic Compounds by Carbon Nanomaterials in Aqueous Phase: Polanyi Theory and Its Application. Chemical Reviews, 2010, 110, 5989-6008.	47.7	741
4	Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 2009, 157, 1619-1625.	7.5	720
5	Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials. Environmental Science & Technology, 2006, 40, 1855-1861.	10.0	699
6	Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 2017, 227, 98-115.	7.5	634
7	An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules, 2016, 21, 1374.	3.8	629
8	Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 2020, 15, 755-760.	31.5	619
9	Xylem- and Phloem-Based Transport of CuO Nanoparticles in Maize (<i>Zea mays</i> L.). Environmental Science & Technology, 2012, 46, 4434-4441.	10.0	601
10	Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environmental Science & Technology, 2014, 48, 9995-10009.	10.0	573
11	Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution, 2009, 157, 1171-1177.	7.5	451
12	Black Carbon (Biochar) In Water/Soil Environments: Molecular Structure, Sorption, Stability, and Potential Risk. Environmental Science & Technology, 2017, 51, 13517-13532.	10.0	441
13	Copper Oxide Nanoparticle Mediated DNA Damage in Terrestrial Plant Models. Environmental Science & Technology, 2012, 46, 1819-1827.	10.0	424
14	Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 2021, 407, 124357.	12.4	414
15	Adsorption and Hysteresis of Bisphenol A and 17α-Ethinyl Estradiol on Carbon Nanomaterials. Environmental Science & Technology, 2008, 42, 5480-5485.	10.0	405
16	Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 2013, 206, 32-39.	5.1	365
17	Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Journal of Agricultural and Food Chemistry, 2020, 68, 1935-1947.	5.2	363
18	Investigating the mechanisms of biochar's removal of lead from solution. Bioresource Technology, 2015, 177–308-317	9.6	337

#	Article	IF	CITATIONS
19	Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environmental Pollution, 2013, 181, 60-67.	7.5	334
20	Effect of Surface Charge on the Uptake and Distribution of Gold Nanoparticles in Four Plant Species. Environmental Science & Technology, 2012, 46, 12391-12398.	10.0	332
21	Detecting Free Radicals in Biochars and Determining Their Ability to Inhibit the Germination and Growth of Corn, Wheat and Rice Seedlings. Environmental Science & Technology, 2014, 48, 8581-8587.	10.0	330
22	Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environmental Pollution, 2017, 229, 846-853.	7.5	330
23	Metal-Based Nanotoxicity and Detoxification Pathways in Higher Plants. Environmental Science & Technology, 2015, 49, 7109-7122.	10.0	327
24	Toxicity and Internalization of CuO Nanoparticles to Prokaryotic Alga <i>Microcystis aeruginosa</i> as Affected by Dissolved Organic Matter. Environmental Science & Technology, 2011, 45, 6032-6040.	10.0	323
25	Sorption of Four Hydrophobic Organic Compounds by Three Chemically Distinct Polymers: Role of Chemical and Physical Composition. Environmental Science & Technology, 2012, 46, 7252-7259.	10.0	319
26	Fate and Transport of Engineered Nanomaterials in the Environment. Journal of Environmental Quality, 2010, 39, 1896-1908.	2.0	314
27	Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technology, 2011, 102, 5757-5763.	9.6	312
28	Sorption Hysteresis of Benzene in Charcoal Particles. Environmental Science & Technology, 2003, 37, 409-417.	10.0	305
29	Degradation of <i>p</i> -Nitrophenol on Biochars: Role of Persistent Free Radicals. Environmental Science & Technology, 2016, 50, 694-700.	10.0	302
30	Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology, 2013, 130, 463-471.	9.6	301
31	Phenanthrene Sorption to Sequentially Extracted Soil Humic Acids and Humins. Environmental Science & Technology, 2005, 39, 134-140.	10.0	298
32	Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environmental Pollution, 2020, 261, 114089.	7.5	292
33	Tannic Acid Adsorption and Its Role for Stabilizing Carbon Nanotube Suspensions. Environmental Science & Technology, 2008, 42, 5917-5923.	10.0	283
34	CuO Nanoparticle Interaction with Human Epithelial Cells: Cellular Uptake, Location, Export, and Genotoxicity. Chemical Research in Toxicology, 2012, 25, 1512-1521.	3.3	269
35	Aggregation, Adsorption, and Morphological Transformation of Graphene Oxide in Aqueous Solutions Containing Different Metal Cations. Environmental Science & Technology, 2016, 50, 11066-11075.	10.0	265
36	Effects of Solution Chemistry on Adsorption of Selected Pharmaceuticals and Personal Care Products (PPCPs) by Graphenes and Carbon Nanotubes. Environmental Science & Technology, 2014, 48, 13197-13206.	10.0	246

#	Article	IF	CITATIONS
37	Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology, 2017, 11, 591-612.	3.0	244
38	Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environmental Pollution, 2012, 168, 138-144.	7.5	231
39	Sorption of Organic Contaminants by Carbon Nanotubes: Influence of Adsorbed Organic Matter. Environmental Science & Technology, 2008, 42, 3207-3212.	10.0	225
40	Adsorption and Desorption of Oxytetracycline and Carbamazepine by Multiwalled Carbon Nanotubes. Environmental Science & Technology, 2009, 43, 9167-9173.	10.0	221
41	Relative Role of Aliphatic and Aromatic Moieties as Sorption Domains for Organic Compounds: A Review. Environmental Science & Technology, 2009, 43, 1680-1688.	10.0	216
42	Impact of Deashing Treatment on Biochar Structural Properties and Potential Sorption Mechanisms of Phenanthrene. Environmental Science & Technology, 2013, 47, 11473-11481.	10.0	216
43	Contribution of Different Sulfamethoxazole Species to Their Overall Adsorption on Functionalized Carbon Nanotubes. Environmental Science & Technology, 2010, 44, 3806-3811.	10.0	212
44	Norfloxacin Sorption and Its Thermodynamics on Surface-Modified Carbon Nanotubes. Environmental Science & Technology, 2010, 44, 978-984.	10.0	208
45	Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environmental Science: Nano, 2016, 3, 240-255.	4.3	208
46	Physiological and Molecular Response of <i>Arabidopsis thaliana</i> (L.) to Nanoparticle Cerium and Indium Oxide Exposure. ACS Sustainable Chemistry and Engineering, 2013, 1, 768-778.	6.7	207
47	Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Research, 2017, 111, 18-27.	11.3	203
48	Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology and Biochemistry, 2016, 94, 107-121.	8.8	198
49	Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Science of the Total Environment, 2021, 757, 143910.	8.0	195
50	Enhanced growth of halophyte plants in biocharâ€amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell and Environment, 2018, 41, 517-532.	5.7	194
51	Colloidal Behavior of Aluminum Oxide Nanoparticles As Affected by pH and Natural Organic Matter. Langmuir, 2008, 24, 12385-12391.	3.5	192
52	Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 6124-6145.	10.0	191
53	Photodegradation Elevated the Toxicity of Polystyrene Microplastics to Grouper (<i>Epinephelus) Tj ETQq1 1 0.7 2020, 54, 6202-6212.</i>	84314 rgB 10.0	T /Overlock 187
54	Heteroaggregation of Graphene Oxide with Minerals in Aqueous Phase. Environmental Science & Technology, 2015, 49, 2849-2857.	10.0	182

#	Article	IF	CITATIONS
55	Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere, 2016, 159, 326-334.	8.2	181
56	Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. Environmental Science & Technology, 2018, 52, 10369-10379.	10.0	178
57	Sorption of naphthalene and phenanthrene by soil humic acids. Environmental Pollution, 2001, 111, 303-309.	7.5	177
58	Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Science of the Total Environment, 2018, 621, 1433-1444.	8.0	176
59	Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiology and Biochemistry, 2017, 110, 82-93.	5.8	174
60	Nano-enabled fertilizers to control the release and use efficiency of nutrients. Current Opinion in Environmental Science and Health, 2018, 6, 77-83.	4.1	174
61	Wrinkles and Folds of Activated Graphene Nanosheets as Fast and Efficient Adsorptive Sites for Hydrophobic Organic Contaminants. Environmental Science & Technology, 2016, 50, 3798-3808.	10.0	173
62	One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. Journal of Environmental Management, 2016, 176, 61-68.	7.8	172
63	Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Science of the Total Environment, 2018, 610-611, 951-960.	8.0	170
64	Interaction of Microplastics with Antibiotics in Aquatic Environment: Distribution, Adsorption, and Toxicity. Environmental Science & amp; Technology, 2021, 55, 15579-15595.	10.0	169
65	Humic Acid Fractionation upon Sequential Adsorption onto Goethite. Langmuir, 2008, 24, 2525-2531.	3.5	164
66	CuO Nanoparticle Interaction with <i>Arabidopsis thaliana</i> : Toxicity, Parent-Progeny Transfer, and Gene Expression. Environmental Science & Technology, 2016, 50, 6008-6016.	10.0	160
67	Cryptic footprints of rare earth elements on natural resources and living organisms. Environment International, 2019, 127, 785-800.	10.0	159
68	The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon, 2009, 47, 2875-2882.	10.3	157
69	Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 2013, 174, 289-296.	7.5	156
70	Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Science of the Total Environment, 2020, 713, 136635.	8.0	156
71	Biochar's stability and effect on the content, composition and turnover of soil organic carbon. Geoderma, 2020, 364, 114184.	5.1	154
72	Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Research, 2013, 47, 4169-4178.	11.3	152

#	Article	IF	CITATIONS
73	Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chemical Engineering Journal, 2014, 248, 128-134.	12.7	152
74	Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environmental Pollution, 2018, 232, 123-136.	7.5	152
75	Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. Journal of Hazardous Materials, 2011, 197, 304-310.	12.4	151
76	Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technology, 2011, 102, 9897-9903.	9.6	148
77	Enhanced Adsorption of <i>p</i> -Arsanilic Acid from Water by Amine-Modified UiO-67 as Examined Using Extended X-ray Absorption Fine Structure, X-ray Photoelectron Spectroscopy, and Density Functional Theory Calculations. Environmental Science & Technology, 2018, 52, 3466-3475.	10.0	148
78	Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Applied Catalysis B: Environmental, 2022, 306, 121091.	20.2	148
79	Strong Sorption of Phenanthrene by Condensed Organic Matter in Soils and Sediments. Environmental Science & Technology, 2007, 41, 3952-3958.	10.0	144
80	Particle-Size Dependent Accumulation and Trophic Transfer of Cerium Oxide through a Terrestrial Food Chain. Environmental Science & Technology, 2014, 48, 13102-13109.	10.0	143
81	New Evidence for High Sorption Capacity of Hydrochar for Hydrophobic Organic Pollutants. Environmental Science & Technology, 2016, 50, 13274-13282.	10.0	142
82	Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption. Scientific Reports, 2015, 5, 11618.	3.3	141
83	Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere, 2016, 144, 661-670.	8.2	138
84	Environmentally persistent free radicals: Occurrence, formation mechanisms and implications. Environmental Pollution, 2019, 248, 320-331.	7.5	135
85	Sorption of Organic Contaminants by Biopolymer-Derived Chars. Environmental Science & Technology, 2007, 41, 8342-8348.	10.0	131
86	Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO ₂ and In ₂ O ₃ nanoparticles. Environmental Science: Nano, 2016, 3, 1369-1379.	4.3	131
87	Uptake of Engineered Nanoparticles by Food Crops: Characterization, Mechanisms, and Implications. Annual Review of Food Science and Technology, 2018, 9, 129-153.	9.9	131
88	Sorption Mechanisms of Phenanthrene, Lindane, and Atrazine with Various Humic Acid Fractions from a Single Soil Sample. Environmental Science & Technology, 2011, 45, 2124-2130.	10.0	129
89	Adsorption of Aromatic Carboxylate lons to Black Carbon (Biochar) Is Accompanied by Proton Exchange with Water. Environmental Science & amp; Technology, 2011, 45, 9240-9248.	10.0	128
90	Identification and Characterization of Sorption Domains in Soil Organic Matter Using Structurally Modified Humic Acids. Environmental Science & Technology, 2003, 37, 852-858.	10.0	125

#	Article	IF	CITATIONS
91	Adsorption and Desorption of Phenanthrene on Carbon Nanotubes in Simulated Gastrointestinal Fluids. Environmental Science & Technology, 2011, 45, 6018-6024.	10.0	125
92	Size Effect on the Cytotoxicity of Layered Black Phosphorus and Underlying Mechanisms. Small, 2017, 13, 1701210.	10.0	124
93	Sorption of Phenanthrene by Humic Acid-Coated Nanosized TiO ₂ and ZnO. Environmental Science & Technology, 2009, 43, 1845-1851.	10.0	122
94	Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Bioresource Technology, 2014, 163, 193-198.	9.6	122
95	Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresource Technology, 2017, 234, 77-85.	9.6	122
96	Clay Minerals Affect the Stability of Surfactant-Facilitated Carbon Nanotube Suspensions. Environmental Science & Technology, 2008, 42, 6869-6875.	10.0	120
97	Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study. Journal of Agricultural and Food Chemistry, 2018, 66, 2589-2597.	5.2	120
98	Interactions of CuO nanoparticles with the algae <i>Chlorella pyrenoidosa</i> : adhesion, uptake, and toxicity. Nanotoxicology, 2016, 10, 1297-1305.	3.0	120
99	Effect of humic acid (HA) on sulfonamide sorption by biochars. Environmental Pollution, 2015, 204, 306-312.	7.5	118
100	Adsorption of Dicarboxylic Acids by Clay Minerals as Examined byin SituATR-FTIR andex SituDRIFT. Langmuir, 2007, 23, 7024-7031.	3.5	117
101	Microplastics Reduce Lipid Digestion in Simulated Human Gastrointestinal System. Environmental Science & amp; Technology, 2020, 54, 12285-12294.	10.0	115
102	Dissolved Organic Matter Conformation and Its Interaction with Pyrene As Affected by Water Chemistry and Concentration. Environmental Science & Technology, 2008, 42, 1594-1599.	10.0	113
103	Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures. Chemosphere, 2016, 144, 285-291.	8.2	113
104	Size Matters: Nano-Biochar Triggers Decomposition and Transformation Inhibition of Antibiotic Resistance Genes in Aqueous Environments. Environmental Science & Technology, 2020, 54, 8821-8829.	10.0	111
105	Application of Hydrochar Altered Soil Microbial Community Composition and the Molecular Structure of Native Soil Organic Carbon in a Paddy Soil. Environmental Science & Technology, 2020, 54, 2715-2725.	10.0	111
106	Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter. Environmental Pollution, 2016, 210, 85-93.	7.5	109
107	High Adsorption of Sulfamethoxazole by an Amine-Modified Polystyrene–Divinylbenzene Resin and Its Mechanistic Insight. Environmental Science & Technology, 2016, 50, 10015-10023.	10.0	108
108	Degradation of <i>p</i> -Nitrophenol by Lignin and Cellulose Chars: H ₂ O ₂ -Mediated Reaction and Direct Reaction with the Char. Environmental Science & Technology, 2017, 51, 8972-8980.	10.0	108

#	Article	IF	CITATIONS
109	Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere, 2015, 138, 576-583.	8.2	107
110	Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films. Polymers, 2017, 9, 102.	4.5	106
111	Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environment International, 2020, 142, 105831.	10.0	106
112	Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals. Frontiers in Plant Science, 2017, 8, 1332.	3.6	105
113	Sorption and Desorption Mechanisms of Cationic and Zwitterionic Per- and Polyfluoroalkyl Substances in Natural Soils: Thermodynamics and Hysteresis. Environmental Science & Technology, 2019, 53, 11818-11827.	10.0	105
114	Negative Impacts of Biochars on Urease Activity: High pH, Heavy Metals, Polycyclic Aromatic Hydrocarbons, or Free Radicals?. Environmental Science & Technology, 2018, 52, 12740-12747.	10.0	104
115	Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations. PLoS ONE, 2016, 11, e0157264.	2.5	104
116	Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine. Science of the Total Environment, 2016, 550, 504-513.	8.0	102
117	Adsorption of Phenanthrene on Multilayer Graphene as Affected by Surfactant and Exfoliation. Environmental Science & Technology, 2014, 48, 331-339.	10.0	101
118	Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Science of the Total Environment, 2021, 795, 148902.	8.0	101
119	The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk. Science of the Total Environment, 2019, 656, 9-18.	8.0	99
120	Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS). Environmental Science & Technology, 2015, 49, 4317-4324.	10.0	98
121	Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nature Nanotechnology, 2020, 15, 1033-1042.	31.5	98
122	Aggregation Kinetics and Self-Assembly Mechanisms of Graphene Quantum Dots in Aqueous Solutions: Cooperative Effects of pH and Electrolytes. Environmental Science & Technology, 2017, 51, 1364-1376.	10.0	97
123	Phytotoxicity of Silver Nanoparticles to Peanut (<i>Arachis hypogaea</i> L.): Physiological Responses and Food Safety. ACS Sustainable Chemistry and Engineering, 2017, 5, 6557-6567.	6.7	97
124	Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: Physicochemical properties, heavy metals sorption behavior and mechanism. Journal of Hazardous Materials, 2020, 399, 123067.	12.4	97
125	Algae response to engineered nanoparticles: current understanding, mechanisms and implications. Environmental Science: Nano, 2019, 6, 1026-1042.	4.3	96
126	Impact of Ag Nanoparticle Exposure on <i>p,p′</i> -DDE Bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). Environmental Science & Technology, 2013, 47, 718-725.	10.0	95

#	Article	IF	CITATIONS
127	Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environmental Pollution, 2016, 212, 605-614.	7.5	95
128	Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environmental Pollution, 2017, 221, 199-208.	7.5	93
129	Effect of minerals on the stability of biochar. Chemosphere, 2018, 204, 310-317.	8.2	93
130	Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. Journal of Environmental Management, 2019, 241, 319-327.	7.8	91
131	Enhanced removal of roxarsone by Fe ₃ O ₄ @3D graphene nanocomposites: synergistic adsorption and mechanism. Environmental Science: Nano, 2017, 4, 2134-2143.	4.3	89
132	Surface-bound humic acid increased Pb2+ sorption on carbon nanotubes. Environmental Pollution, 2012, 167, 138-147.	7.5	88
133	Terrestrial Trophic Transfer of Bulk and Nanoparticle La ₂ O ₃ Does Not Depend on Particle Size. Environmental Science & Technology, 2015, 49, 11866-11874.	10.0	88
134	Engineered nanomaterials in the environment: Are they safe?. Critical Reviews in Environmental Science and Technology, 2021, 51, 1443-1478.	12.8	88
135	Colloidal Stability of Al ₂ O ₃ Nanoparticles as Affected by Coating of Structurally Different Humic Acids. Langmuir, 2010, 26, 873-879.	3.5	87
136	Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil. Journal of Environmental Quality, 2012, 41, 1087-1095.	2.0	87
137	Growth and enzymatic activity of maize (<i>Zea mays</i> L.) plant: Solution culture test for copper dioxide nano particles. Journal of Plant Nutrition, 2016, 39, 99-115.	1.9	87
138	Increased Adsorption of Sulfamethoxazole on Suspended Carbon Nanotubes by Dissolved Humic Acid. Environmental Science & Technology, 2013, 47, 7722-7728.	10.0	85
139	Role of Structure and Microporosity in Phenanthrene Sorption by Natural and Engineered Organic Matter. Environmental Science & Technology, 2014, 48, 11227-11234.	10.0	85
140	Comparison between Soil- and Biochar-Derived Humic Acids: Composition, Conformation, and Phenanthrene Sorption. Environmental Science & amp; Technology, 2018, 52, 1880-1888.	10.0	85
141	Multiple Method Analysis of TiO ₂ Nanoparticle Uptake in Rice (<i>Oryza sativa</i> L.) Plants. Environmental Science & Technology, 2017, 51, 10615-10623.	10.0	84
142	Wrinkle- and Edge-Adsorption of Aromatic Compounds on Graphene Oxide as Revealed by Atomic Force Microscopy, Molecular Dynamics Simulation, and Density Functional Theory. Environmental Science & Technology, 2018, 52, 7689-7697.	10.0	84
143	Carotenoid and superoxide dismutase are the most effective antioxidants participating in ROS scavenging in phenanthrene accumulated wheat leaf. Chemosphere, 2018, 197, 513-525.	8.2	83
144	Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Environmental Pollution, 2011, 159, 850-857.	7.5	82

#	Article	IF	CITATIONS
145	Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in Beijing using a new approach. Environmental Pollution, 2015, 205, 307-314.	7.5	82
146	Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant <i>Eichhornia crassipes</i> and Related Stomatal Responses. Environmental Science & Technology, 2017, 51, 7686-7695.	10.0	82
147	Metal oxide nanoparticles alter peanut (<i>Arachis hypogaea</i> L.) physiological response and reduce nutritional quality: a life cycle study. Environmental Science: Nano, 2018, 5, 2088-2102.	4.3	82
148	Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. Nature Nanotechnology, 2022, 17, 76-85.	31.5	82
149	Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environmental Science and Pollution Research, 2015, 22, 17716-17723.	5.3	81
150	Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water. Carbon, 2017, 114, 671-678.	10.3	81
151	Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (<i>Nicotiana) Tj ETQq1 1 0.784314</i>	rgBT /Ov	erlock 10 T [.]
152	Bacterial toxicity of exfoliated black phosphorus nanosheets. Ecotoxicology and Environmental Safety, 2018, 161, 507-514.	6.0	81
153	Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. Journal of Experimental Botany, 2020, 71, 507-519.	4.8	81
154	Impact of De-Ashing Humic Acid and Humin on Organic Matter Structural Properties and Sorption Mechanisms of Phenanthrene. Environmental Science & Technology, 2011, 45, 3996-4002.	10.0	80
155	Effect of natural organic matter on aggregation behavior of C60 fullerene in water. Journal of Colloid and Interface Science, 2012, 374, 111-117.	9.4	79
156	Nano-cerium oxide functionalized biochar for phosphate retention: preparation, optimization and rice paddy application. Chemosphere, 2017, 185, 816-825.	8.2	78
157	Part IV—sorption of hydrophobic organic contaminants. Environmental Science and Pollution Research, 2008, 15, 554-564.	5.3	76
158	Selective and Fast Adsorption of Perfluorooctanesulfonate from Wastewater by Magnetic Fluorinated Vermiculite. Environmental Science & amp; Technology, 2017, 51, 8027-8035.	10.0	76
159	Theoretical insight into the adsorption of aromatic compounds on graphene oxide. Environmental Science: Nano, 2018, 5, 2357-2367.	4.3	76
160	Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environmental Research, 2019, 170, 1-6.	7.5	76
161	Degradation of Tetrabromobisphenol A by Sulfidated Nanoscale Zerovalent Iron in a Dynamic Two-Step Anoxic/Oxic Process. Environmental Science & Technology, 2019, 53, 8105-8114.	10.0	75
162	Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene. Scientific Reports, 2014, 4, 5295.	3.3	73

#	Article	IF	CITATIONS
163	CeO ₂ Nanoparticles Regulate the Propagation of Antibiotic Resistance Genes by Altering Cellular Contact and Plasmid Transfer. Environmental Science & Technology, 2020, 54, 10012-10021.	10.0	73
164	Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol. Journal of Hazardous Materials, 2020, 396, 122598.	12.4	73
165	Effect of co-existing kaolinite and goethite on the aggregation of graphene oxide in the aquatic environment. Water Research, 2016, 102, 313-320.	11.3	72
166	New Insights into Black Carbon Nanoparticle-Induced Dispersibility of Goethite Colloids and Configuration-Dependent Sorption for Phenanthrene. Environmental Science & Technology, 2019, 53, 661-670.	10.0	71
167	Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chemical Engineering Journal, 2022, 430, 133142.	12.7	71
168	Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Nanotoxicology, 2016, 10, 1207-1214.	3.0	70
169	Coadsorption of Cu and sulfamethoxazole on hydroxylized and graphitized carbon nanotubes. Science of the Total Environment, 2012, 427-428, 247-252.	8.0	69
170	Cation–Pi Interaction: A Key Force for Sorption of Fluoroquinolone Antibiotics on Pyrogenic Carbonaceous Materials. Environmental Science & Technology, 2017, 51, 13659-13667.	10.0	69
171	Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Science of the Total Environment, 2021, 760, 143342.	8.0	69
172	Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation. New Phytologist, 2013, 200, 122-133.	7.3	68
173	Arsenate Accumulation, Distribution, and Toxicity Associated with Titanium Dioxide Nanoparticles in <i>Daphnia magna</i> . Environmental Science & amp; Technology, 2016, 50, 9636-9643.	10.0	67
174	Maize (Zea mays L.) root exudates modify the surface chemistry of CuO nanoparticles: Altered aggregation, dissolution and toxicity. Science of the Total Environment, 2019, 690, 502-510.	8.0	67
175	Nitrogen-Doped Carbon Dots Increased Light Conversion and Electron Supply to Improve the Corn Photosystem and Yield. Environmental Science & Technology, 2021, 55, 12317-12325.	10.0	67
176	Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon, 2017, 114, 661-670.	10.3	66
177	The Overlooked Occurrence of Environmentally Persistent Free Radicals in an Area with Low-Rank Coal Burning, Xuanwei, China. Environmental Science & Technology, 2018, 52, 1054-1061.	10.0	66
178	Novel Insights into the Kinetics, Evolved Gases, and Mechanisms for Biomass (Sugar Cane Residue) Pyrolysis. Environmental Science & Technology, 2019, 53, 13495-13505.	10.0	66
179	Iron-carbon composite from carbonization of iron-crosslinked sodium alginate for Cr(VI) removal. Chemical Engineering Journal, 2019, 362, 21-29.	12.7	66
180	Electrospinning of multifunctional cellulose acetate membrane and its adsorption properties for ionic dyes. International Journal of Biological Macromolecules, 2020, 158, 1342-1351.	7.5	66

#	Article	IF	CITATIONS
181	Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact, 2020, 18, 100219.	4.5	66
182	Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma, 2016, 282, 120-128.	5.1	65
183	Interaction of Î ³ -Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. Journal of Nanobiotechnology, 2017, 15, 51.	9.1	65
184	Graphene quantum dots in alveolar macrophage: uptake-exocytosis, accumulation in nuclei, nuclear responses and DNA cleavage. Particle and Fibre Toxicology, 2018, 15, 45.	6.2	65
185	Exposure to nickel oxide nanoparticles insinuates physiological, ultrastructural and oxidative damage: A life cycle study on Eisenia fetida. Environmental Pollution, 2019, 254, 113032.	7.5	65
186	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	4.3	65
187	Coadsorption, desorption hysteresis and sorption thermodynamics of sulfamethoxazole and carbamazepine on graphene oxide and graphite. Carbon, 2013, 65, 243-251.	10.3	64
188	Isolation and Characterization of Different Organic Matter Fractions from a Same Soil Source and Their Phenanthrene Sorption. Environmental Science & Technology, 2013, 47, 5138-5145.	10.0	64
189	Occurrence of nitro- and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human exposure through soil ingestion. Environment International, 2017, 108, 261-270.	10.0	64
190	Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Science of the Total Environment, 2018, 616-617, 335-344.	8.0	64
191	Sorption and Desorption of Naphthalene by Soil Organic Matter. Journal of Environmental Quality, 2003, 32, 240.	2.0	64
192	Selective and High Sorption of Perfluorooctanesulfonate and Perfluorooctanoate by Fluorinated Alkyl Chain Modified Montmorillonite. Journal of Physical Chemistry C, 2016, 120, 16782-16790.	3.1	63
193	New Insight into the Aggregation of Graphene Oxide Using Molecular Dynamics Simulations and Extended Derjaguin–Landau–Verwey–Overbeek Theory. Environmental Science & Technology, 2017, 51, 9674-9682.	10.0	63
194	Pyrolysis characteristics of soil humic substances using TG-FTIR-MS combined with kinetic models. Science of the Total Environment, 2020, 698, 134237.	8.0	62
195	Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). Journal of Hazardous Materials, 2020, 389, 121837.	12.4	62
196	Effects of chemical oxidation on phenanthrene sorption by grass- and manure-derived biochars. Science of the Total Environment, 2017, 598, 789-796.	8.0	61
197	pH-dependent sorption of sulfonamide antibiotics onto biochars: Sorption mechanisms and modeling. Environmental Pollution, 2019, 248, 48-56.	7.5	61
198	Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation. Environmental Pollution, 2014, 188, 153-158.	7.5	60

#	Article	IF	CITATIONS
199	Reduced Silver Nanoparticle Phytotoxicity in <i>Crambe abyssinica</i> with Enhanced Glutathione Production by Overexpressing Bacterial γ-Glutamylcysteine Synthase. Environmental Science & Technology, 2015, 49, 10117-10126.	10.0	60
200	Efficient adsorption of PFOS and F53B from chrome plating wastewater and their subsequent degradation in the regeneration process. Chemical Engineering Journal, 2016, 290, 405-413.	12.7	60
201	pHâ€Đependent Degradation of Layered Black Phosphorus: Essential Role of Hydroxide Ions. Angewandte Chemie - International Edition, 2019, 58, 467-471.	13.8	60
202	Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environmental Science: Nano, 2020, 7, 3901-3913.	4.3	60
203	Elemental Sulfur Nanoparticles Enhance Disease Resistance in Tomatoes. ACS Nano, 2021, 15, 11817-11827.	14.6	60
204	Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biology and Biochemistry, 2022, 169, 108657.	8.8	60
205	Adsorption of Bovine Serum Albumin and Lysozyme on Functionalized Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 22249-22257.	3.1	59
206	Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in <i><scp>Q</scp>uercus rubra</i> . Global Change Biology, 2015, 21, 4177-4195.	9.5	59
207	Trophic transfer and accumulation of TiO2 nanoparticles from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) along a marine benthic food chain. Water Research, 2016, 95, 250-259.	11.3	59
208	Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5 in Haidian, Beijing. Environmental Pollution, 2017, 220, 704-712.	7.5	59
209	Single-solute and bi-solute sorption of phenanthrene and dibutyl phthalate by plant- and manure-derived biochars. Science of the Total Environment, 2014, 473-474, 308-316.	8.0	58
210	Competitive Sorption Used To Probe Strong Hydrogen Bonding Sites for Weak Organic Acids on Carbon Nanotubes. Environmental Science & Technology, 2015, 49, 1409-1417.	10.0	58
211	Pulmonary Surfactant Suppressed Phenanthrene Adsorption on Carbon Nanotubes through Solubilization and Competition As Examined by Passive Dosing Technique. Environmental Science & Technology, 2012, 46, 5369-5377.	10.0	56
212	Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata). Environmental Pollution, 2014, 192, 59-64.	7.5	56
213	Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding. Environmental Pollution, 2017, 225, 644-653.	7.5	56
214	Phenanthrene-triggered Chlorosis is caused by elevated Chlorophyll degradation and leaf moisture. Environmental Pollution, 2017, 220, 1311-1321.	7.5	56
215	Foliar Application with Iron Oxide Nanomaterials Stimulate Nitrogen Fixation, Yield, and Nutritional Quality of Soybean. ACS Nano, 2022, 16, 1170-1181.	14.6	56
216	Key knowledge gaps for One Health approach to mitigate nanoplastic risks. , 2022, 1, 11-22.		56

#	Article	IF	CITATIONS
217	Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions. Science of the Total Environment, 2018, 634, 1300-1307.	8.0	55
218	Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere, 2015, 138, 657-663.	8.2	54
219	Characterization and Phenanthrene Sorption of Natural and Pyrogenic Organic Matter Fractions. Environmental Science & Technology, 2017, 51, 2635-2642.	10.0	54
220	Titanium Dioxide Nanoparticles Alleviate Tetracycline Toxicity to <i>Arabidopsis thaliana</i> (L.). ACS Sustainable Chemistry and Engineering, 2017, 5, 3204-3213.	6.7	54
221	Depth-dependent variations of dissolved organic matter composition and humification in a plateau lake using fluorescence spectroscopy. Chemosphere, 2019, 225, 507-516.	8.2	54
222	Carbon dots alleviate the toxicity of cadmium ions (Cd ²⁺) toward wheat seedlings. Environmental Science: Nano, 2019, 6, 1493-1506.	4.3	54
223	Bioacessibility of PAHs in Fuel Soot Assessed by an <i>in Vitro</i> Digestive Model: Effect of Including an Absorptive Sink. Environmental Science & amp; Technology, 2015, 49, 3905-3912.	10.0	53
224	The role of biochars in sustainable crop production and soil resiliency. Journal of Experimental Botany, 2020, 71, 520-542.	4.8	53
225	Source-oriented risk assessment of inhalation exposure to ambient polycyclic aromatic hydrocarbons and contributions of non-priority isomers in urban Nanjing, a megacity located in Yangtze River Delta, China. Environmental Pollution, 2017, 224, 796-809.	7.5	52
226	Microbial aging of hydrochar as a way to increase cadmium ion adsorption capacity: Process and mechanism. Bioresource Technology, 2020, 300, 122708.	9.6	52
227	Molecular mechanisms of maize seedling response to La ₂ O ₃ NP exposure: water uptake, aquaporin gene expression and signal transduction. Environmental Science: Nano, 2017, 4, 843-855.	4.3	51
228	Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin. Scientific Reports, 2015, 5, 9944.	3.3	50
229	Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes. Water Research, 2016, 88, 492-501.	11.3	50
230	Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar. Chemosphere, 2018, 204, 474-482.	8.2	50
231	Role and importance of surface heterogeneities in transport of particles in saturated porous media. Critical Reviews in Environmental Science and Technology, 2020, 50, 244-329.	12.8	50
232	Antibiotic resistance in agricultural soils: Source, fate, mechanism and attenuation strategy. Critical Reviews in Environmental Science and Technology, 2022, 52, 847-889.	12.8	49
233	The Effects of Fe2O3 Nanoparticles on Physiology and Insecticide Activity in Non-Transgenic and Bt-Transgenic Cotton. Frontiers in Plant Science, 2015, 6, 1263.	3.6	48
234	Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China. Science of the Total Environment, 2016, 572, 1-8.	8.0	48

#	Article	IF	CITATIONS
235	Variation in sorption of propiconazole with biochars: The effect of temperature, mineral, molecular structure, and nano-porosity. Chemosphere, 2016, 142, 56-63.	8.2	48
236	Review of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) contamination in Chinese soils. Science of the Total Environment, 2020, 749, 141212.	8.0	48
237	pH-Dependent adsorption of aromatic compounds on graphene oxide: An experimental, molecular dynamics simulation and density functional theory investigation. Journal of Hazardous Materials, 2020, 395, 122680.	12.4	48
238	Novel Insights into the Molecular-Level Mechanism Linking the Chemical Diversity and Copper Binding Heterogeneity of Biochar-Derived Dissolved Black Carbon and Dissolved Organic Matter. Environmental Science & Technology, 2021, 55, 11624-11636.	10.0	48
239	Nanoscale Sulfur Improves Plant Growth and Reduces Arsenic Toxicity and Accumulation in Rice (<i>Oryza sativa</i> L.). Environmental Science & amp; Technology, 2021, 55, 13490-13503.	10.0	48
240	Removal of 4-chloro-2-methylphenoxyacetic acid from water by sorption on carbon nanotubes and metal oxide nanoparticles. RSC Advances, 2012, 2, 5693.	3.6	47
241	Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environmental Science: Nano, 2017, 4, 2093-2107.	4.3	47
242	Toxicity of GO to Freshwater Algae in the Presence of Al ₂ O ₃ Particles with Different Morphologies: Importance of Heteroaggregation. Environmental Science & Technology, 2018, 52, 13448-13456.	10.0	47
243	Bentonite hydrochar composites mitigate ammonia volatilization from paddy soil and improve nitrogen use efficiency. Science of the Total Environment, 2020, 718, 137301.	8.0	47
244	Sulfur nanoparticles improved plant growth and reduced mercury toxicity via mitigating the oxidative stress in Brassica napus L Journal of Cleaner Production, 2021, 318, 128589.	9.3	47
245	Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: The effect of feedstock, temperature, minerals, and properties. Environmental Pollution, 2015, 206, 298-305.	7.5	46
246	Identifying structural characteristics of humic acid to static and dynamic fluorescence quenching of phenanthrene, 9-phenanthrol, and naphthalene. Water Research, 2017, 122, 337-344.	11.3	46
247	Transformation of ¹⁴ C‣abeled Graphene to ¹⁴ CO ₂ in the Shoots of a Rice Plant. Angewandte Chemie - International Edition, 2018, 57, 9759-9763.	13.8	46
248	Copper Oxide Nanoparticle-Embedded Hydrogels Enhance Nutrient Supply and Growth of Lettuce (<i>Lactuca sativa</i>) Infected with <i>Fusarium oxysporum</i> f. sp. <i>lactucae</i> . Environmental Science & Technology, 2021, 55, 13432-13442.	10.0	46
249	Environmental behavior of engineered biochars and their aging processes in soil. Biochar, 2019, 1, 339-351.	12.6	45
250	Copper stress in flooded soil: Impact on enzyme activities, microbial community composition and diversity in the rhizosphere of Salix integra. Science of the Total Environment, 2020, 704, 135350.	8.0	45
251	Physicochemical and sorption properties of thermally-treated sediments with high organic matter content. Bioresource Technology, 2012, 103, 367-373.	9.6	44
252	New Insight into Adsorption Mechanism of Ionizable Compounds on Carbon Nanotubes. Environmental Science & Technology, 2013, 47, 130710121153005.	10.0	44

#	Article	IF	CITATIONS
253	Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds. Environmental Pollution, 2014, 195, 84-90.	7.5	44
254	TiO ₂ Nanoparticle-Induced Nanowire Formation Facilitates Extracellular Electron Transfer. Environmental Science and Technology Letters, 2018, 5, 564-570.	8.7	44
255	Rational Design of Nanogels for Overcoming the Biological Barriers in Various Administration Routes. Angewandte Chemie - International Edition, 2021, 60, 14760-14778.	13.8	44
256	Effects of titanium oxide nanoparticles on tetracycline accumulation and toxicity in Oryza sativa (L.). Environmental Science: Nano, 2017, 4, 1827-1839.	4.3	43
257	Interactions between stepwise-eluted sub-fractions of fulvic acids and protons revealed by fluorescence titration combined with EEM-PARAFAC. Science of the Total Environment, 2017, 605-606, 58-65.	8.0	43
258	Distribution of different surface modified carbon dots in pumpkin seedlings. Scientific Reports, 2018, 8, 7991.	3.3	43
259	Study on physicochemical properties, digestive properties and application of acetylated starch in noodles. International Journal of Biological Macromolecules, 2019, 128, 948-956.	7.5	43
260	Fabrication of hydrochar based on food waste (FWHTC) and its application in aqueous solution rare earth ions adsorptive removal: Process, mechanisms and disposal methodology. Journal of Cleaner Production, 2019, 212, 1423-1433.	9.3	43
261	Copper sulfide nanoparticles suppress <i>Gibberella fujikuroi</i> infection in rice (<i>Oryza sativa</i>) Tj ETQq1 Environmental Science: Nano, 2020, 7, 2632-2643.	1 0.78431 4.3	4 rgBT /Over 43
262	Characterization of fulvic acid fractions obtained by sequential extractions with pH buffers, water, and ethanol from paddy soils. Geoderma, 2006, 135, 284-295.	5.1	42
263	Bioaccessibility of PAHs in Fuel Soot Assessed by an in Vitro Digestive Model with Absorptive Sink: Effect of Food Ingestion. Environmental Science & Technology, 2015, 49, 14641-14648.	10.0	42
264	Bias and association of sediment organic matter source apportionment indicators: A case study in a eutrophic Lake Chaohu, China. Science of the Total Environment, 2017, 581-582, 874-884.	8.0	42
265	Uptake, Transport, and Transformation of CeO ₂ Nanoparticles by Strawberry and Their Impact on the Rhizosphere Bacterial Community. ACS Sustainable Chemistry and Engineering, 2020, 8, 4792-4800.	6.7	42
266	Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites. Environmental Pollution, 2018, 243, 543-552.	7.5	41
267	Transformation and Speciation Analysis of Silver Nanoparticles of Dietary Supplement in Simulated Human Gastrointestinal Tract. Environmental Science & Technology, 2018, 52, 8792-8800.	10.0	41
268	Components and Persistent Free Radicals in the Volatiles during Pyrolysis of Lignocellulose Biomass. Environmental Science & Technology, 2020, 54, 13274-13281.	10.0	41
269	Exposure and size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons among the population using different household fuels. Environmental Pollution, 2016, 216, 935-942.	7.5	40
270	Protonation-dependent heterogeneity in fluorescent binding sites in sub-fractions of fulvic acid using principle component analysis and two-dimensional correlation spectroscopy. Science of the Total Environment, 2018, 616-617, 1279-1287.	8.0	40

#	Article	IF	CITATIONS
271	Synthesis of novel mesoporous carbon nanoparticles and their phytotoxicity to rice (Oryza sativa L.). Journal of Saudi Chemical Society, 2019, 23, 75-82.	5.2	40
272	Spectroscopic analyses combined with Gaussian and Coats-Redfern models to investigate the characteristics and pyrolysis kinetics of sugarcane residue-derived biochars. Journal of Cleaner Production, 2019, 237, 117855.	9.3	40
273	Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS. Environmental Pollution, 2020, 260, 114043.	7.5	40
274	Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos. Journal of Hazardous Materials, 2022, 424, 127421.	12.4	40
275	Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures. Environmental Pollution, 2015, 196, 292-299.	7.5	39
276	Interaction of CuO nanoparticles with plant cells: internalization, oxidative stress, electron transport chain disruption, and toxicogenomic responses. Environmental Science: Nano, 2018, 5, 2269-2281.	4.3	39
277	Photosynthetic response mechanisms in typical C3 and C4 plants upon La ₂ O ₃ nanoparticle exposure. Environmental Science: Nano, 2020, 7, 81-92.	4.3	39
278	Cytoplasmic pH-Stat during Phenanthrene Uptake by Wheat Roots: A Mechanistic Consideration. Environmental Science & Technology, 2015, 49, 6037-6044.	10.0	38
279	Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species. Environmental Pollution, 2018, 238, 631-637.	7.5	38
280	Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via π-PAHB: Sorption experiments and DFT calculations. Environmental Pollution, 2018, 240, 342-352.	7.5	38
281	Interaction of graphene oxide with co-existing arsenite and arsenate: Adsorption, transformation and combined toxicity. Environment International, 2019, 131, 104992.	10.0	38
282	A Comparative Study on the Formation of Environmentally Persistent Free Radicals (EPFRs) on Hematite and Goethite: Contribution of Various Catechol Degradation Byproducts. Environmental Science & Technology, 2019, 53, 13713-13719.	10.0	38
283	A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment. Chemosphere, 2021, 267, 128916.	8.2	38
284	Characteristics of algae-derived biochars and their sorption and remediation performance for sulfamethoxazole in marine environment. Chemical Engineering Journal, 2022, 430, 133092.	12.7	38
285	Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. Science of the Total Environment, 2022, 809, 151105.	8.0	38
286	Concentration-dependent polyparameter linear free energy relationships to predict organic compound sorption on carbon nanotubes. Scientific Reports, 2014, 4, 3888.	3.3	37
287	Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples. Science of the Total Environment, 2016, 554-555, 246-252.	8.0	37
288	Study on the synthesis and physicochemical properties of starch acetate with low substitution under microwave assistance. International Journal of Biological Macromolecules, 2017, 103, 316-326.	7.5	37

#	Article	IF	CITATIONS
289	Impact of multiwall carbon nanotubes on the accumulation and distribution of carbamazepine in collard greens (Brassica oleracea). Environmental Science: Nano, 2017, 4, 149-159.	4.3	37
290	Real-Time Monitoring of Pesticide Translocation in Tomato Plants by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 2093-2099.	6.5	37
291	A novel ternary magnetic Fe3O4/g-C3N4/Carbon layer composite for efficient removal of Cr (VI): A combined approach using both batch experiments and theoretical calculation. Science of the Total Environment, 2020, 730, 138928.	8.0	37
292	Photo-transformation of graphene oxide in the presence of co-existing metal ions regulated its toxicity to freshwater algae. Water Research, 2020, 176, 115735.	11.3	37
293	Individual and combined applications of biochar and pyroligneous acid mitigate dissemination of antibiotic resistance genes in agricultural soil. Science of the Total Environment, 2021, 796, 148962.	8.0	37
294	Transcriptomics and Metabolomics Revealed the Biological Response of <i>Chlorella pyrenoidesa</i> to Single and Repeated Exposures of AgNPs at Different Concentrations. Environmental Science & Technology, 2021, 55, 15776-15787.	10.0	37
295	Functional Biochar and Its Balanced Design. ACS Environmental Au, 2022, 2, 115-127.	7.0	37
296	Surfactant removal with multiwalled carbon nanotubes. Water Research, 2016, 106, 531-538.	11.3	36
297	Removal of ciprofloxacin from aqueous solutions by ionic surfactant-modified carbon nanotubes. Environmental Pollution, 2018, 243, 206-217.	7.5	36
298	Early development of apoplastic barriers and molecular mechanisms in juvenile maize roots in response to La2O3 nanoparticles. Science of the Total Environment, 2019, 653, 675-683.	8.0	36
299	Role of nano-biochar in attenuating the allelopathic effect from <i>Imperata cylindrica</i> on rice seedlings. Environmental Science: Nano, 2020, 7, 116-126.	4.3	36
300	Biomass-derived N/S dual-doped hierarchically porous carbon material as effective adsorbent for the removal of bisphenol F and bisphenol S. Journal of Hazardous Materials, 2021, 416, 126126.	12.4	36
301	Presence of microplastics alone and co-existence with hydrochar unexpectedly mitigate ammonia volatilization from rice paddy soil and affect structure of soil microbiome. Journal of Hazardous Materials, 2022, 422, 126831.	12.4	36
302	N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics. Science of the Total Environment, 2022, 822, 153567.	8.0	36
303	Characterization and phthalate esters sorption of organic matter fractions isolated from soils and sediments. Environmental Pollution, 2015, 206, 24-31.	7.5	35
304	Bioaccessibility and exposure assessment of trace metals from urban airborne particulate matter (PM10 and PM2.5) in simulated digestive fluid. Environmental Pollution, 2018, 242, 1669-1677.	7.5	35
305	Adsorption, desorption and coadsorption behaviors of sulfamerazine, Pb(II) and benzoic acid on carbon nanotubes and nano-silica. Science of the Total Environment, 2020, 738, 139685.	8.0	35
306	CuO nanoparticles doping recovered the photocatalytic antialgal activity of graphitic carbon nitride. Journal of Hazardous Materials, 2021, 403, 123621.	12.4	35

#	Article	IF	CITATIONS
307	Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution, 2022, 299, 118900.	7.5	35
308	Evidence of Micropore Filling for Sorption of Nonpolar Organic Contaminants by Condensed Organic Matter. Journal of Environmental Quality, 2013, 42, 806-814.	2.0	34
309	Contribution of coated humic acids calculated through their surface coverage on nano iron oxides for ofloxacin and norfloxacin sorption. Environmental Pollution, 2015, 204, 191-198.	7.5	34
310	Microbial Transformation of Multiwalled Carbon Nanotubes by <i>Mycobacterium vanbaalenii</i> PYR-1. Environmental Science & Technology, 2017, 51, 2068-2076.	10.0	34
311	Fluorescence regional integration and differential fluorescence spectroscopy for analysis of structural characteristics and proton binding properties of fulvic acid sub-fractions. Journal of Environmental Sciences, 2018, 74, 116-125.	6.1	34
312	Carbon nanomaterials induce residue degradation and increase methane production from livestock manure in an anaerobic digestion system. Journal of Cleaner Production, 2019, 240, 118257.	9.3	34
313	Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes. Scientific Reports, 2017, 7, 46235.	3.3	33
314	Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system. Environmental Pollution, 2018, 243, 1015-1025.	7.5	33
315	The pH and concentration dependent interfacial interaction and heteroaggregation between nanoparticulate zero-valent iron and clay mineral particles. Environmental Science: Nano, 2019, 6, 2129-2140.	4.3	33
316	Investigating responses of soil bacterial community composition to hardwood biochar amendment using high-throughput PCR sequencing. Applied Soil Ecology, 2019, 136, 80-85.	4.3	33
317	Role of Nanoscale Hydroxyapatite in Disease Suppression of <i>Fusarium</i> -Infected Tomato. Environmental Science & Technology, 2021, 55, 13465-13476.	10.0	33
318	Stabilization of Pb, Cd, and Zn in soil by modified-zeolite: Mechanisms and evaluation of effectiveness. Science of the Total Environment, 2022, 814, 152746.	8.0	33
319	Insight into the significant contribution of intrinsic defects of carbon-based materials for the efficient removal of tetracycline antibiotics. Chemical Engineering Journal, 2022, 435, 134822.	12.7	33
320	Synthesis and characterization of cubic mesoporous bridged polysilsesquioxane for removing organic pollutants from water. Chemosphere, 2014, 103, 188-196.	8.2	32
321	Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment. Journal of Hazardous Materials, 2015, 292, 137-145.	12.4	32
322	Tannic acid alleviates bulk and nanoparticle Nd ₂ O ₃ toxicity in pumpkin: a physiological and molecular response. Nanotoxicology, 2016, 10, 1243-1253.	3.0	32
323	The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 395-410.	10.3	32
324	Investigation of the structural, physical properties, antioxidant, and antimicrobial activity of chitosan- nano-silicon aerogel composite edible films incorporated with okara powder. Carbohydrate Polymers, 2020, 250, 116842.	10.2	32

#	Article	IF	CITATIONS
325	Study on the functional properties and structural characteristics of soybean soluble polysaccharides by mixed bacteria fermentation and microwave treatment. International Journal of Biological Macromolecules, 2020, 157, 561-568.	7.5	32
326	Transfer and toxicity of silver nanoparticles in the food chain. Environmental Science: Nano, 2021, 8, 1519-1535.	4.3	32
327	Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa. Environmental Pollution, 2019, 252, 1755-1763.	7.5	31
328	Mediation of rhodamine B photodegradation by biochar. Chemosphere, 2020, 256, 127082.	8.2	31
329	Isolation and Characterization of Chinese Standard Fulvic Acid Sub-fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer. Scientific Reports, 2015, 5, 8723.	3.3	30
330	Benzene polycarboxylic acid — A useful marker for condensed organic matter, but not for only pyrogenic black carbon. Science of the Total Environment, 2018, 626, 660-667.	8.0	30
331	Wrinkle-induced high sorption makes few-layered black phosphorus a superior adsorbent for ionic organic compounds. Environmental Science: Nano, 2018, 5, 1454-1465.	4.3	30
332	Vertical migration from surface soils to groundwater and source appointment of polycyclic aromatic hydrocarbons in epikarst spring systems, southwest China. Chemosphere, 2019, 230, 616-627.	8.2	30
333	Study on preparation and physicochemical properties of hydroxypropylated starch with different degree of substitution under microwave assistance. International Journal of Biological Macromolecules, 2019, 125, 290-299.	7.5	30
334	Role of Charge and Size in the Translocation and Distribution of Zinc Oxide Particles in Wheat Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 11556-11564.	6.7	30
335	Enhancement of water solubility and mobility of phenanthrene by natural soil nanoparticles. Environmental Pollution, 2013, 176, 228-233.	7.5	29
336	Transfer of polycyclic aromatic hydrocarbons from mother to fetus in relation to pregnancy complications. Science of the Total Environment, 2018, 636, 61-68.	8.0	29
337	Pyroligneous acid mitigated dissemination of antibiotic resistance genes in soil. Environment International, 2020, 145, 106158.	10.0	29
338	Molecular structure and evolution characteristics of dissolved organic matter in groundwater near landfill: Implications of the identification of leachate leakage. Science of the Total Environment, 2021, 787, 147649.	8.0	29
339	Bioaccumulation and biotransformation of polybrominated diphenyl ethers in the marine bivalve (Scapharca subcrenata): Influence of titanium dioxide nanoparticles. Marine Pollution Bulletin, 2015, 90, 48-53.	5.0	28
340	Seasonal and spatial variations in the chemical components and the cellular effects of particulate matter collected in Northern China. Science of the Total Environment, 2018, 627, 1627-1637.	8.0	28
341	Humic acid mitigated toxicity of graphene-family materials to algae through reducing oxidative stress and heteroaggregation. Environmental Science: Nano, 2019, 6, 1909-1920.	4.3	28
342	Can the properties of engineered nanoparticles be indicative of their functions and effects in plants?. Ecotoxicology and Environmental Safety, 2020, 205, 111128.	6.0	28

#	Article	IF	CITATIONS
343	Iron plaque reduces cerium uptake and translocation in rice seedlings (Oryza sativa L.) exposed to CeO2 nanoparticles with different sizes. Science of the Total Environment, 2019, 661, 767-777.	8.0	28
344	Potential toxicity of nanoplastics to fish and aquatic invertebrates: Current understanding, mechanistic interpretation, and meta-analysis. Journal of Hazardous Materials, 2022, 427, 127870.	12.4	28
345	Therapeutic Delivery of Nanoscale Sulfur to Suppress Disease in Tomatoes: In Vitro Imaging and Orthogonal Mechanistic Investigation. ACS Nano, 2022, 16, 11204-11217.	14.6	28
346	Effect of humic acid on the sulfamethazine adsorption by functionalized multi-walled carbon nanotubes in aqueous solution: mechanistic study. RSC Advances, 2016, 6, 15184-15191.	3.6	27
347	Health effects of banning beehive coke ovens and implementation of the ban in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2693-2698.	7.1	27
348	Graphene oxide mediated reduction of silver ions to silver nanoparticles under environmentally relevant conditions: Kinetics and mechanisms. Science of the Total Environment, 2019, 679, 270-278.	8.0	27
349	Experimental and modeling study of proton and copper binding properties onto fulvic acid fractions using spectroscopic techniques combined with two-dimensional correlation analysis. Environmental Pollution, 2020, 256, 113465.	7.5	27
350	New insight into the photo-transformation mechanisms of graphene oxide under UV-A, UV-B and UV-C lights. Journal of Hazardous Materials, 2021, 403, 123683.	12.4	27
351	Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus) Tj ETQq1 1 0.7 153712.	84314 rgE 8.0	T /Overloc <mark>k</mark> 27
352	Dispersant selection for nanomaterials: Insight into dispersing functionalized carbon nanotubes by small polar aromatic organic molecules. Carbon, 2015, 91, 494-505.	10.3	26
353	Assessment on the occupational exposure of urban public bus drivers to bioaccessible trace metals through resuspended fraction of settled bus dust. Science of the Total Environment, 2015, 508, 37-45.	8.0	26
354	Mechanism and performance for adsorption of 2-chlorophenol onto zeolite with surfactant by one-step process from aqueous phase. Science of the Total Environment, 2017, 581-582, 550-558.	8.0	26
355	Understanding the pH-dependent adsorption of ionizable compounds on graphene oxide using molecular dynamics simulations. Environmental Science: Nano, 2017, 4, 1935-1943.	4.3	26
356	Bioaccessible trace metals in lip cosmetics and their health risks to female consumers. Environmental Pollution, 2018, 238, 554-561.	7.5	26
357	Goethite catalyzed Cr(VI) reduction by tartaric acid via surface adsorption. Ecotoxicology and Environmental Safety, 2019, 171, 594-599.	6.0	26
358	Wood vinegar and biochar co-application mitigates nitrous oxide and methane emissions from rice paddy soil: A two-year experiment. Environmental Pollution, 2020, 267, 115403.	7.5	26
359	VOCs adsorption on activated carbon with initial water vapor contents: Adsorption mechanism and modified characteristic curves. Science of the Total Environment, 2020, 731, 139184.	8.0	26
360	Uptake kinetics of silver nanoparticles by plant: relative importance of particles and dissolved ions. Nanotoxicology, 2020, 14, 654-666.	3.0	26

#	Article	IF	CITATIONS
361	Enhanced degradation of norfloxacin by Ce-mediated Fe-MIL-101: catalytic mechanism, degradation pathways, and potential applications in wastewater treatment. Environmental Science: Nano, 2021, 8, 2347-2359.	4.3	26
362	Processes and mechanisms of photosynthesis augmented by engineered nanomaterials. Environmental Chemistry, 2019, 16, 430.	1.5	26
363	Molecular Mechanisms of Early Flowering in Tomatoes Induced by Manganese Ferrite (MnFe ₂ O ₄) Nanomaterials. ACS Nano, 2022, 16, 5636-5646.	14.6	26
364	Properties and cellular effects of particulate matter from direct emissions and ambient sources. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 1075-1083.	1.7	25
365	Dataset on the effect of hardwood biochar on soil gravimetric moisture content and nitrate dynamics at different soil depths with FTIR analysis of fresh and aged biochar. Data in Brief, 2019, 25, 104073.	1.0	25
366	Mechanistic understanding of highly selective adsorption of bisphenols on microporous-dominated nitrogen-doped framework carbon. Science of the Total Environment, 2021, 762, 143115.	8.0	25
367	Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO 2 nanoparticles. Environmental Pollution, 2014, 194, 31-37.	7.5	24
368	Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach. Water Research, 2017, 118, 167-176.	11.3	24
369	Trophic transfer of TiO ₂ nanoparticles from marine microalga (Nitzschia closterium) to scallop (Chlamys farreri) and related toxicity. Environmental Science: Nano, 2017, 4, 415-424.	4.3	24
370	Sawdust biochar application to rice paddy field: reduced nitrogen loss in floodwater accompanied with increased NH3 volatilization. Environmental Science and Pollution Research, 2018, 25, 8388-8395.	5.3	24
371	Cleavage and transformation inhibition of extracellular antibiotic resistance genes by graphene oxides with different lateral sizes. Science of the Total Environment, 2019, 695, 133932.	8.0	24
372	Simulated photo-degradation of dissolved organic matter in lakes revealed by three-dimensional excitation-emission matrix with regional integration and parallel factor analysis. Journal of Environmental Sciences, 2020, 90, 310-320.	6.1	24
373	Xylem-based long-distance transport and phloem remobilization of copper in Salix integra Thunb Journal of Hazardous Materials, 2020, 392, 122428.	12.4	24
374	Binding Force and Site-Determined Desorption and Fragmentation of Antibiotic Resistance Genes from Metallic Nanomaterials. Environmental Science & Technology, 2021, 55, 9305-9316.	10.0	24
375	Environmental risks of disposable face masks during the pandemic of COVID-19: Challenges and management. Science of the Total Environment, 2022, 825, 153880.	8.0	24
376	Development of a filter-based method for detecting silver nanoparticles and their heteroaggregation in aqueous environments by surface-enhanced Raman spectroscopy. Environmental Pollution, 2016, 211, 198-205.	7.5	23
377	Photochemical Transformation and Catalytic Activity of Dissolved Black Nitrogen Released from Environmental Black Carbon. Environmental Science & amp; Technology, 2021, 55, 6476-6484.	10.0	23
378	The molecular mechanisms of silica nanomaterials enhancing the rice (Oryza sativa L.) resistance to planthoppers (Nilaparvata lugens Stal). Science of the Total Environment, 2021, 767, 144967.	8.0	23

#	Article	lF	CITATIONS
379	Influence of different types of nanomaterials on soil enzyme activity: A global meta-analysis. Nano Today, 2022, 42, 101345.	11.9	23
380	Antibiotic Chlortetracycline Causes Transgenerational Immunosuppression via NF-l̂ºB. Environmental Science & Technology, 2022, 56, 4251-4261.	10.0	23
381	Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment. Frontiers of Environmental Science and Engineering, 2022, 16, .	6.0	23
382	A green, facile, and rapid method for microextraction and Raman detection of titanium dioxide nanoparticles from milk powder. RSC Advances, 2017, 7, 21380-21388.	3.6	22
383	Homo-Conjugation of Low Molecular Weight Organic Acids Competes with Their Complexation with Cu(II). Environmental Science & Technology, 2018, 52, 5173-5181.	10.0	22
384	Natural organic matter inhibits aggregation of few-layered black phosphorus in mono- and divalent electrolyte solutions. Environmental Science: Nano, 2019, 6, 599-609.	4.3	22
385	Combined effect of nano-CuO and nano-ZnO in plant-related system: From bioavailability in soil to transcriptional regulation of metal homeostasis in barley. Journal of Hazardous Materials, 2021, 416, 126230.	12.4	22
386	Exposure assessment of PM2.5 during winter in outdoor and indoor environments of research center: spatial-temporal distribution, carbonaceous compositions and contributions of infiltration. Science of the Total Environment, 2016, 573, 854-861.	8.0	21
387	Retention of 14C-labeled multiwall carbon nanotubes by humic acid and polymers: Roles of macromolecule properties. Carbon, 2016, 99, 229-237.	10.3	21
388	Comparison of different crop residue-based technologies for their energy production and air pollutant emission. Science of the Total Environment, 2020, 707, 136122.	8.0	21
389	Reaction of Substituted Phenols with Lignin Char: Dual Oxidative and Reductive Pathways Depending on Substituents and Conditions. Environmental Science & Technology, 2020, 54, 15811-15820.	10.0	21
390	Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Research, 2020, 13, 3198-3205.	10.4	21
391	The Fate of p-Nitrophenol in Goethite-Rich and Sulfide-Containing Dynamic Anoxic/Oxic Environments. Environmental Science & Technology, 2020, 54, 9427-9436.	10.0	21
392	Degradation, adsorption and leaching of phenazine-1-carboxamide in agricultural soils. Ecotoxicology and Environmental Safety, 2020, 205, 111374.	6.0	21
393	Attachment of positively and negatively charged submicron polystyrene plastics on nine typical soils. Journal of Hazardous Materials, 2022, 431, 128566.	12.4	21
394	Sorption and solubility of ofloxacin and norfloxacin in water–methanol cosolvent. Chemosphere, 2014, 103, 322-328.	8.2	20
395	Health impact of bioaccessible metal in lip cosmetics to female college students and career women, northeast of China. Environmental Pollution, 2015, 197, 214-220.	7.5	20
396	Suspension stability and aggregation of multi-walled carbon nanotubes as affected by dissolved organic matters extracted from agricultural wastes. Environmental Pollution, 2016, 210, 323-329.	7.5	20

#	Article	IF	CITATIONS
397	Activation of Hydrogen Peroxide and Solid Peroxide Reagents by Phosphate Ion in Alkaline Solution. Environmental Engineering Science, 2016, 33, 193-199.	1.6	20
398	Green Algae as Carriers Enhance the Bioavailability of ¹⁴ C-Labeled Few-Layer Graphene to Freshwater Snails. Environmental Science & Technology, 2018, 52, 1591-1601.	10.0	20
399	Adsorption and desorption of antiviral drugs (ritonavir and lopinavir) on sewage sludges as a potential environmental risk. Journal of Hazardous Materials, 2022, 425, 127901.	12.4	20
400	Advances and challenges of broadband solar absorbers for efficient solar steam generation. Environmental Science: Nano, 2022, 9, 2264-2296.	4.3	20
401	Soil structures and immobilization of typical contaminants in soils in response to diverse microplastics. Journal of Hazardous Materials, 2022, 438, 129555.	12.4	20
402	Impact of the Simulated Diagenesis on Sorption of Naphthalene and 1-Naphthol by Soil Organic Matter and its Precursors. Environmental Science & amp; Technology, 2013, 47, 12148-12155.	10.0	19
403	Concentrations of polycyclic aromatic hydrocarbons in resuspendable fraction of settled bus dust and its implications for human exposure. Environmental Pollution, 2015, 198, 1-7.	7.5	19
404	Catechol degradation on hematite/silica–gas interface as affected by gas composition and the formation of environmentally persistent free radicals. Scientific Reports, 2016, 6, 24494.	3.3	19
405	Effect of the Composition and Structure of Excipient Emulsion on the Bioaccessibility of Pesticide Residue in Agricultural Products. Journal of Agricultural and Food Chemistry, 2017, 65, 9128-9138.	5.2	19
406	Transformation of ¹⁴ C‣abeled Graphene to ¹⁴ CO ₂ in the Shoots of a Rice Plant. Angewandte Chemie, 2018, 130, 9907-9911.	2.0	19
407	Citric acid enhances Ce uptake and accumulation in rice seedlings exposed to CeO2 nanoparticles and iron plaque attenuates the enhancement. Chemosphere, 2020, 240, 124897.	8.2	19
408	Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth. Environmental Pollution, 2021, 289, 117912.	7.5	19
409	Mechanisms of the Aggregation of Graphene Oxide at High pH: Roles of Oxidation Debris and Metal Adsorption. Environmental Science & amp; Technology, 2021, 55, 14639-14648.	10.0	19
410	Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm. Journal of Hazardous Materials, 2022, 424, 127676.	12.4	19
411	Direct Spectroscopic Evidence for Charge-Assisted Hydrogen-Bond Formation between Ionizable Organic Chemicals and Carbonaceous Materials. Environmental Science & Technology, 2022, 56, 9356-9366.	10.0	19
412	Reactive mineral removal relative to soil organic matter heterogeneity and implications for organic contaminant sorption. Environmental Pollution, 2017, 227, 49-56.	7.5	18
413	Probing the specificity of polyurethane foam as a †̃solid-phase extractant': Extractability-governing molecular attributes of lipophilic phenolic compounds. Talanta, 2017, 172, 186-198.	5.5	18
414	Reduced graphene oxide-catalyzed oxidative coupling reaction of 4-methoxyphenol in aerobic aqueous solution. Carbon, 2017, 121, 418-425.	10.3	18

#	Article	IF	CITATIONS
415	Phenanthrene-responsive microRNAs and their targets in wheat roots. Chemosphere, 2017, 186, 588-598.	8.2	18

Transformation and species identification of CuO nanoparticles in plant cells (<i>Nicotiana) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 To 4.3

417	Impact of Food Emulsions on the Bioaccessibility of Hydrophobic Pesticide Residues in Co-Ingested Natural Products: Influence of Emulsifier and Dietary Fiber Type. Journal of Agricultural and Food Chemistry, 2019, 67, 6032-6040.	5.2	18
418	Physicochemical properties of aged hydrochar in a rice-wheat rotation system: A 16-month observation. Environmental Pollution, 2021, 272, 116037.	7.5	18
419	Simultaneous Removal of Selenite and Selenate by Nanosized Zerovalent Iron in Anoxic Systems: The Overlooked Role of Selenite. Environmental Science & Technology, 2021, 55, 6299-6308.	10.0	18
420	New insight into the mechanism of graphene oxide-enhanced phytotoxicity of arsenic species. Journal of Hazardous Materials, 2021, 410, 124959.	12.4	18
421	Mechanisms of growth-promotion and Se-enrichment in <i>Brassica chinensis</i> L. by selenium nanomaterials: beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environmental Science: Nano, 2022, 9, 302-312.	4.3	18
422	Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: Current understanding and future scope. NanoImpact, 2022, 26, 100407.	4.5	18
423	Evaluation of Postharvest Washing on Removal of Silver Nanoparticles (AgNPs) from Spinach Leaves. Journal of Agricultural and Food Chemistry, 2016, 64, 6916-6922.	5.2	17
424	Development and application of a digestion-Raman analysis approach for studying multiwall carbon nanotube uptake in lettuce. Environmental Science: Nano, 2018, 5, 659-668.	4.3	17
425	Arsenic removal from flooded paddy soil with spontaneous hygrophyte markedly attenuates rice grain arsenic. Environment International, 2019, 133, 105159.	10.0	17
426	Removal of labile arsenic from flooded paddy soils with a novel extractive column loaded with quartz-supported nanoscale zero-valent iron. Environmental Pollution, 2019, 255, 113249.	7.5	17
427	Macronutrients in Soil and Wheat as Affected by a Long-Term Tillage and Nitrogen Fertilization in Winter Wheat–Fallow Rotation. Agronomy, 2019, 9, 178.	3.0	17
428	Phenanthrene-triggered tricarboxylic acid cycle response in wheat leaf. Science of the Total Environment, 2019, 665, 107-112.	8.0	17
429	Selenite capture by MIL-101 (Fe) through Fe O Se bonds at free coordination Fe sites. Journal of Hazardous Materials, 2022, 424, 127715.	12.4	17
430	Tracking microplastics biodegradation through CO2 emission: Role of photoaging and mineral addition. Journal of Hazardous Materials, 2022, 439, 129615.	12.4	17
431	Joint Nanotoxicology Assessment Provides a New Strategy for Developing Nanoenabled Bioremediation Technologies. Environmental Science & Technology, 2019, 53, 7927-7929.	10.0	16
432	Effects of organic matter on uptake and intracellular trafficking of nanoparticles in <i>Tetrahymena thermophila</i> . Environmental Science: Nano, 2019, 6, 2116-2128.	4.3	16

#	Article	IF	CITATIONS
433	Characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in soil seepage water in karst terrains, southwest China. Ecotoxicology and Environmental Safety, 2020, 190, 110122.	6.0	16
434	Dual roles of glutathione in silver nanoparticle detoxification and enhancement of nitrogen assimilation in soybean (<i>Glycine max</i> (L.) Merrill). Environmental Science: Nano, 2020, 7, 1954-1966.	4.3	16
435	Light-driven inactivation of harmful algae Microcystis aeruginosa and degradation of microcystin by oxygen-doped carbon nitride nanosheets. Chemical Engineering Journal, 2021, 417, 128094.	12.7	16
436	Emission factors of environmentally persistent free radicals in PM2.5 from rural residential solid fuels combusted in a traditional stove. Science of the Total Environment, 2021, 773, 145151.	8.0	16
437	Dual roles of biochar redox property in mediating 2,4-dichlorophenol degradation in the presence of Fe3+ and persulfate. Chemosphere, 2021, 279, 130456.	8.2	16
438	Photocatalytic strategy to mitigate microplastic pollution in aquatic environments: Promising catalysts, efficiencies, mechanisms, and ecological risks. Critical Reviews in Environmental Science and Technology, 2023, 53, 504-526.	12.8	16
439	Consumer-grade polyurethane foam functions as a large and selective absorption sink for bisphenol A in aqueous media. Journal of Materials Chemistry A, 2015, 3, 8870-8881.	10.3	15
440	Combined effects of dissolved humic acids and tourmaline on the accumulation of 2, 2′, 4, 4′, 5, 5′- hexabrominated diphenyl ether (BDE-153) in Lactuca sativa. Environmental Pollution, 2017, 231, 68-77.	7.5	15
441	Filtration-based water treatment system embedded with black phosphorus for NIR-triggered disinfection. Environmental Science: Nano, 2019, 6, 2977-2985.	4.3	15
442	Inhalation bioaccessibility of polycyclic aromatic hydrocarbons in heavy PM2.5 pollution days: Implications for public health risk assessment in northern China. Environmental Pollution, 2019, 255, 113296.	7.5	15
443	Transformation of Ag ions into Ag nanoparticle-loaded AgCl microcubes in the plant root zone. Environmental Science: Nano, 2019, 6, 1099-1110.	4.3	15
444	Proteomic analysis for phenanthrene-elicited wheat chloroplast deformation. Environment International, 2019, 123, 273-281.	10.0	15
445	Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study. Environmental Pollution, 2019, 246, 980-989.	7.5	15
446	Effects of biochar on 2, 2′, 4, 4′, 5, 5′-hexabrominated diphenyl ether (BDE-153) fate in Amaranthus mangostanus L.: Accumulation, metabolite formation, and physiological response. Science of the Total Environment, 2019, 651, 1154-1165.	8.0	15
447	Facile passivation of black phosphorus nanosheets <i>via</i> silica coating for stable and efficient solar desalination. Environmental Science: Nano, 2020, 7, 414-423.	4.3	15
448	Insights into the molecular transformation in the dissolved organic compounds of agro-waste-hydrochars by microbial-aging using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Bioresource Technology, 2021, 320, 124411.	9.6	15
449	Reduction of silver ions to silver nanoparticles by biomass and biochar: Mechanisms and critical factors. Science of the Total Environment, 2021, 779, 146326.	8.0	15
450	Biochar mitigates allelopathy through regulating allelochemical generation from plants and		15

accumulation in soil., 2022, 1,.

#	Article	IF	CITATIONS
451	Effects of Low-Molecular-Weight Organic Acids on Soil Micropores and Implication for Organic Contaminant Availability. Communications in Soil Science and Plant Analysis, 2014, 45, 1120-1132.	1.4	14
452	Sorption affinities of sulfamethoxazole and carbamazepine to two sorbents under co-sorption systems. Environmental Pollution, 2014, 194, 203-209.	7.5	14
453	Oxidation of Cr(III) on birnessite surfaces: The effect of goethite and kaolinite. Journal of Environmental Sciences, 2015, 37, 8-14.	6.1	14
454	Ultra-sensitive determination of silver nanoparticles by surface-enhanced Raman spectroscopy (SERS) after hydrophobization-mediated extraction. Analyst, The, 2016, 141, 5261-5264.	3.5	14
455	Micronutrients decline under long-term tillage and nitrogen fertilization. Scientific Reports, 2019, 9, 12020.	3.3	14
456	Thallium contamination in agricultural soils and associated potential remediation via biochar utilization. Biochar, 2020, 2, 33-46.	12.6	14
457	The mechanisms and environmental implications of engineered nanoparticles dispersion. Science of the Total Environment, 2020, 722, 137781.	8.0	14
458	Macronutrient in soils and wheat from long-term agroexperiments reflects variations in residue and fertilizer inputs. Scientific Reports, 2020, 10, 3263.	3.3	14
459	Weathered Microplastics Induce Silver Nanoparticle Formation. Environmental Science and Technology Letters, 2022, 9, 179-185.	8.7	14
460	Physiological and proteomic analyses reveal the effect of CeO2 nanoparticles on strawberry reproductive system and fruit quality. Science of the Total Environment, 2022, 814, 152494.	8.0	14
461	Ring defects-rich and pyridinic N-doped graphene aerogel as floating adsorbent for efficient removal of tetracycline: Evidence from NEXAFS measurements and theoretical calculations. Journal of Hazardous Materials, 2022, 435, 128940.	12.4	14
462	Binary Short-Range Colloidal Assembly of Magnetic Iron Oxides Nanoparticles and Fullerene (nC ₆₀) in Environmental Media. Environmental Science & Technology, 2014, 48, 12285-12291.	10.0	13
463	Effect of hydro-oleophobic perfluorocarbon chain on interfacial behavior and mechanism of perfluorooctane sulfonate in oil-water mixture. Scientific Reports, 2017, 7, 44694.	3.3	13
464	Mineral elements uptake and physiological response of Amaranthus mangostanus (L.) as affected by biochar. Ecotoxicology and Environmental Safety, 2019, 175, 58-65.	6.0	13
465	Biochar for Water and Soil Remediation: Production, Characterization, and Application. , 2020, , 153-196.		13
466	Effects of pH and electrolytes on the sheet-to-sheet aggregation mode of graphene oxide in aqueous solutions. Environmental Science: Nano, 2020, 7, 984-995.	4.3	13
467	Organo-mineral complexes protect condensed organic matter as revealed by benzene-polycarboxylic acids. Environmental Pollution, 2020, 260, 113977.	7.5	13
468	Graphitic Carbon Nitride (C3N4) Reduces Cadmium and Arsenic Phytotoxicity and Accumulation in Rice (Oryza sativa L.). Nanomaterials, 2021, 11, 839.	4.1	13

#	Article	IF	CITATIONS
469	Raw material of water-washed hydrochar was critical for the mitigation of CHGI in infertile paddy soil: a column experiment. Biochar, 2021, 3, 381-390.	12.6	13
470	Photodegradation of pyrogenic dissolved organic matter increases bioavailability: Novel insight into bioalteration, microbial community succession, and C and N dynamics. Chemical Geology, 2022, 605, 120964.	3.3	13
471	Novel Insights into the Impact of Nano-Biochar on Composition and Structural Transformation of Mineral/Nano-Biochar Heteroaggregates in the Presence of Root Exudates. Environmental Science & Technology, 2022, 56, 9816-9825.	10.0	13
472	Characteristics of amino acids in soil humic substances. Communications in Soil Science and Plant Analysis, 2001, 32, 1991-2005.	1.4	12
473	Effects of Hardwood Biochar on Soil Acidity, Nutrient Dynamics, and Sweet Corn Productivity. Communications in Soil Science and Plant Analysis, 2019, 50, 1732-1742.	1.4	12
474	A field-deployable surface-enhanced Raman scattering (SERS) method for sensitive analysis of silver nanoparticles in environmental waters. Science of the Total Environment, 2019, 653, 1034-1041.	8.0	12
475	Thermal degradation features of soil humic acid sub-fractions in pyrolytic treatment and their relation to molecular signatures. Science of the Total Environment, 2020, 749, 142318.	8.0	12
476	Carbon-based nanomaterials alter the composition of the fungal endophyte community in rice (<i>Oryza sativa</i> L.). Environmental Science: Nano, 2020, 7, 2047-2060.	4.3	12
477	Nano-black carbon (biochar) released from pyrogenic carbonaceous matter as a super suspending agent in water/soil environments. Biochar, 2021, 3, 1-3.	12.6	12
478	Nitrogen-doped carbon dots alleviate the damage from tomato bacterial wilt syndrome: systemic acquired resistance activation and reactive oxygen species scavenging. Environmental Science: Nano, 2021, 8, 3806-3819.	4.3	12
479	Organic matter source and degradation as revealed by molecular biomarkers in agricultural soils of Yuanyang terrace. Scientific Reports, 2015, 5, 11074.	3.3	11
480	Nylon Bristles and Elastomers Retain Centigram Levels of Triclosan and Other Chemicals from Toothpastes: Accumulation and Uncontrolled Release. Environmental Science & Technology, 2017, 51, 12264-12273.	10.0	11
481	Application of carotenoid to alleviate the oxidative stress caused by phenanthrene in wheat. Environmental Science and Pollution Research, 2019, 26, 3593-3602.	5.3	11
482	Development of a comprehensive understanding of aggregation-settling movement of CeO2 nanoparticles in natural waters. Environmental Pollution, 2020, 257, 113584.	7.5	11
483	Flow field-flow fractionation hyphenated with inductively coupled plasma mass spectrometry: a robust technique for characterization of engineered elemental metal nanoparticles in the environment. Applied Spectroscopy Reviews, 2023, 58, 110-131.	6.7	11
484	Efficient Disposal of the Aqueous Products of Wet Organic Waste Hydrothermal Carbonization by Paddy Constructed Wetlands. ACS ES&T Engineering, 2022, 2, 1651-1664.	7.6	11
485	Mapping gold nanoparticles on and in edible leaves in situ using surface enhanced Raman spectroscopy. RSC Advances, 2016, 6, 60152-60159.	3.6	10
486	The role of different fractions of humic acid in the physiological response of amaranth treated with magnetic carbon nanotubes. Ecotoxicology and Environmental Safety, 2019, 169, 848-855.	6.0	10

#	Article	IF	CITATIONS
487	The conductivity and redox properties of pyrolyzed carbon mediate methanogenesis in paddy soils with ethanol as substrate. Science of the Total Environment, 2021, 795, 148906.	8.0	10
488	Inter-molecular interactions of phthalic acid esters and multi-stage sorption revealed by experimental investigations and computation simulations. Chemical Engineering Journal, 2022, 431, 134018.	12.7	10
489	Stabilization and remediation of heavy metal-contaminated soils in China: insights from a decade-long national survey. Environmental Science and Pollution Research, 2022, 29, 39077-39087.	5.3	10
490	Ultrathin porous carbon nanosheet as an efficient adsorbent for the removal of bisphenol A: The overlooked role of topological defects. Chemosphere, 2022, 306, 135549.	8.2	10
491	pHâ€Dependent Degradation of Layered Black Phosphorus: Essential Role of Hydroxide Ions. Angewandte Chemie, 2018, 131, 477.	2.0	9
492	Micronutrients in the Soil and Wheat: Impact of 84 Years of Organic or Synthetic Fertilization and Crop Residue Management. Agronomy, 2019, 9, 464.	3.0	9
493	Suspended state heteroaggregation kinetics of kaolinite and fullerene (nC60) in the presence of tannic acid: Effect of Ï∈Ĩ€ interactions. Science of the Total Environment, 2020, 713, 136559.	8.0	9
494	Correlations and prediction of adsorption capacity and affinity of aromatic compounds on activated carbons. Science of the Total Environment, 2020, 704, 135457.	8.0	9
495	Surface Properties and Environmental Transformations Controlling the Bioaccumulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. Reviews of Environmental Contamination and Toxicology, 2020, 253, 155-206.	1.3	9
496	Copper(I) Promotes Silver Sulfide Dissolution and Increases Silver Phytoavailability. Environmental Science & Technology, 2020, 54, 5589-5597.	10.0	9
497	Physiological responses of pumpkin to zinc oxide quantum dots and nanoparticles. Environmental Pollution, 2022, 296, 118723.	7.5	9
498	Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge. Environmental Pollution, 2022, 308, 119582.	7.5	9
499	Colloidal aggregation and structural assembly of aspect ratio variant goethite (α-FeOOH) with nC60 fullerene in environmental media. Environmental Pollution, 2016, 219, 1049-1059.	7.5	8
500	Cation-Ï€-Induced Exfoliation of Graphite by a Zwitterionic Polymeric Dispersant for Congo Red Adsorption. ACS Applied Nano Materials, 2018, 1, 3878-3885.	5.0	8
501	Transfer and transformation of CeO ₂ NPs along a terrestrial trophic food chain. Environmental Science: Nano, 2020, 7, 588-598.	4.3	8
502	Phosphate induced surface transformation alleviated the cytotoxicity of Y2O3 nanoparticles to tobacco BY-2 cells. Science of the Total Environment, 2020, 732, 139276.	8.0	8
503	Effects of Phosphorus Ensembled Nanomaterials on Nutrient Uptake and Distribution in Glycine max L. under Simulated Precipitation. Agronomy, 2021, 11, 1086.	3.0	8
504	Simultaneous exposure of wheat (Triticum aestivum L.) to CuO and S nanoparticles alleviates toxicity by reducing Cu accumulation and modulating antioxidant response. Science of the Total Environment, 2022, 839, 156285.	8.0	8

#	Article	IF	CITATIONS
505	Organic Matter Associated with Soil Aggregate Fractions of a Black Soil in Northeast China: Impacts of Land-Use Change and Long-Term Fertilization. Communications in Soil Science and Plant Analysis, 2015, 46, 405-423.	1.4	7
506	Redistribution of Different Organic Carbon Fractions in the Soil Profile of a Typical Chinese Mollisol with Land-Use Change. Communications in Soil Science and Plant Analysis, 2017, 48, 2369-2380.	1.4	7
507	Digestion Coupled with Programmed Thermal Analysis for Quantification of Multiwall Carbon Nanotubes in Plant Tissues. Environmental Science and Technology Letters, 2018, 5, 442-447.	8.7	7
508	Emerging investigator series: quantification of multiwall carbon nanotubes in plant tissues with spectroscopic analysis. Environmental Science: Nano, 2019, 6, 380-387.	4.3	7
509	A general-applicable model for estimating the binding coefficient of organic pollutants with dissolved organic matter. Science of the Total Environment, 2019, 670, 226-235.	8.0	7
510	Formation of silver nanoparticles in aquatic environments facilitated by algal extracellular polymeric substances: Importance of chloride ions and light. Science of the Total Environment, 2021, 775, 145867.	8.0	7
511	Environmental persistent free radicals in diesel engine exhaust particles at different altitudes and engine speeds. Science of the Total Environment, 2021, 796, 148963.	8.0	7
512	Identification of naturally weathering microplastics and their interactions with ion dyes in aquatic environments. Marine Pollution Bulletin, 2022, 174, 113186.	5.0	7
513	Fluorescent g-C3N4 nanosheets enhanced photosynthetic efficiency in maize. NanoImpact, 2021, 24, 100363.	4.5	7
514	Important Role of Concave Surfaces in Deposition of Colloids under Favorable Conditions as Revealed by Microscale Visualization. Environmental Science & Technology, 2022, 56, 4121-4131.	10.0	7
515	Direct toxicity of environmentally persistent free radicals to nematode Caenorhabditis elegans after excluding the concomitant chemicals. Science of the Total Environment, 2022, 839, 156226.	8.0	7
516	Adsorption and bioaccessibility of phenanthrene on carbon nanotubes in the in vitro gastrointestinal system. Science of the Total Environment, 2016, 566-567, 50-56.	8.0	6
517	Micronutrient Concentrations in Soil and Wheat Decline by Long-Term Tillage and Winter Wheat–Pea Rotation. Agronomy, 2019, 9, 359.	3.0	6
518	Heating methods generate different amounts of persistent free radicals from unsaturated fatty acids. Science of the Total Environment, 2019, 672, 16-22.	8.0	6
519	Rapid and efficient removal of silver nanoparticles from plant surfaces using sodium hypochlorite and ammonium hydroxide solution. Food Control, 2019, 98, 68-73.	5.5	6
520	Insights into the uptake, distribution, and efflux of arsenite associated with nano-TiO ₂ in determining its toxicity on <i>Daphnia magna</i> . Environmental Science: Nano, 2020, 7, 1194-1204.	4.3	6
521	In situ prepared algae-supported iron sulfide to remove hexavalent chromium. Environmental Pollution, 2021, 274, 115831.	7.5	6
522	Rationales Design von Nanogelen zur Überwindung biologischer Barrieren auf verschiedenen Verabreichungswegen. Angewandte Chemie, 2021, 133, 14884-14903.	2.0	6

#	Article	IF	CITATIONS
523	New insight into naturally formed nanosilver particles: role of plant root exudates. Environmental Science: Nano, 2021, 8, 1580-1592.	4.3	6
524	Food-Grade Titanium Dioxide Particles Decreased the Bioaccessibility of Vitamin D ₃ in the Simulated Human Gastrointestinal Tract. Journal of Agricultural and Food Chemistry, 2021, 69, 2855-2863.	5.2	6
525	CuO and TiO2 particles generated more stable and stronger EPFRs in dark than under UV-irradiation. Science of the Total Environment, 2021, 775, 145555.	8.0	6
526	Can the multi-walled carbon nanotubes be used to alleviate the phytotoxicity of herbicides in soils?. Chemosphere, 2021, 283, 131304.	8.2	6
527	Adsorption and catalytic degradation of preservative parabens by graphene-family nanomaterials. Science of the Total Environment, 2022, 806, 150520.	8.0	6
528	Phytotoxicity and Ecological Safety of Engineered Nanomaterials. International Journal of Plant and Environment, 2015, 1, 09-16.	0.4	6
529	Molecular transformation of dissolved organic carbon of rhizosphere soil induced by flooding and copper pollution. Geoderma, 2022, 407, 115563.	5.1	6
530	The role of nitrate in simultaneous removal of nitrate and trichloroethylene by sulfidated zero-valent Iron. Science of the Total Environment, 2022, 829, 154304.	8.0	6
531	Effect of individual and combined exposure of Fe2O3 nanoparticles and oxytetracycline on their bioaccumulation by rice (Oryza sativa L.). Journal of Soils and Sediments, 2019, 19, 2459-2471.	3.0	5
532	Rapid organic solvent extraction coupled with surface enhanced Raman spectroscopic mapping for ultrasensitive quantification of foliarly applied silver nanoparticles in plant leaves. Environmental Science: Nano, 2020, 7, 1061-1067.	4.3	5
533	Soil nutrient and nematode community changes in response to hardwood charcoal application. Communications in Soil Science and Plant Analysis, 2021, 52, 917-925.	1.4	5
534	Triiron Tetrairon Phosphate (Fe7(PO4)6) Nanomaterials Enhanced Flavonoid Accumulation in Tomato Fruits. Nanomaterials, 2022, 12, 1341.	4.1	5
535	Revisit the adsorption of aromatic compounds on graphene oxide: Roles of oxidized debris. Chemical Engineering Journal, 2022, 450, 137996.	12.7	5
536	The effect of composition on stability (14 C activity) of soil organic matter fractions from the albic and black soils. Science of the Total Environment, 2016, 541, 92-100.	8.0	4
537	Tannic acid- and cation-mediated interfacial self-assembly and epitaxial growth of fullerene (nC60) and kaolinite binary graphitic aggregates. Journal of Colloid and Interface Science, 2019, 556, 717-725.	9.4	4
538	Synergetic mediation of reduced graphene oxide and Cu(II) on the oxidation of 2-naphthol in water. Environmental Pollution, 2019, 252, 689-696.	7.5	4
539	Investigation on parameters optimization to produce hydrochar without carbohydrate carbon. Science of the Total Environment, 2020, 748, 141354.	8.0	4
540	Accumulation of phenanthrene and its metabolites in lettuce (Lactuca sativa L.) as affected by magnetic carbon nanotubes and dissolved humic acids. Environmental Science: Nano, 2020, 7, 3759-3772.	4.3	4

#	Article	IF	CITATIONS
541	<i>In situ</i> and real time investigation of foliarly applied silver nanoparticles on and in spinach leaves by surface enhanced Raman spectroscopic mapping. Analytical Methods, 2021, 13, 2567-2574.	2.7	4
542	Longâ€ŧerm grassland restoration exerts stronger impacts on the vertical distribution of labile over recalcitrant organic carbon fractions in Mollisols. Soil Science Society of America Journal, 0, , .	2.2	4
543	Nano-biochar modulates the formation of iron plaque through facilitating iron-involved redox reactions on aquatic plant root surfaces. Environmental Science: Nano, 2022, 9, 1974-1985.	4.3	4
544	Unique Interaction between Layered Black Phosphorus and Nitrogen Dioxide. Nanomaterials, 2022, 12, 2011.	4.1	4
545	Methods of determining titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species. MethodsX, 2018, 5, 620-625.	1.6	3
546	Turning Waste into Wealth: Remotely NIR Light ontrolled Precious Metal Recovery by Covalently Functionalized Black Phosphorus. ChemSusChem, 2021, 14, 2698-2703.	6.8	3
547	Nano-La2O3 Induces Honeybee (Apis mellifera) Death and Enriches for Pathogens in Honeybee Gut Bacterial Communities. Frontiers in Microbiology, 2021, 12, 780943.	3.5	3
548	Competitive and/or cooperative interactions of graphene-family materials and benzo[a]pyrene with pulmonary surfactant: a computational and experimental study. Particle and Fibre Toxicology, 2021, 18, 46.	6.2	3
549	Interactions of polymeric drug carriers with DDT reduce their combined cytotoxicity. Environmental Pollution, 2018, 241, 701-709.	7.5	2
550	Response of soil enzyme activity and bacterial community to black phosphorus nanosheets. Environmental Science: Nano, 2020, 7, 404-413.	4.3	2
551	Food-grade titanium dioxide particles decrease the bioaccessibility of iron released from spinach leaves in simulated human gastrointestinal tract. Environmental Science: Nano, 2021, 8, 1269-1282.	4.3	2
552	Role of NOM–hematite nanoparticle complexes and organic and inorganic cations in the coherence of silica and clay particles: evaluation based on nanoscale forces and molecular self-assembly. Environmental Science: Nano, 2021, 8, 822-836.	4.3	2
553	Adsorption of phenanthrene onto magnetic multi-walled carbon nanotubes (MMWCNTs) influenced by various fractions of humic acid from a single soil. Chemosphere, 2021, 277, 130259.	8.2	2
554	Heteroaggregation between graphene oxide and titanium dioxide particles of different shapes in aqueous phase. Journal of Hazardous Materials, 2022, 428, 128146.	12.4	2
555	Effect of root exudates on the release, surface property, colloidal stability, and phytotoxicity of dissolved black carbon. Ecotoxicology and Environmental Safety, 2022, 239, 113687.	6.0	2
556	Generation of environmentally persistent free radicals on faceted TiO ₂ in an ambient environment: roles of crystalline surface structures. Environmental Science: Nano, 2022, 9, 2521-2533.	4.3	2
557	Influence of Dissolved Organic Carbon from Natural and Synthetic Fertilizers on Phosphate Leaching from a Sand-Based Golf Green. Itsrj, 2017, 13, 103.	0.3	1
558	Investigation of eluted characteristics of fulvic acids using differential spectroscopy combined with Gaussian deconvolution and spectral indices. Environmental Science and Pollution Research, 2020, 27, 11000-11011.	5.3	1

#	Article	IF	CITATIONS
559	The exposed hematite surface and the generation of environmentally persistent free radicals during catechol degradation. Environmental Sciences: Processes and Impacts, 2021, 23, 109-116.	3.5	1
560	Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver. Science of the Total Environment, 2022, 811, 151380.	8.0	1
561	A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 766-770.	1.7	0
562	Nano-TiO ₂ retarded fetal development by inhibiting transplacental transfer of thyroid hormones in rat. Environmental Science: Nano, 0, , .	4.3	0