
Manuela Curcio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8151104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma. Materials, 2022, 15, 1648.	2.9	9
2	Smart Lipid–Polysaccharide Nanoparticles for Targeted Delivery of Doxorubicin to Breast Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 2386.	4.1	10
3	Encapsulation of Alpha-Lipoic Acid in Functional Hybrid Liposomes: Promising Tool for the Reduction of Cisplatin-Induced Ototoxicity. Pharmaceuticals, 2022, 15, 394.	3.8	7
4	GO-SWCNT Buckypapers as an Enhanced Technology for Water Decontamination from Lead. Molecules, 2022, 27, 4044.	3.8	5
5	Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin. Pharmaceutics, 2021, 13, 304.	4.5	28
6	Alginate Bioconjugate and Graphene Oxide in Multifunctional Hydrogels for Versatile Biomedical Applications. Molecules, 2021, 26, 1355.	3.8	14
7	Combining Dextran Conjugates with Stimuli-Responsive and Folate-Targeting Activity: A New Class of Multifunctional Nanoparticles for Cancer Therapy. Nanomaterials, 2021, 11, 1108.	4.1	11
8	Dextran-Curcumin Nanosystems Inhibit Cell Growth and Migration Regulating the Epithelial to Mesenchymal Transition in Prostate Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 7013.	4.1	10
9	Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries. Pharmaceutics, 2021, 13, 1038.	4.5	14
10	Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy. Journal of Carbon Research, 2021, 7, 3.	2.7	10
11	Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field. Molecules, 2021, 26, 7001.	3.8	5
12	Self-assembling Dextran prodrug for redox- and pH-responsive co-delivery of therapeutics in cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110537.	5.0	26
13	Dextran-Curcumin Nanoparticles as a Methotrexate Delivery Vehicle: A Step Forward in Breast Cancer Combination Therapy. Pharmaceuticals, 2020, 13, 2.	3.8	33
14	Natural Polysaccharide Carriers in Brain Delivery: Challenge and Perspective. Pharmaceutics, 2020, 12, 1183.	4.5	19
15	Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment. Molecules, 2020, 25, 2102.	3.8	13
16	Functional Albumin Nanoformulations to Fight Adrenocortical Carcinoma: a Redox-Responsive Approach. Pharmaceutical Research, 2020, 37, 55.	3.5	4
17	Combining Carbon Nanotubes and Chitosan for the Vectorization of Methotrexate to Lung Cancer Cells. Materials, 2019, 12, 2889.	2.9	53
18	Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics, 2019, 11, 486.	4.5	69

#	Article	IF	CITATIONS
19	When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Medicinal Chemistry, 2019, 11, 2205-2231.	2.3	8
20	Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin: A Perspective for Glioblastoma Treatment. Pharmaceuticals, 2019, 12, 76.	3.8	30
21	Combining antioxidant hydrogels with self-assembled microparticles for multifunctional wound dressings. Journal of Materials Chemistry B, 2019, 7, 4361-4370.	5.8	16
22	Chitosan–Quercetin Bioconjugate as Multiâ€Functional Component of Antioxidants and Dualâ€Responsive Hydrogel Networks. Macromolecular Materials and Engineering, 2019, 304, 1800728.	3.6	20
23	Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells. Pharmaceutics, 2019, 11, 3.	4.5	33
24	Facile synthesis of pH-responsive polymersomes based on lipidized PEG for intracellular co-delivery of curcumin and methotrexate. Colloids and Surfaces B: Biointerfaces, 2018, 167, 568-576.	5.0	16
25	Doxorubicin synergism and resistance reversal in human neuroblastoma BE(2)C cell lines: An in vitro study with dextran-catechin nanohybrids. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 176-185.	4.3	24
26	Antioxidant Polymers for Food Packaging. , 2018, , 213-238.		3
27	Electro-responsive graphene oxide hydrogels for skin bandages: The outcome of gelatin and trypsin immobilization. International Journal of Pharmaceutics, 2018, 546, 50-60.	5.2	33
28	Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Delivery, 2017, 24, 162-180.	5.7	48
29	Carbon nanotubes hybrid hydrogels for electrically tunable release of Curcumin. European Polymer Journal, 2017, 90, 1-12.	5.4	44
30	Albumin nanoparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma. International Journal of Pharmaceutics, 2017, 517, 168-174.	5.2	41
31	pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 324-332.	4.3	46
32	Polyphenol Conjugates and Human Health: A Perspective Review. Critical Reviews in Food Science and Nutrition, 2016, 56, 326-337.	10.3	95
33	Dual Stimuli Responsive Gelatinâ€CNT Hybrid Films as a Versatile Tool for the Delivery of Anionic Drugs. Macromolecular Materials and Engineering, 2016, 301, 1537-1547.	3.6	6
34	Functional hydrogels with a multicatalytic activity for bioremediation: Singleâ€step preparation and characterization. Journal of Applied Polymer Science, 2016, 133, .	2.6	4
35	Polyphenol Conjugates by Immobilized Laccase: The Green Synthesis of Dextran atechin. Macromolecular Chemistry and Physics, 2016, 217, 1488-1492.	2.2	29
36	Cotton gauze-hydrogel composites: Valuable tools for electrically modulated drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 442-450.	3.4	7

#	Article	IF	CITATIONS
37	Carbon Nanohybrids as Electro-Responsive Drug Delivery Systems. Mini-Reviews in Medicinal Chemistry, 2016, 16, 658-667.	2.4	12
38	Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels. Pharmaceutics, 2015, 7, 413-437.	4.5	28
39	Glucose cryoprotectant affects glutathione-responsive antitumor drug release from polysaccharide nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 281-292.	4.3	13
40	Tailoring Flavonoids' Antioxidant Properties Through Covalent Immobilization Into Dual Stimuli Responsive Polymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 587-596.	3.4	4
41	Functional Gelatin-Carbon Nanotubes Nanohybrids With Enhanced Antibacterial Activity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 439-447.	3.4	17
42	Coated biodegradable casein nanospheres: a valuable tool for oral drug delivery. Drug Development and Industrial Pharmacy, 2015, 41, 2006-2017.	2.0	6
43	Hydrolyzed gelatin-based polymersomes as delivery devices of anticancer drugs. European Polymer Journal, 2015, 67, 304-313.	5.4	11
44	Flavonoid-based pH-responsive hydrogels as carrier of unstable drugs in oxidative conditions. Pharmaceutical Development and Technology, 2015, 20, 288-296.	2.4	6
45	Hydrophobically Modified Keratin Vesicles for GSH-Responsive Intracellular Drug Release. Bioconjugate Chemistry, 2015, 26, 1900-1907.	3.6	54
46	Tunable thermo-responsive hydrogels: Synthesis, structural analysis and drug release studies. Materials Science and Engineering C, 2015, 48, 499-510.	7.3	42
47	Enzyme immobilization on smart polymers: Catalysis on demand. Reactive and Functional Polymers, 2014, 83, 62-69.	4.1	70
48	Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone). Pharmaceutical Development and Technology, 2013, 18, 1058-1065.	2.4	10
49	Stabilization of oxidable vitamins by flavonoid-based hydrogels. Reactive and Functional Polymers, 2013, 73, 1030-1037.	4.1	9
50	Novel carbon nanotube composites by grafting reaction with water-compatible redox initiator system. Colloid and Polymer Science, 2013, 291, 699-708.	2.1	19
51	Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	46
52	Determination of biogenic amines in different cheese samples by LC with evaporative light scattering detector. Journal of Food Composition and Analysis, 2013, 29, 43-51.	3.9	53
53	Quercetin-Imprinted Nanospheres as Novel Drug Delivery Devices. Journal of Functional Biomaterials, 2012, 3, 269-282.	4.4	31
54	Starch-quercetin conjugate by radical grafting: synthesis and biological characterization. Pharmaceutical Development and Technology, 2012, 17, 466-476.	2.4	52

#	Article	IF	CITATIONS
55	Ciprofloxacin-Collagen Conjugate in the Wound Healing Treatment. Journal of Functional Biomaterials, 2012, 3, 361-371.	4.4	17
56	Anticancer activity of a quercetin-based polymer towards HeLa cancer cells. Anticancer Research, 2012, 32, 2843-7.	1.1	32
57	Synthesis of Stimuli-Responsive Microgels for In Vitro Release of Diclofenac Diethyl Ammonium. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 823-844.	3.5	18
58	Molecularly imprinted polymers in drug delivery: state of art and future perspectives. Expert Opinion on Drug Delivery, 2011, 8, 1379-1393.	5.0	130
59	A new method for the determination of biogenic amines in cheese by LC with evaporative light scattering detector. Talanta, 2011, 85, 363-369.	5.5	47
60	Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications. Journal of Pharmacy and Pharmacology, 2011, 63, 179-188.	2.4	71
61	Poly(2-hydroxyethyl methacrylate)-quercetin Conjugate as Biomaterial in Ophthalmology: An "ab initio―Study. Journal of Functional Biomaterials, 2011, 2, 1-17.	4.4	16
62	Synthesis of hydrophilic microspheres with LCST close to body temperature for controlled dualâ€sensitive drug release. Polymers for Advanced Technologies, 2011, 22, 1705-1712.	3.2	17
63	Thermoâ€responsive albumin hydrogels with LCST near the physiological temperature. Journal of Applied Polymer Science, 2011, 121, 342-351.	2.6	11
64	Molecularly imprinted polymers for the selective extraction of glycyrrhizic acid from liquorice roots. Food Chemistry, 2011, 125, 1058-1063.	8.2	90
65	Antioxidant Activity of a Mediterranean Food Product: "Fig Syrup― Nutrients, 2011, 3, 317-329.	4.1	21
66	Negative Thermo-responsive Microspheres Based on Hydrolyzed Gelatin as Drug Delivery Device. AAPS PharmSciTech, 2010, 11, 652-662.	3.3	27
67	Molecularly imprinted polymers as drug delivery systems for the sustained release of glycyrrhizic acid. Journal of Pharmacy and Pharmacology, 2010, 62, 577-582.	2.4	45
68	Antioxidant–polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydrate Polymers, 2010, 79, 333-340.	10.2	123
69	Molecular imprinting polymerization by Fenton reaction. Colloid and Polymer Science, 2010, 288, 689-693.	2.1	12
70	Surface modifications of molecularly imprinted polymers for improved template recognition in water media. Journal of Polymer Research, 2010, 17, 355-362.	2.4	43
71	Ferulic acid as a comonomer in the synthesis of a novel polymeric chain with biological properties. Journal of Applied Polymer Science, 2010, 115, 784-789.	2.6	37
72	Antioxidant and spectroscopic studies of crosslinked polymers synthesized by grafting polymerization of ferulic acid. Polymers for Advanced Technologies, 2010, 21, 774-779.	3.2	18

#	Article	IF	CITATIONS
73	Biological Activity of a Gallic Acidâ~'Gelatin Conjugate. Biomacromolecules, 2010, 11, 3309-3315.	5.4	79
74	Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 48-55.	4.3	78
75	New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control, 2010, 21, 1425-1435.	5.5	379
76	Selective Determination of Melamine in Aqueous Medium by Molecularly Imprinted Solid Phase Extraction. Journal of Agricultural and Food Chemistry, 2010, 58, 11883-11887.	5.2	43
77	Gastro-intestinal sustained release of phytic acid by molecularly imprinted microparticles. Pharmaceutical Development and Technology, 2010, 15, 526-531.	2.4	13
78	New restricted access materials combined to molecularly imprinted polymers for selective recognition/release in water media. European Polymer Journal, 2009, 45, 1634-1640.	5.4	115
79	Synthesis of Antioxidant Polymers by Grafting of Gallic Acid and Catechin on Gelatin. Biomacromolecules, 2009, 10, 1923-1930.	5.4	185
80	Covalent Insertion of Antioxidant Molecules on Chitosan by a Free Radical Grafting Procedure. Journal of Agricultural and Food Chemistry, 2009, 57, 5933-5938.	5.2	328
81	Molecularly Imprinted Polymers for α-Tocopherol Delivery. Drug Delivery, 2008, 15, 253-258.	5.7	39
82	Synthesis of Methacrylicâ^'Ferulic Acid Copolymer with Antioxidant Properties by Single-Step Free Radical Polymerization. Journal of Agricultural and Food Chemistry, 2008, 56, 10646-10650.	5.2	48
83	Polymer in Agriculture: a Review. American Journal of Agricultural and Biological Science, 2008, 3, 299-314.	0.4	224

84 Molecularly Imprinted Polymers (PIMs) in Biomedical Applications. , 0, , .

12