Fubo Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8151811/publications.pdf Version: 2024-02-01

FURO CU

#	Article	IF	CITATIONS
1	Porous ZnO Polygonal Nanoflakes: Synthesis, Use in High-Sensitivity NO ₂ Gas Sensor, and Proposed Mechanism of Gas Sensing. Journal of Physical Chemistry C, 2011, 115, 12763-12773.	3.1	350
2	One-Step Synthesis of Co-Doped In ₂ O ₃ Nanorods for High Response of Formaldehyde Sensor at Low Temperature. ACS Sensors, 2018, 3, 468-475.	7.8	199
3	Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO. ACS Applied Materials & Interfaces, 2016, 8, 5466-5474.	8.0	179
4	Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sensors and Actuators B: Chemical, 2018, 262, 655-663.	7.8	151
5	Manipulating the Defect Structure (<i>V</i> _O) of In ₂ O ₃ Nanoparticles for Enhancement of Formaldehyde Detection. ACS Applied Materials & Interfaces, 2018, 10, 933-942.	8.0	146
6	Controllable Defect Redistribution of ZnO Nanopyramids with Exposed {101ì1} Facets for Enhanced Gas Sensing Performance. ACS Applied Materials & Interfaces, 2015, 7, 308-317.	8.0	108
7	Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Applied Catalysis B: Environmental, 2019, 256, 117809.	20.2	103
8	Synthesis, characterization and alcohol-sensing properties of rare earth doped In2O3 hollow spheres. Sensors and Actuators B: Chemical, 2013, 177, 1180-1188.	7.8	93
9	Pd loading induced excellent NO 2 gas sensing of 3DOM In 2 O 3 at room temperature. Sensors and Actuators B: Chemical, 2018, 263, 218-228.	7.8	90
10	Electron compensation in p-type 3DOM NiO by Sn doping for enhanced formaldehyde sensing performance. Journal of Materials Chemistry C, 2017, 5, 3254-3263.	5.5	88
11	Atomically Dispersed Au on In ₂ O ₃ Nanosheets for Highly Sensitive and Selective Detection of Formaldehyde. ACS Sensors, 2020, 5, 2611-2619.	7.8	67
12	Ultrahigh sensitivity and surface mechanism of gas sensing process in composite material of combining In2O3 with metal-organic frameworks derived Co3O4. Sensors and Actuators B: Chemical, 2021, 340, 129990.	7.8	67
13	α-Fe2O3/NiO heterojunction nanorods with enhanced gas sensing performance for acetone. Sensors and Actuators B: Chemical, 2020, 318, 128191.	7.8	65
14	Structural and electronic engineering of 3DOM WO ₃ by alkali metal doping for improved NO ₂ sensing performance. Nanoscale, 2016, 8, 10622-10631.	5.6	62
15	Sensitization of Pd loading for remarkably enhanced hydrogen sensing performance of 3DOM WO3. Sensors and Actuators B: Chemical, 2018, 262, 577-587.	7.8	58
16	Strong metal–support interaction in novel core–shell Au–CeO ₂ nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation. Nanoscale, 2016, 8, 5865-5872.	5.6	55
17	Humidity-Sensing Performance of 3DOM WO ₃ with Controllable Structural Modification. ACS Applied Materials & Interfaces, 2018, 10, 3776-3783.	8.0	45
18	Effects of rare earth element doping on the ethanol gas-sensing performance of three-dimensionally ordered macroporous In ₂ O ₃ . RSC Advances, 2016, 6, 45085-45092.	3.6	44

Fubo Gu

#	Article	IF	CITATIONS
19	The effects of Au species and surfactant on the catalytic reduction of 4-nitrophenol by Au@SiO ₂ . Journal of Materials Chemistry A, 2014, 2, 20374-20381.	10.3	41
20	Multifunctional sandwich-like mesoporous silica–Fe ₃ O ₄ –graphene oxide nanocomposites for removal of methylene blue from water. RSC Advances, 2015, 5, 39964-39972.	3.6	34
21	A high-performance flexible supercapacitor based on hierarchical Co3O4-SnO@SnO2 nanostructures. Electrochimica Acta, 2019, 307, 341-350.	5.2	34
22	Facile preparation of rod-like Au/In2O3 nanocomposites exhibiting high response to CO at room temperature. Sensors and Actuators B: Chemical, 2017, 243, 516-524.	7.8	33
23	Cobalt oxide nanorods with special pore structure for enhanced ethanol sensing performance. Journal of Colloid and Interface Science, 2018, 531, 320-330.	9.4	32
24	Selective Catalytic Oxidation of Methane to Methanol in Aqueous Medium over Copper Cations Promoted by Atomically Dispersed Rhodium on TiO ₂ . Angewandte Chemie - International Edition, 2022, 61, e202201540.	13.8	29
25	Au-modified three-dimensionally ordered macroporous ZnO:In for high-performance ethanol sensors. Journal of Materials Chemistry C, 2020, 8, 2812-2819.	5.5	28
26	Metal–organic framework derived Au@ZnO yolk–shell nanostructures and their highly sensitive detection of acetone. RSC Advances, 2016, 6, 29727-29733.	3.6	26
27	Fine-tuning the structure of cubic indium oxide and their ethanol-sensing properties. Sensors and Actuators B: Chemical, 2014, 193, 669-678.	7.8	23
28	CO oxidation on Au@CeO2 yolk–shell nanoparticles with high catalytic stability. Materials Letters, 2014, 137, 188-191.	2.6	23
29	Atomically dispersed Pt on 3DOM WO3 promoted with cobalt and nickel oxides for highly selective and highly sensitive detection of xylene. Sensors and Actuators B: Chemical, 2019, 297, 126772.	7.8	21
30	A low temperature NO2 gas sensor based metal-thiourea complex nanowires. Sensors and Actuators B: Chemical, 2018, 255, 1139-1146.	7.8	19
31	High specific surface area LaMO ₃ (M = Co, Mn) hollow spheres: synthesis, characterization and catalytic properties in methane combustion. RSC Advances, 2014, 4, 58699-58707.	3.6	15
32	Insights into the effect of Au particle size on triethylamine sensing properties based on a Au–ZnO nanoflower sensor. Journal of Materials Chemistry C, 2022, 10, 3318-3328.	5.5	15
33	Atomically Dispersed Pt on Three-Dimensional Ordered Macroporous SnO ₂ for Highly Sensitive and Highly Selective Detection of Triethylamine at a Low Working Temperature. ACS Applied Materials & Interfaces, 2022, 14, 13440-13449.	8.0	14
34	Facile synthesis of In 2 O 3 nanoparticles with high response to formaldehyde at low temperature. International Journal of Applied Ceramic Technology, 2019, 16, 1570-1580.	2.1	13
35	Luminol chemiluminescence actuated by modified natural sepiolite material and its analytical application. Analytical Methods, 2015, 7, 2779-2785.	2.7	11
36	Three-dimensional ordered macroporous In2O3-supported Au for high-performance ethanol sensing. RSC Advances, 2015, 5, 99018-99022.	3.6	9

Fubo Gu

#	Article	IF	CITATIONS
37	Biomimetic synthesis of calcium-strontium apatite hollow nanospheres. Science China Chemistry, 2010, 53, 1723-1727.	8.2	7
38	Alcohol Sensing Properties of Er-Doped In2O3 Hollow Spheres. Integrated Ferroelectrics, 2012, 138, 117-122.	0.7	6
39	An ultrasensitive calcein sensor based on the implementation of a novel chemiluminescence system with modified kaolin. Sensors and Actuators B: Chemical, 2015, 212, 264-272.	7.8	6
40	Functionalization of Flower-Like ZnO Nanostructures With Au@CuO Nanoparticles for Detection of Ethanol. IEEE Sensors Journal, 2014, 14, 1797-1804.	4.7	5
41	Humidity-Independent, Highly Sensitive and Selective NO ₂ Sensor Based on In ₂ O ₃ Nanoflowers Decorated With Graphite Nanoflakes. IEEE Sensors Journal, 2022, 22, 14753-14761.	4.7	5
42	Selective Catalytic Oxidation of Methane to Methanol in Aqueous Medium over Copper Cations Promoted by Atomically Dispersed Rhodium on TiO ₂ . Angewandte Chemie, 0, , .	2.0	3