Hongyan Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8150632/publications.pdf Version: 2024-02-01

ΗΟΝΟΥΛΝ ΠΑΙ

#	Article	IF	CITATIONS
1	MdWRKY61 positively regulates resistance to Colletotrichum siamense in apple (Malus domestica). Physiological and Molecular Plant Pathology, 2022, 117, 101776.	2.5	3
2	The hawthorn CpLRR-RLK1 gene targeted by ACLSV-derived vsiRNA positively regulate resistance to bacteria disease. Plant Science, 2020, 300, 110641.	3.6	4
3	The highâ€quality genome of diploid strawberry (<i>Fragaria nilgerrensis</i>) provides new insights into anthocyanin accumulation. Plant Biotechnology Journal, 2020, 18, 1908-1924.	8.3	51
4	Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple. Horticulture Research, 2020, 7, 204.	6.3	34
5	MdHAL3, a 4′-phosphopantothenoylcysteine decarboxylase, is involved in the salt tolerance of autotetraploid apple. Plant Cell Reports, 2020, 39, 1479-1491.	5.6	8
6	Woodland strawberry WRKY71 acts as a promoter of flowering via a transcriptional regulatory cascade. Horticulture Research, 2020, 7, 137.	6.3	27
7	Md <scp>MYB</scp> 46 could enhance salt and osmotic stress tolerance in apple by directly activating stressâ€responsive signals. Plant Biotechnology Journal, 2019, 17, 2341-2355.	8.3	127
8	Comparative transcriptome profiling of genes and pathways involved in leaf-patterning of Clivia miniata var. variegata. Gene, 2018, 677, 280-288.	2.2	13
9	Transcriptome analysis reveals the hawthorn response to the infection of apple chlorotic leaf spot virus. Scientia Horticulturae, 2018, 239, 171-180.	3.6	3
10	Genome Sequences of Three Apple chlorotic leaf spot virus Isolates from Hawthorns in China. PLoS ONE, 2016, 11, e0161099.	2.5	12
11	Development of an efficient regeneration and Agrobacterium-mediated transformation system in crab apple (Malus micromalus) using cotyledons as explants. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 1-8.	2.1	11
12	Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple. Scientia Horticulturae, 2013, 164, 202-208.	3.6	140
13	Transcript Assembly and Quantification by RNA-Seq Reveals Differentially Expressed Genes between Soft-Endocarp and Hard-Endocarp Hawthorns. PLoS ONE, 2013, 8, e72910.	2.5	30
14	Tissue Culture Responsive MicroRNAs in Strawberry. Plant Molecular Biology Reporter, 2012, 30, 1047-1054.	1.8	25
15	Characterization of the Hormone and Stress-Induced Expression of FaRE1 Retrotransposon Promoter in Strawberry. Journal of Plant Biology, 2012, 55, 1-7.	2.1	11
16	In vitro induction of tetraploids in Phlox subulata L. Euphytica, 2007, 159, 59-65.	1.2	71
17	Adventitious bud regeneration from leaf and cotyledon explants of Chinese hawthorn (Crataegus) Tj ETQq1 1	0.78 <u>4</u> 31 <u>4</u> r	gBT_/Over <u>loc</u>