List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8151402/publications.pdf Version: 2024-02-01

RIÃ DN PETTED IELLE

#	Article	IF	CITATIONS
1	3D-printed polyamide structures coated with TiO2 nanoparticles, towards a 360-degree rotating photocatalytic reactor. Materials Letters, 2022, 307, 131044.	1.3	9
2	A framework for classification of snow- and icephobicity. Journal of Adhesion Science and Technology, 2021, 35, 1087-1098.	1.4	4
3	Influence of shell materials on the optical performance of VO2 core–shell nanoparticle–based thermochromic films. Materials Today Nano, 2021, 13, 100102.	2.3	4
4	Operating Hardware Impact on the Heat Transfer Properties of Windows. Energies, 2021, 14, 1145.	1.6	0
5	Utilization of size-tunable hollow silica nanospheres for building thermal insulation applications. Journal of Building Engineering, 2020, 31, 101336.	1.6	8
6	Durability-enhanced vanadium dioxide thermochromic film for smart windows. Materials Today Physics, 2020, 13, 100205.	2.9	38
7	Preparation of low density organosilica monoliths containing hollow silica nanospheres as thermal insulation materials. Materials Letters, 2019, 250, 151-154.	1.3	12
8	Investigations of 6-pane glazing: Properties and possibilities. Energy and Buildings, 2019, 190, 61-68.	3.1	44
9	Phase Change Materials for Application in Energy-Efficient Buildings. , 2017, , 57-118.		32
10	Norwegian Pitched Roof Defects. Buildings, 2016, 6, 24.	1.4	27
11	Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways. Energies, 2016, 9, 21.	1.6	70
12	Building Integration of Aerogel Glazings. Procedia Engineering, 2016, 145, 723-728.	1.2	20
13	Accelerated ageing and durability of double-glazed sealed insulating window panes and impact on heating demand in buildings. Energy and Buildings, 2016, 116, 395-402.	3.1	25
14	Calcined clays as binder for thermal insulating and structural aerogel incorporated mortar. Cement and Concrete Composites, 2016, 72, 213-221.	4.6	42
15	Avoiding Snow and Ice Formation on Exterior Solar Cell Surfaces – A Review of Research Pathways and Opportunities. Procedia Engineering, 2016, 145, 699-706.	1.2	26
16	Effect of storage and curing conditions at elevated temperatures on aerogel-incorporated mortar samples based on UHPC recipe. Construction and Building Materials, 2016, 106, 640-649.	3.2	57
17	Accelerated aging of treated aluminum for use as a cool colored material for facades. Energy and Buildings, 2016, 112, 184-197.	3.1	15
18	Application of ATR-FTIR Spectroscopy to Compare the Cell Materials of Wood Decay Fungi with Wood Mould Fungi. International Journal of Spectroscopy, 2015, 2015, 1-7.	1.4	35

#	Article	IF	CITATIONS
19	Aerogel granulate glazing facades and their application potential from an energy saving perspective. Applied Energy, 2015, 142, 179-191.	5.1	78
20	Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy and Buildings, 2015, 94, 150-176.	3.1	419
21	Experimental investigations of aerogel-incorporated ultra-high performance concrete. Construction and Building Materials, 2015, 77, 307-316.	3.2	122
22	Aerogel granule aging driven by moisture and solar radiation. Energy and Buildings, 2015, 103, 238-248.	3.1	49
23	Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives. Energy and Buildings, 2015, 96, 329-356.	3.1	183
24	Development of Nano Insulation Materials for Building Constructions. , 2015, , 429-434.		4
25	Effect of facade components on energy efficiency in office buildings. Applied Energy, 2015, 158, 422-432.	5.1	73
26	Impact of convection on thermal performance of aerogel granulate glazing systems. Energy and Buildings, 2015, 88, 165-173.	3.1	45
27	Sealant aging and its correlation with facade reflectance. Construction and Building Materials, 2014, 69, 390-402.	3.2	11
28	Lightweight and thermally insulating aerogel glass materials. Applied Physics A: Materials Science and Processing, 2014, 117, 799-808.	1.1	19
29	Reaction to fire and water vapour resistance performance of treated wood specimens containing TiO ₂ and clay nanoparticles. Fire and Materials, 2014, 38, 717-724.	0.9	6
30	Robustness classification of materials, assemblies and buildings. Journal of Building Physics, 2014, 37, 213-245.	1.2	21
31	Vacuum insulation panel products: A state-of-the-art review and future research pathways. Applied Energy, 2014, 116, 355-375.	5.1	187
32	Aerogel-incorporated concrete: An experimental study. Construction and Building Materials, 2014, 52, 130-136.	3.2	179
33	Fatigue resistance of double sealant composed of polyisobutylene sealant adjacent to silicone sealant. Construction and Building Materials, 2014, 66, 467-475.	3.2	9
34	Nano Insulation Materials: Synthesis and Life Cycle Assessment. Procedia CIRP, 2014, 15, 490-495.	1.0	36
35	Insulating glazing units with silica aerogel granules: The impact of particle size. Applied Energy, 2014, 128, 27-34.	5.1	110
36	Monodisperse Hollow Silica Nanospheres for Nano Insulation Materials: Synthesis, Characterization, and Life Cycle Assessment. ACS Applied Materials & amp; Interfaces, 2013, 5, 761-767.	4.0	137

#	Article	IF	CITATIONS
37	Weathering performance of spruce coated with water based acrylic paint modified with TiO2 and clay nanoparticles. Progress in Organic Coatings, 2013, 76, 1543-1548.	1.9	31
38	The challenge of removing snow downfall on photovoltaic solar cell roofs in order to maximize solar energy efficiency—Research opportunities for the future. Energy and Buildings, 2013, 67, 334-351.	3.1	83
39	Antireflection properties of monodisperse hollow silica nanospheres. Applied Physics A: Materials Science and Processing, 2013, 110, 65-70.	1.1	25
40	Window spacers and edge seals in insulating glass units: A state-of-the-art review and future perspectives. Energy and Buildings, 2013, 58, 263-280.	3.1	81
41	Large-scale experimental wind-driven rain exposure investigations of building integrated photovoltaics. Solar Energy, 2013, 90, 179-187.	2.9	19
42	Effects of TiO2 and clay nanoparticles loading on weathering performance of coated wood. Progress in Organic Coatings, 2013, 76, 1425-1429.	1.9	21
43	Windows in the buildings of tomorrow: Energy losers or energy gainers?. Energy and Buildings, 2013, 61, 185-192.	3.1	154
44	Thermal Conductivity of TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2013, 117, 1401-1408.	1.5	36
45	Color changes of wood and wood-based materials due to natural and artificial weathering. Wood Material Science and Engineering, 2013, 8, 13-25.	1.1	23
46	Visible-Light-Driven Photochromism of Hexagonal Sodium Tungsten Bronze Nanorods. Journal of Physical Chemistry C, 2013, 117, 13753-13761.	1.5	65
47	Paraotwayite-type α-Ni(OH) ₂ Nanowires: Structural, Optical, and Electrochemical Properties. Journal of Physical Chemistry C, 2013, 117, 17294-17302.	1.5	69
48	Durability, reaction to fire properties, and environmental impact of treated and untreated wooden claddings. Wood Material Science and Engineering, 2013, 8, 175-187.	1.1	5
49	Measurement of the convective moisture transfer coefficient from porous building material surfaces applying a wind tunnel method. Journal of Building Physics, 2013, 37, 103-121.	1.2	7
50	Vacuum insulation panels in wood frame wall constructions with different stud profiles. Journal of Building Physics, 2012, 36, 212-226.	1.2	13
51	Accelerated climate aging of building materials and their characterization by Fourier transform infrared radiation analysis. Journal of Building Physics, 2012, 36, 99-112.	1.2	26
52	Impregnated wooden claddings and the influence of nanoparticles on the weathering performance. Wood Material Science and Engineering, 2012, 7, 186-195.	1.1	10
53	State-of-the-art Building Integrated Photovoltaics. Energy Procedia, 2012, 20, 68-77.	1.8	85
54	The Path to the Building Integrated Photovoltaics of Tomorrow. Energy Procedia, 2012, 20, 78-87.	1.8	62

#	Article	IF	CITATIONS
55	Development of a model for radon concentration in indoor air. Science of the Total Environment, 2012, 416, 343-350.	3.9	46
56	Coated wooden claddings and the influence of nanoparticles on the weathering performance. Progress in Organic Coatings, 2012, 75, 72-78.	1.9	33
57	Implementation of radon barriers, model development and calculation of radon concentration in in in in in in in	1.2	19
58	Key elements of and material performance targets for highly insulating window frames. Energy and Buildings, 2011, 43, 2583-2594.	3.1	83
59	Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. Energy and Buildings, 2011, 43, 2549-2563.	3.1	864
60	Comparison of accelerated climate ageing methods of polymer building materials by attenuated total reflectance Fourier transform infrared radiation spectroscopy. Construction and Building Materials, 2011, 25, 2122-2132.	3.2	37
61	Aerogel insulation for building applications: A state-of-the-art review. Energy and Buildings, 2011, 43, 761-769.	3.1	859
62	Aging effects on thermal properties and service life of vacuum insulation panels. Journal of Building Physics, 2011, 35, 128-167.	1.2	83
63	Improving thermal insulation of timber frame walls by retrofitting with vacuum insulation panels – experimental and theoretical investigations. Journal of Building Physics, 2011, 35, 168-188.	1.2	32
64	Hot box investigations and theoretical assessments of miscellaneous vacuum insulation panel configurations in building envelopes. Journal of Building Physics, 2011, 34, 297-324.	1.2	27
65	Vacuum insulation panels for building applications: A review and beyond. Energy and Buildings, 2010, 42, 147-172.	3.1	319
66	Phase change materials for building applications: A state-of-the-art review. Energy and Buildings, 2010, 42, 1361-1368.	3.1	763
67	Gas-filled panels for building applications: A state-of-the-art review. Energy and Buildings, 2010, 42, 1969-1975.	3.1	60
68	The path to the high performance thermal building insulation materials and solutions of tomorrow. Journal of Building Physics, 2010, 34, 99-123.	1.2	164
69	Developing Low-conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools — State-of-the-Art Review. Journal of Building Physics, 2008, 32, 131-153.	1.2	32
70	Correlation between light absorption and electric charge in solid state electrochromic windows. Journal of Applied Electrochemistry, 1999, 29, 1103-1110.	1.5	25
71	UV-VIS-NIR Transmission Spectra of an Electrochromic Window based on Polyaniline, Prussian Blue, Tungsten Oxide and a Solid Polymer Electrolyte. , 1994, , 377-380.		0
72	Transmission spectra of an electrochromic window consisting of polyaniline, prussian blue and tungsten oxide. Electrochimica Acta, 1993, 38, 1497-1500.	2.6	60

#	Article	IF	CITATIONS
73	Reduction factor for polyaniline films on ito from cyclic voltammetry and visible absorption spectra. Electrochimica Acta, 1993, 38, 1643-1647.	2.6	27
74	Transmission Spectra of an Electrochromic Window Based on Polyaniline, Prussian Blue and Tungsten Oxide. Journal of the Electrochemical Society, 1993, 140, 3560-3564.	1.3	104
75	Dynamic light modulation in an electrochromic window consisting of polyaniline, tungsten oxide and a solid polymer electrolyte. Synthetic Metals, 1993, 54, 315-320.	2.1	42
76	Transmission through an electrochromic window based on polyaniline, tungsten oxide and a solid polymer electrolyte. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1992, 13, 239-241.	1.7	26
77	Transmission spectra of an electrochromic window based on polyaniline, tungsten oxide and a solid polymer electrolyte. Electrochimica Acta, 1992, 37, 1377-1380.	2.6	51