List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8150591/publications.pdf Version: 2024-02-01

		1799	1934
222	49,748	103	207
papers	citations	h-index	g-index
231	231	231	34714
all docs	docs citations	times ranked	citing authors

IFFEDEV V PAVETCH

#	Article	IF	CITATIONS
1	Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Medicine, 2000, 6, 443-446.	30.7	2,515
2	FcÎ ³ receptors as regulators of immune responses. Nature Reviews Immunology, 2008, 8, 34-47.	22.7	2,406
3	Dendritic Cells Induce Peripheral T Cell Unresponsiveness under Steady State Conditions in Vivo. Journal of Experimental Medicine, 2001, 194, 769-780.	8.5	1,665
4	Anti-Inflammatory Activity of Immunoglobulin G Resulting from Fc Sialylation. Science, 2006, 313, 670-673.	12.6	1,579
5	IgG Fc Receptors. Annual Review of Immunology, 2001, 19, 275-290.	21.8	1,545
6	Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti–CTLA-4 therapy against melanoma. Journal of Experimental Medicine, 2013, 210, 1695-1710.	8.5	1,203
7	Anti-inflammatory Activity of IVIG Mediated Through the Inhibitory Fc Receptor. Science, 2001, 291, 484-486.	12.6	990
8	FcÎ ³ Receptors: Old Friends and New Family Members. Immunity, 2006, 24, 19-28.	14.3	980
9	Structure of the human immunoglobulin μ locus: Characterization of embryonic and rearranged J and D genes. Cell, 1981, 27, 583-591.	28.9	978
10	Î ³ -Interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature, 1985, 315, 672-676.	27.8	933
11	Divergent Immunoglobulin G Subclass Activity Through Selective Fc Receptor Binding. Science, 2005, 310, 1510-1512.	12.6	932
12	FcR Î ³ chain deletion results in pleiotrophic effector cell defects. Cell, 1994, 76, 519-529.	28.9	903
13	Augmented humoral and anaphylactic responses in FcÎ ³ RII-deficient mice. Nature, 1996, 379, 346-349.	27.8	806
14	Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature, 2009, 458, 636-640.	27.8	806
15	Recapitulation of IVIG Anti-Inflammatory Activity with a Recombinant IgG Fc. Science, 2008, 320, 373-376.	12.6	748
16	Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fel̂3RIIB. Nature, 1996, 383, 263-266.	27.8	734
17	Spontaneous Autoimmune Disease in Fcl ³ RIIB-Deficient Mice Results from Strain-Specific Epistasis. Immunity, 2000, 13, 277-285.	14.3	709
18	Broadly neutralizing hemagglutinin stalk–specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nature Medicine, 2014, 20, 143-151.	30.7	680

#	Article	IF	CITATIONS
19	FcγRIV: A Novel FcR with Distinct IgG Subclass Specificity. Immunity, 2005, 23, 41-51.	14.3	617
20	The Innate Mononuclear Phagocyte Network Depletes B Lymphocytes through Fc Receptor–dependent Mechanisms during Anti-CD20 Antibody Immunotherapy. Journal of Experimental Medicine, 2004, 199, 1659-1669.	8.5	586
21	Uncoupling of Immune Complex Formation and Kidney Damage in Autoimmune Glomerulonephritis. Science, 1998, 279, 1052-1054.	12.6	571
22	Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature, 2011, 475, 110-113.	27.8	565
23	A 13-amino-acid motif in the cytoplasmic domain of FcÎ ³ RIIB modulates B-cell receptor signalling. Nature, 1994, 368, 70-73.	27.8	503
24	Identification of a receptor required for the anti-inflammatory activity of IVIG. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19571-19578.	7.1	489
25	Anti-Inflammatory Actions of Intravenous Immunoglobulin. Annual Review of Immunology, 2008, 26, 513-533.	21.8	487
26	Absence of marginal zone B cells in Pyk-2–deficient mice defines their role in the humoral response. Nature Immunology, 2000, 1, 31-36.	14.5	476
27	Deletion of SHIP or SHP-1 Reveals Two Distinct Pathways for Inhibitory Signaling. Cell, 1997, 90, 293-301.	28.9	474
28	HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature, 2012, 492, 118-122.	27.8	463
29	Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis. Cell Reports, 2016, 15, 2000-2011.	6.4	452
30	Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nature Medicine, 2009, 15, 34-41.	30.7	430
31	Dendritic Cell Function <i>in Vivo</i> during the Steady State: A Role in Peripheral Tolerance. Annals of the New York Academy of Sciences, 2003, 987, 15-25.	3.8	426
32	Type I and type II Fc receptors regulate innate and adaptive immunity. Nature Immunology, 2014, 15, 707-716.	14.5	425
33	Broadly Neutralizing Anti-HIV-1 Antibodies Require Fc Effector Functions for InÂVivo Activity. Cell, 2014, 158, 1243-1253.	28.9	419
34	Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature, 2010, 467, 591-595.	27.8	393
35	Modulation of Immune Complex–induced Inflammation In Vivo by the Coordinate Expression of Activation and Inhibitory Fc Receptors. Journal of Experimental Medicine, 1999, 189, 179-186.	8.5	373
36	SHIP Modulates Immune Receptor Responses by Regulating Membrane Association of Btk. Immunity, 1998, 8, 509-516.	14.3	363

#	Article	IF	CITATIONS
37	Inducing Tumor Immunity through the Selective Engagement of Activating FcÎ ³ Receptors on Dendritic Cells. Journal of Experimental Medicine, 2002, 195, 1653-1659.	8.5	356
38	Fc receptors: Rubor redux. Cell, 1994, 78, 553-560.	28.9	350
39	Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. Journal of Clinical Investigation, 2016, 126, 605-610.	8.2	349
40	Fcâ€Receptors as Regulators of Immunity. Advances in Immunology, 2007, 96, 179-204.	2.2	348
41	DIVERGENT ROLES FOR F <scp>c</scp> RECEPTORS AND COMPLEMENT IN VIVO. Annual Review of Immunology, 1998, 16, 421-432.	21.8	343
42	The role of IgG Fc receptors in antibody-dependent enhancement. Nature Reviews Immunology, 2020, 20, 633-643.	22.7	340
43	Broadly Neutralizing Antibodies and Viral Inducers Decrease Rebound from HIV-1 Latent Reservoirs in Humanized Mice. Cell, 2014, 158, 989-999.	28.9	337
44	Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors. Immunity, 2017, 46, 577-586.	14.3	323
45	Inhibitory FcÎ ³ Receptor Engagement Drives Adjuvant and Anti-Tumor Activities of Agonistic CD40 Antibodies. Science, 2011, 333, 1030-1034.	12.6	313
46	Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. Journal of Clinical Investigation, 2005, 115, 2914-2923.	8.2	309
47	Deletion of FcÎ ³ Receptor IIB Renders H-2b Mice Susceptible to Collagen-induced Arthritis. Journal of Experimental Medicine, 1999, 189, 187-194.	8.5	305
48	TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. Journal of Experimental Medicine, 2006, 203, 553-561.	8.5	302
49	Enhanced clearance of HIV-1–infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science, 2016, 352, 1001-1004.	12.6	302
50	FcÎ ³ Rs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis. Cancer Cell, 2015, 28, 285-295.	16.8	291
51	IgG antibodies to dengue enhanced for FcÎ ³ RIIIA binding determine disease severity. Science, 2017, 355, 395-398.	12.6	286
52	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. Journal of Experimental Medicine, 2021, 218, .	8.5	283
53	Colony-Stimulating Factor-1-Dependent Macrophages Are Responsible for IVIG Protection in Antibody-Induced Autoimmune Disease. Immunity, 2003, 18, 573-581.	14.3	281
54	Modulating IgG effector function by Fc glycan engineering. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3485-3490.	7.1	278

#	Article	IF	CITATIONS
55	A Novel Role for the IgG Fc Glycan: The Anti-inflammatory Activity of Sialylated IgG Fcs. Journal of Clinical Immunology, 2010, 30, 9-14.	3.8	273
56	The antiinflammatory activity of IgG: the intravenous IgG paradox. Journal of Experimental Medicine, 2007, 204, 11-15.	8.5	261
57	Antibodyâ€mediated modulation of immune responses. Immunological Reviews, 2010, 236, 265-275.	6.0	257
58	Restoration of Tolerance in Lupus by Targeted Inhibitory Receptor Expression. Science, 2005, 307, 590-593.	12.6	252
59	Selective dysregulation of the Fcl ³ IIB receptor on memory B cells in SLE. Journal of Experimental Medicine, 2006, 203, 2157-2164.	8.5	245
60	Mouse model recapitulating human Fcl ³ receptor structural and functional diversity. Proceedings of the United States of America, 2012, 109, 6181-6186.	7.1	245
61	The inhibitory Fcl ³ receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nature Immunology, 2005, 6, 99-106.	14.5	240
62	Genetic Modifiers of Systemic Lupus Erythematosus in FcÎ ³ RIIBâ^'/â^' Mice. Journal of Experimental Medicine, 2002, 195, 1167-1174.	8.5	238
63	Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity, 1995, 3, 21-26.	14.3	234
64	Differential Fc-Receptor Engagement Drives an Anti-tumor Vaccinal Effect. Cell, 2015, 161, 1035-1045.	28.9	228
65	Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. Journal of Experimental Medicine, 2006, 203, 789-797.	8.5	227
66	Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proceedings of the United States of America, 2007, 104, 8433-8437.	7.1	227
67	Selective blockade of inhibitory Fc receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2910-2915.	7.1	225
68	Fc receptors. Current Opinion in Immunology, 1997, 9, 121-125.	5.5	222
69	Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28046-28055.	7.1	219
70	Antibodies, Fc receptors and cancer. Current Opinion in Immunology, 2007, 19, 239-245.	5.5	208
71	Macrophages Control the Retention and Trafficking of B Lymphocytes in the Splenic Marginal Zone. Journal of Experimental Medicine, 2003, 198, 333-340.	8.5	207
72	SHIP Recruitment Attenuates FcÎ ³ RIIB-Induced B Cell Apoptosis. Immunity, 1999, 10, 753-760.	14.3	206

#	Article	IF	CITATIONS
73	Immunoglobulin G–mediated Inflammatory Responses Develop Normally in Complement-deficient Mice. Journal of Experimental Medicine, 1996, 184, 2385-2392.	8.5	198
74	General mechanism for modulating immunoglobulin effector function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9868-9872.	7.1	198
75	Inhibitory Pathways Triggered by ITIM-Containing Receptors. Advances in Immunology, 1999, 72, 149-177.	2.2	197
76	Fcγ Receptor lib–Deficient Mice Develop Goodpasture's Syndrome upon Immunization with Type IV Collagen. Journal of Experimental Medicine, 2000, 191, 899-906.	8.5	196
77	Large deletions result from breakage and healing of P. falciparum chromosomes. Cell, 1988, 55, 869-874.	28.9	186
78	CD4+ T Cell–mediated Granulomatous Pathology in Schistosomiasis Is Downregulated by a B Cell–dependent Mechanism Requiring Fc Receptor Signaling. Journal of Experimental Medicine, 1998, 187, 619-629.	8.5	185
79	A single amino acid in the glycosyl phosphatidylinositol attachment domain determines the membrane topology of Fcl ³ RIII. Nature, 1989, 342, 805-807.	27.8	177
80	Anti-HA Glycoforms Drive B Cell Affinity Selection and Determine Influenza Vaccine Efficacy. Cell, 2015, 162, 160-169.	28.9	171
81	A chromosomal rearrangement in a P. falciparum histidine-rich protein gene is associated with the knobless phenotype. Nature, 1986, 322, 474-477.	27.8	169
82	Modulation of Immunoglobulin (Ig)E-mediated Systemic Anaphylaxis by Low-Affinity Fc Receptors for IgG. Journal of Experimental Medicine, 1999, 189, 1573-1579.	8.5	169
83	Effective expansion of alloantigen-specific Foxp3+ CD25+ CD4+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2758-2763.	7.1	169
84	Aglycosylated immunoglobulin G ₁ variants productively engage activating Fc receptors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20167-20172.	7.1	169
85	FcγRIV deletion reveals its central role for IgC2a and IgC2b activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19396-19401.	7.1	168
86	Signaling by Antibodies: Recent Progress. Annual Review of Immunology, 2017, 35, 285-311.	21.8	167
87	A Dominant Role for Mast Cell Fc Receptors in the Arthus Reaction. Immunity, 1996, 5, 387-390.	14.3	165
88	FcÎ ³ Receptor IIB on Follicular Dendritic Cells Regulates the B Cell Recall Response. Journal of Immunology, 2000, 164, 6268-6275.	0.8	162
89	Novel roles for the IgG Fc glycan. Annals of the New York Academy of Sciences, 2012, 1253, 170-180.	3.8	160
90	Platelet homeostasis is regulated by platelet expression of CD47 under normal conditions and in passive immune thrombocytopenia. Blood, 2005, 105, 3577-3582.	1.4	157

#	Article	IF	CITATIONS
91	<i>In vivo</i> enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15005-15009.	7.1	156
92	FcÎ ³ Receptor Function and the Design of Vaccination Strategies. Immunity, 2017, 47, 224-233.	14.3	148
93	Distinct contribution of Fc receptors and angiotensin II-dependent pathways in anti-GBM glomerulonephritis. Kidney International, 1998, 54, 1166-1174.	5.2	145
94	Biochemical Nature and Cellular Distribution of the Paired Immunoglobulin-like Receptors, PIR-A and PIR-B. Journal of Experimental Medicine, 1999, 189, 309-318.	8.5	138
95	Therapeutic Activity of Agonistic, Human Anti-CD40 Monoclonal Antibodies Requires Selective FcγR Engagement. Cancer Cell, 2016, 29, 820-831.	16.8	135
96	Selective blockade of the inhibitory Fcl ³ receptor (Fcl ³ RIIB) in human dendritic cells and monocytes induces a type l interferon response program. Journal of Experimental Medicine, 2007, 204, 1359-1369.	8.5	132
97	The role of Fc–FcγR interactions in IgG-mediated microbial neutralization. Journal of Experimental Medicine, 2015, 212, 1361-1369.	8.5	132
98	FcÎ ³ Rs in Health and Disease. Current Topics in Microbiology and Immunology, 2010, 350, 105-125.	1.1	131
99	Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency. Cell, 2016, 165, 1609-1620.	28.9	130
100	Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature, 2021, 599, 465-470.	27.8	129
101	Structural Characterization of Anti-Inflammatory Immunoglobulin G Fc Proteins. Journal of Molecular Biology, 2014, 426, 3166-3179.	4.2	126
102	Functional diversification of IgGs through Fc glycosylation. Journal of Clinical Investigation, 2019, 129, 3492-3498.	8.2	115
103	Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus. Journal of Experimental Medicine, 2007, 204, 2259-2265.	8.5	114
104	IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10915-E10924.	7.1	112
105	Fc-Receptor Interactions Regulate Both Cytotoxic and Immunomodulatory Therapeutic Antibody Effector Functions. Cancer Immunology Research, 2015, 3, 704-713.	3.4	111
106	Endoglycosidase treatment abrogates IgG arthritogenicity: Importance of IgG glycosylation in arthritis. European Journal of Immunology, 2007, 37, 2973-2982.	2.9	108
107	FcÎ ³ receptor pathways during active and passive immunization. Immunological Reviews, 2015, 268, 88-103.	6.0	108
108	Molecular Determinants of the Myristoyl-electrostatic Switch of MARCKS. Journal of Biological Chemistry, 1996, 271, 18797-18802.	3.4	107

#	Article	IF	CITATIONS
109	Opposing effects of Toll-like receptor stimulation induce autoimmunity or tolerance. Trends in Immunology, 2007, 28, 74-79.	6.8	106
110	A tandemly repeated sequence determines the binding domain for an erythrocyte receptor binding protein of P. falciparum. Cell, 1986, 44, 689-696.	28.9	104
111	Targeting MARCO and IL37R on Immunosuppressive Macrophages in Lung Cancer Blocks Regulatory T Cells and Supports Cytotoxic Lymphocyte Function. Cancer Research, 2021, 81, 956-967.	0.9	104
112	B Cell Antigen Receptor Engagement Inhibits Stromal Cell–derived Factor (SDF)-1α Chemotaxis and Promotes Protein Kinase C (PKC)-induced Internalization of CXCR4. Journal of Experimental Medicine, 1999, 189, 1461-1466.	8.5	96
113	The Role and Function of Fcl^3 Receptors on Myeloid Cells. Microbiology Spectrum, 2016, 4, .	3.0	96
114	Apoptotic and antitumor activity of death receptor antibodies require inhibitory FcÎ ³ receptor engagement. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10966-10971.	7.1	95
115	Antitumor activities of agonistic anti-TNFR antibodies require differential Fcl ³ RIIB coengagement in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19501-19506.	7.1	95
116	Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature, 2020, 588, 485-490.	27.8	95
117	Primary structure and genomic organization of the histidine-rich protein of the malaria parasite Plasmodium lophurae. Nature, 1984, 312, 616-620.	27.8	91
118	Differential Contribution of Three Activating IgG Fc Receptors (Fcl³RI, Fcl³RIII, and Fcl³RIV) to IgG2a- and IgG2b-Induced Autoimmune Hemolytic Anemia in Mice. Journal of Immunology, 2008, 180, 1948-1953.	0.8	89
119	Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32005-32016.	7.1	89
120	Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H. Cancer Research, 2003, 63, 6453-7.	0.9	89
121	Inversion in the H–2 complex of t-haplotypes in mice. Nature, 1983, 306, 380-383.	27.8	87
122	Protection in antibody- and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2385-94.	7.1	87
123	Antibody-mediated Modulation of Cryptococcus neoformans Infection Is Dependent on Distinct Fc Receptor Functions and IgG Subclasses. Journal of Experimental Medicine, 1998, 187, 641-648.	8.5	83
124	Intravenous immune globulin prevents venular vaso-occlusion in sickle cell mice by inhibiting leukocyte adhesion and the interactions between sickle erythrocytes and adherent leukocytes. Blood, 2004, 103, 2397-2400.	1.4	82
125	Coordinate suppression of B cell lymphoma by PTEN and SHIP phosphatases. Journal of Experimental Medicine, 2010, 207, 2407-2420.	8.5	82
126	Experimental Antibody Therapy of Liver Metastases Reveals Functional Redundancy between FcγRI and FcγRIV. Journal of Immunology, 2008, 181, 6829-6836.	0.8	81

#	Article	IF	CITATIONS
127	High Pathogenic Potential of Low-Affinity Autoantibodies in Experimental Autoimmune Hemolytic Anemia. Journal of Experimental Medicine, 1999, 190, 1689-1696.	8.5	78
128	Diversification of IgG effector functions. International Immunology, 2017, 29, 303-310.	4.0	76
129	A mouse model for HIV-1 entry. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15859-15864.	7.1	75
130	Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12023-12027.	7.1	72
131	Siglecs-7/9 function as inhibitory immune checkpoints in vivo and can be targeted to enhance therapeutic antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	71
132	Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD2 monoclonal antibody, MEDI-507. Blood, 2003, 102, 284-288.	1.4	69
133	Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLoS Pathogens, 2018, 14, e1006860.	4.7	68
134	Antibody fucosylation predicts disease severity in secondary dengue infection. Science, 2021, 372, 1102-1105.	12.6	67
135	Toxicity of an Fc-engineered anti-CD40 antibody is abrogated by intratumoral injection and results in durable antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11048-11053.	7.1	66
136	Transcriptional differences in polymorphic and conserved domains of a complete cloned P. falciparum chromosome. Nature, 1993, 361, 654-657.	27.8	65
137	Redundant and Alternative Roles for Activating Fc Receptors and Complement in an Antibody-Dependent Model of Autoimmune Vitiligo. Immunity, 2002, 16, 861-868.	14.3	64
138	Activating Fc Receptors Are Required for Antitumor Efficacy of the Antibodies Directed toward CD25 in a Murine Model of Adult T-Cell Leukemia. Cancer Research, 2004, 64, 5825-5829.	0.9	63
139	Inhibitory FcÎ ³ Receptor Is Required for the Maintenance of Tolerance through Distinct Mechanisms. Journal of Immunology, 2014, 192, 3021-3028.	0.8	63
140	FcγRIIB Deficiency Leads to Autoimmunity and a Defective Response to Apoptosis in Mrl-MpJ Mice. Journal of Immunology, 2008, 180, 5670-5679.	0.8	62
141	New nomenclature for Fc receptor–like molecules. Nature Immunology, 2006, 7, 431-432.	14.5	61
142	Translating basic mechanisms of IgG effector activity into next generation cancer therapies. Cancer Immunity, 2012, 12, 13.	3.2	58
143	A sequence element associated with thePlasmodium falciparumKAHRP gene is the site of developmentally regulated protein-DNA interactions. Nucleic Acids Research, 1992, 20, 3051-3056.	14.5	57
144	A full complement of receptors in immune complex diseases. Journal of Clinical Investigation, 2002, 110, 1759-1761.	8.2	57

#	Article	IF	CITATIONS
145	Human IgG Fc domain engineering enhances antitoxin neutralizing antibody activity. Journal of Clinical Investigation, 2014, 124, 725-729.	8.2	57
146	Analyzing Antibody–Fc-Receptor Interactions. , 2008, 415, 151-162.		56
147	FcRn, but not FcγRs, drives maternal-fetal transplacental transport of human IgG antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12943-12951.	7.1	55
148	DC subset–specific induction of T cell responses upon antigen uptake via Fcγ receptors in vivo. Journal of Experimental Medicine, 2017, 214, 1509-1528.	8.5	53
149	FcγRIII (CD16) on human macrophages is a functional product of the FcγRIII-2 gene. European Journal of Immunology, 1991, 21, 425-429.	2.9	50
150	Characterization of yeast artificial chromosomes from Plasmodium falciparum: Construction of a stable, representative library and cloning of telomeric DNA fragments. Genomics, 1992, 14, 332-339.	2.9	47
151	T Cell Development in Mice Lacking All T Cell Receptor ζ Family Members (ζ, Ε, and FcεRIγ). Journal of Experimental Medicine, 1998, 187, 1093-1101.	8.5	47
152	Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2bâ^'/â^'Pdcd1â^'/â^' mice. Journal of Experimental Medicine, 2005, 202, 1643-1648.	8.5	47
153	Antiâ€retroviral antibody FcγRâ€mediated effector functions. Immunological Reviews, 2017, 275, 285-295.	6.0	46
154	Fcγ receptor–dependent expansion of a hyperactive monocyte subset in lupusâ€prone mice. Arthritis and Rheumatism, 2009, 60, 2408-2417.	6.7	45
155	Differential requirements for FcÎ ³ R engagement by protective antibodies against Ebola virus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20054-20062.	7.1	45
156	Differential contribution of the FcRγ chain to the surface expression of the T cell receptor among T cells localized in epithelia: analysis of FcRγ-deficient mice. European Journal of Immunology, 1995, 25, 2107-2110.	2.9	43
157	Chromatin structure determines the sites of chromosome breakages in Plasmodium falciparum. Nucleic Acids Research, 1994, 22, 3099-3103.	14.5	42
158	Increasing the breadth and potency of response to the seasonal influenza virus vaccine by immune complex immunization. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10172-10177.	7.1	42
159	Thermodynamic and kinetic properties of short RNA helices: the oligomer sequence AnGCUn. Nucleic Acids Research, 1974, 1, 109-128.	14.5	41
160	T Cell Studies in a Peptide-Induced Model of Systemic Lupus Erythematosus. Journal of Immunology, 2001, 166, 1667-1674.	0.8	40
161	FcÎ ³ RIII and FcÎ ³ RIV Are Indispensable for Acute Glomerular Inflammation Induced by Switch Variant Monoclonal Antibodies. Journal of Immunology, 2008, 181, 8745-8752.	0.8	39
162	Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways. Journal of Clinical Investigation, 2019, 129, 3952-3962.	8.2	38

#	Article	IF	CITATIONS
163	Deletion of the FcÎ ³ Receptor IIb in Thymic Stromal Lymphopoietin Transgenic Mice Aggravates Membranoproliferative Glomerulonephritis. American Journal of Pathology, 2003, 163, 1127-1136.	3.8	37
164	Dendritic cell targeting with Fc-enhanced CD40 antibody agonists induces durable antitumor immunity in humanized mouse models of bladder cancer. Science Translational Medicine, 2021, 13, .	12.4	37
165	Complement Activation and Complement Receptors on Follicular Dendritic Cells Are Critical for the Function of a Targeted Adjuvant. Journal of Immunology, 2011, 187, 3641-3652.	0.8	36
166	Synergy between an antibody and CD8+ cells in eliminating an established tumor. European Journal of Immunology, 1997, 27, 374-382.	2.9	34
167	Effective therapy for a murine model of human anaplastic large-cell lymphoma with the anti-CD30 monoclonal antibody, HeFi-1, does not require activating Fc receptors. Blood, 2006, 108, 705-710.	1.4	32
168	A full complement of receptors in immune complex diseases. Journal of Clinical Investigation, 2002, 110, 1759-1761.	8.2	31
169	The Naive B Cell Repertoire Predisposes to Antigen-Induced Systemic Lupus Erythematosus. Journal of Immunology, 2003, 170, 4826-4832.	0.8	30
170	A general requirement for FcÎ ³ RIIB co-engagement of agonistic anti-TNFR antibodies. Cell Cycle, 2012, 11, 3343-3344.	2.6	30
171	In vivo veritas: the surprising roles of Fc receptors in immunity. Nature Immunology, 2010, 11, 183-185.	14.5	28
172	Chromosomal polymorphisms and gene expression in Plasmodium falciparum. Experimental Parasitology, 1989, 68, 121-125.	1.2	27
173	Transcriptional and nucleosomal characterization of a subtelomeric gene cluster flanking a site of chromosomal rearrangements inPlasmodium falciparum. Nucleic Acids Research, 1994, 22, 4176-4182.	14.5	26
174	A YAC contig map of Plasmodium falciparum chromosome 4: characterization of a DNA amplification between two recently separated isolates. Genomics, 1995, 26, 192-198.	2.9	25
175	Immunotherapy and Hyperprogression: Unwanted Outcomes, Unclear Mechanism. Clinical Cancer Research, 2019, 25, 904-906.	7.0	25
176	Antibody and Antiretroviral Preexposure Prophylaxis Prevent Cervicovaginal HIV-1 Infection in a Transgenic Mouse Model. Journal of Virology, 2013, 87, 8535-8544.	3.4	24
177	Lysibodies are IgG Fc fusions with lysin binding domains targeting <i>Staphylococcus aureus</i> wall carbohydrates for effective phagocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4781-4786.	7.1	24
178	Immunological responses to influenza vaccination: lessons for improving vaccine efficacy. Current Opinion in Immunology, 2018, 53, 124-129.	5.5	24
179	A combination of two human monoclonal antibodies limits fetal damage by Zika virus in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7981-7989.	7.1	24
180	Humanized Mice to Study Fcl ³ R Function. Current Topics in Microbiology and Immunology, 2014, 382, 237-248.	1.1	24

#	Article	IF	CITATIONS
181	Molecular Genetic Strategies for the Development of Anti-Malarial Vaccines. Bio/technology, 1985, 3, 729-740.	1.5	23
182	Acute inflammation primes myeloid effector cells for anti-inflammatory STAT6 signaling. Proceedings of the United States of America, 2013, 110, 13487-13491.	7.1	22
183	Functional consequences of lipid-mediated protein-membrane interactions. Biochemical Pharmacology, 1991, 42, 1-11.	4.4	21
184	A Critical Role for FcÎ ³ RIIB in the Induction of Rheumatoid Factors. Journal of Immunology, 2004, 173, 4724-4728.	0.8	21
185	Atopy and Fc receptors: mutation is the message?. Nature Genetics, 1994, 7, 117-118.	21.4	20
186	Immune Complexes: Not Just an Innocent Bystander in Chronic Viral Infection. Immunity, 2015, 42, 213-215.	14.3	20
187	Mapping of bacteriophage f1 ribosome binding sites to their cognate genes. Virology, 1977, 81, 341-351.	2.4	19
188	New tricks for old molecules. Nature, 1994, 372, 323-324.	27.8	18
189	T lymphocyte development in the absence of Fcε receptor lγ subunit: analysis of thymic-dependent and independent αβ and γδ pathways. European Journal of Immunology, 1996, 26, 1935-1943.	2.9	18
190	One-Pot Conversion of Free Sialoglycans to Functionalized Glycan Oxazolines and Efficient Synthesis of Homogeneous Antibody–Drug Conjugates through Site-Specific Chemoenzymatic Glycan Remodeling. Bioconjugate Chemistry, 2021, 32, 1888-1897.	3.6	18
191	Killing some to make way for others. Nature Immunology, 2007, 8, 337-339.	14.5	17
192	Site-Selective Chemoenzymatic Modification on the Core Fucose of an Antibody Enhances Its FcÎ ³ Receptor Affinity and ADCC Activity. Journal of the American Chemical Society, 2021, 143, 7828-7838.	13.7	17
193	Intact 3′ end of 16S rRNA is not required for specific mRNA binding. Nature, 1976, 262, 150-153.	27.8	16
194	DNA sequence analysis of the defective interfering particles of bacteriophage f1. Journal of Molecular Biology, 1979, 128, 305-318.	4.2	16
195	SAR228810: an antibody for protofibrillar amyloid \hat{l}^2 peptide designed to reduce the risk of amyloid-related imaging abnormalities (ARIA). Alzheimer's Research and Therapy, 2018, 10, 117.	6.2	14
196	Isolation and characterisation of the φX174 ribosome binding sites. Nature, 1977, 265, 698-702.	27.8	13
197	Engineering Aglycosylated IgG Variants with Wild-Type or Improved Binding Affinity to Human Fc Gamma RIIA and Fc Gamma RIIIAs. Journal of Molecular Biology, 2017, 429, 2528-2541.	4.2	13
198	Four keys to unlock IgG. Journal of Experimental Medicine, 2021, 218, .	8.5	13

#	Article	IF	CITATIONS
199	Fc Receptor Signaling. Advances in Experimental Medicine and Biology, 1994, 365, 185-195.	1.6	12
200	Thymic Stromal Lymphopoietin Transgenic Mice Develop Cryoglobulinemia and Hepatitis with Similarities to Human Hepatitis C Liver Disease. American Journal of Pathology, 2007, 170, 981-989.	3.8	10
201	Phagocytic cells. Immunological Reviews, 2007, 219, 5-7.	6.0	9
202	The Role and Function of Fcl 3 Receptors on Myeloid Cells. , 2017, , 405-427.		8
203	Reply to Crispin et al.: Molecular model that accounts for the biological and physical properties of sialylated Fc. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3547-E3547.	7.1	7
204	Co-targeting of Adenosine Signaling Pathways for Immunotherapy: Potentiation by Fc Receptor Engagement. Cancer Cell, 2016, 30, 369-371.	16.8	6
205	Attenuated Vaccines for Augmented Immunity. Cell Host and Microbe, 2017, 21, 314-315.	11.0	3
206	Abstract 1332: Interleukin-15 enhances rituximab-dependent cytotoxicity ex vivo and in vivo against a mouse lymphoma expressing human CD20. , 2015, , .		3
207	A novel mouse strain optimized for chronic human antibody administration. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123002119.	7.1	2
208	Fc and Complement Receptors. , 2015, , 171-186.		1
209	Therapeutic Applications of Sialylated IVIG. , 2015, , 1509-1515.		1
210	Fc and Complement Receptors. , 2004, , 275-287.		1
211	Knob-associated histidine-rich protein gene. Nature, 1987, 326, 550-550.	27.8	0
212	Insights into the Mechanisms of Antibody-Affinity Maturation and the Generation of the Memory B-Cell Compartment Using Genetically Altered Mice. Autoimmunity, 1998, 6, 305-316.	0.6	0
213	Current Understanding of Possible Mechanisms of Action and Resistance of Rituximab. Clinical Lymphoma and Myeloma, 2001, 2, 145-147.	2.1	0
214	Profile of Jeffrey Ravetch. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7689-7691.	7.1	0
215	D-109 Special lecture. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 56.	2.1	0
216	Rapid In Vivo Consumption and Ex Vivo Phagocytosis of WASP(â^') Platelets Blood, 2007, 110, 2103-2103.	1.4	0

#	Article	IF	CITATIONS
217	Coordinate suppression of B cell lymphoma by PTEN and SHIP. FASEB Journal, 2008, 22, 662.12.	0.5	Ο
218	Coordinate suppression of B cell lymphoma by PTEN and SHIP phosphatases. Journal of Cell Biology, 2010, 191, i7-i7.	5.2	0
219	Abstract B179: Enhancing intratumoural Treg depletion through antibody engineering and analysis of the checkpoint landscape of mouse and human cancers. , 2016, , .		0
220	Abstract B014: Improved therapeutic activity of agonistic, human anti-CD40 monoclonal Abs by selective Fc receptor-engagement. , 2016, , .		0
221	Abstract B28: Improved therapeutic activity of agonistic, human anti-CD40 monoclonal Abs by selective Fcl ³ R-engagement. , 2017, , .		0
222	Fc Receptors. , 2008, , 173-198.		0