## Liu Lei

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8151775/publications.pdf Version: 2024-02-01



linter

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Platinum Supported on WO <sub>3</sub> -Doped Aluminosilicate: A Highly Efficient Catalyst for<br>Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. Industrial & Engineering Chemistry<br>Research, 2017, 56, 11065-11074. | 3.7 | 40        |
| 2  | Improving Selectivity to 1,3-Propanediol for Glycerol Hydrogenolysis Using W- and Al-Incorporated<br>SBA-15 as Support for Pt Nanoparticles. Industrial & Engineering Chemistry Research, 2019, 58,<br>2661-2671.                | 3.7 | 37        |
| 3  | Discovering positively charged Pt for enhanced hydrogenolysis of glycerol to 1,3-propanediol. Green Chemistry, 2020, 22, 8254-8259.                                                                                              | 9.0 | 30        |
| 4  | Promoting Role of Oxygen Deficiency on a WO <sub>3</sub> -Supported Pt Catalyst for Glycerol<br>Hydrogenolysis to 1,3-Propanediol. Industrial & Engineering Chemistry Research, 2020, 59,<br>7389-7397.                          | 3.7 | 26        |
| 5  | Facilitating Ptâ^'WO <sub><i>x</i></sub> Species Interaction for Efficient Glycerol Hydrogenolysis to<br>1,3â€Propanediol. ChemCatChem, 2021, 13, 3695-3705.                                                                     | 3.7 | 21        |
| 6  | A Facile Approach to Tune WO <sub><i>x</i></sub> Species Combining Pt Catalyst for Enhanced<br>Catalytic Performance in Glycerol Hydrogenolysis. Industrial & Engineering Chemistry Research,<br>2021, 60, 12534-12544.          | 3.7 | 12        |
| 7  | Highly Selective Synthesis of Polyalkylated Naphthalenes Catalyzed by Ionic Liquids and Their<br>Tribological Properties as Lubricant Base Oil. ChemistrySelect, 2019, 4, 5284-5290.                                             | 1.5 | 11        |
| 8  | Hydrogenation of naphthalene to decalin catalyzed by Pt supported on WO3 of different crystallinity at low temperature. Journal of Fuel Chemistry and Technology, 2021, 49, 1181-1189.                                           | 2.0 | 8         |
| 9  | Highâ€viscosity polyalkylphenanthrene oils: Synthesis and evaluation of lubricating properties.<br>Lubrication Science, 2022, 34, 527-536.                                                                                       | 2.1 | 8         |
| 10 | Production of High-Purity Allyl Alcohol by the Salting-Out Method from Formic Acid-Mediated<br>Deoxydehydration of Glycerol. Journal of Chemical & Engineering Data, 2018, 63, 3874-3880.                                        | 1.9 | 6         |
| 11 | Coâ€ŧemplating Ionothermal Synthesis and Crystal Structure of a New Layered Aluminophosphate from<br>a Protic Deep Eutectic Solvent. Chinese Journal of Chemistry, 2016, 34, 419-424.                                            | 4.9 | 4         |
| 12 | Four new zinc( <scp>ii</scp> ) diphosphonates obtained via an ionothermal route: crystal structures and phase transformation behaviour. CrystEngComm, 2017, 19, 2500-2508.                                                       | 2.6 | 4         |
| 13 | lonothermal synthesis and crystal structures of novel aluminum phosphates with in situ generated templates. Dalton Transactions, 2015, 44, 2294-2298.                                                                            | 3.3 | 3         |
| 14 | A facile route to encapsulate ultrasmall Ni clusters within the pore channels of AlPO-5. Materials<br>Letters, 2018, 210, 211-213.                                                                                               | 2.6 | 3         |
| 15 | Ionothermal Synthesis and Structural Characterization of a Novel Open Framework Zinc<br>Diphosphonate with Carboxylateâ€kike Linker. Chinese Journal of Chemistry, 2017, 35, 1411-1416.                                          | 4.9 | 2         |
| 16 | New strategy for production of primary alcohols from aliphatic olefins by tandem cross-metathesis/hydrogenation. Chinese Chemical Letters, 2020, 31, 1525-1529.                                                                  | 9.0 | 2         |
| 17 | Adjusting Pt Nanoparticle Size on SBA-15 by a Sol-Immobilisation Method Towards Naphthalene<br>Hydrogenation. Catalysis Letters, 0, , 1.                                                                                         | 2.6 | 1         |
|    |                                                                                                                                                                                                                                  |     |           |