
Janina Kopyra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/815018/publications.pdf Version: 2024-02-01

ΙΔΝΙΝΑ ΚΟΡΥΡΑ

#	Article	IF	CITATIONS
1	Controlling the diversity of ion-induced fragmentation pathways by <i>N</i> -methylation of amino acids. Physical Chemistry Chemical Physics, 2022, 24, 941-954.	2.8	3
2	Chemistry in Acetonitrile–Water Films Induced by Slow (<15 eV) Electrons: Application to the Earth and Space Chemistry, 2022, 6, 1126-1132.	2.7	6
3	Roadmap on dynamics of molecules and clusters in the gas phase. European Physical Journal D, 2021, 75, 1.	1.3	32
4	Fragmentation of Nickel(II) and Cobalt(II) Bis(acetylacetonate) Complexes Induced by Slow (<10 eV) Electrons. Inorganic Chemistry, 2021, 60, 8154-8163.	4.0	2
5	Experimental and Theoretical Studies of Dissociative Electron Attachment to Metabolites Oxaloacetic and Citric Acids. International Journal of Molecular Sciences, 2021, 22, 7676.	4.1	4
6	Timing of charge migration in betaine by impact of fast atomic ions. Science Advances, 2021, 7, eabg9080.	10.3	2
7	Energy-Selective Decomposition of Organometallic Compounds by Slow Electrons: The Case of Chloro(dimethyl sulfide)gold(I). Journal of Physical Chemistry A, 2021, 125, 966-972.	2.5	2
8	Core-excited resonances initiated by unusually low energy electrons observed in dissociative electron attachment to Ni(II) (bis)acetylacetonate. Journal of Chemical Physics, 2020, 153, 124302.	3.0	5
9	Decomposition of Bis(acetylacetonate)zinc(II) by Slow Electrons. Inorganic Chemistry, 2020, 59, 12788-12792.	4.0	3
10	Dissociative electron attachment to benzoic acid (C7H6O2). Journal of Chemical Physics, 2020, 152, 174304.	3.0	9
11	Interaction of Slow Electrons with Thermally Evaporated Manganese(II) Acetylacetonate Complexes. Journal of Physical Chemistry A, 2020, 124, 2186-2192.	2.5	4
12	Electronâ€Induced Reactions in 3â€Bromopyruvic Acid. Chemistry - A European Journal, 2019, 25, 5498-5506.	3.3	8
13	Ion mobility spectrometers and electron capture detector – A comparison of detection capabilities. Talanta, 2019, 194, 259-265.	5.5	4
14	Interaction of gas phase copper(<scp>ii</scp>) acetylacetonate with slow electrons. Physical Chemistry Chemical Physics, 2018, 20, 7746-7753.	2.8	12
15	Selective Synthesis of Ethylene and Acetylene from Dimethyl Sulfide Cold Films Controlled by Slow Electrons. Journal of Physical Chemistry C, 2018, 122, 24137-24142.	3.1	9
16	Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition. Beilstein Journal of Nanotechnology, 2018, 9, 77-90.	2.8	19
17	Insights into the dehydrogenation of 2-thiouracil induced by slow electrons: Comparison of 2-thiouracil and 1-methyl-2-thiouracil. Journal of Chemical Physics, 2018, 148, 234301.	3.0	7

18 Dissociative Electron Attachment toÂBiomolecules. , 2017, , 159-207.

#	Article	IF	CITATIONS
19	Dissociative electron attachment to 3-bromopyruvic acid. Journal of Physics: Conference Series, 2017, 875, 062042.	0.4	0
20	Dissociative electron attachment to coordination complexes of chromium: chromium(0) hexacarbonyl and benzene-chromium(0) tricarbonyl. Beilstein Journal of Nanotechnology, 2017, 8, 2257-2263.	2.8	8
21	Low energy electron induced reactions in fluorinated acetamide – probing negative ions and neutral stable counterparts*. European Physical Journal D, 2016, 70, 1.	1.3	3
22	Temperature Dependence of the Dissociative Electron Attachment to 2-Thiothymine. Journal of Physical Chemistry A, 2016, 120, 7130-7136.	2.5	5
23	Unusual temperature dependence of the dissociative electron attachment cross section of 2-thiouracil. Journal of Chemical Physics, 2016, 144, 034306.	3.0	12
24	Sensitizing DNA Towards Lowâ€Energy Electrons with 2â€Fluoroadenine. Angewandte Chemie, 2016, 128, 10404-10408.	2.0	14
25	Sensitizing DNA Towards Lowâ€Energy Electrons with 2â€Fluoroadenine. Angewandte Chemie - International Edition, 2016, 55, 10248-10252.	13.8	45
26	Electron driven processes in sulphur containing compound: the case of dimethyl disulphide. Journal of Physics: Conference Series, 2015, 635, 072065.	0.4	0
27	Slow ion interaction with N-methylglycine and N-acetylglycine. Journal of Physics: Conference Series, 2015, 635, 032054.	0.4	0
28	Electron induced fragmentation of sulphur containing biological prototypes: thiaproline and taurine. Journal of Physics: Conference Series, 2015, 635, 072069.	0.4	1
29	Dissociative electron attachment to gas phase nucleobases: comparision of thymine and thiothymine. Journal of Physics: Conference Series, 2015, 635, 072066.	0.4	1
30	Electron driven processes in sulphur containing compounds CH3SCH3 and CH3SSCH3. European Physical Journal D, 2015, 69, 1.	1.3	4
31	Temperature dependence of the cross section for the fragmentation of thymine via dissociative electron attachment. Journal of Chemical Physics, 2015, 142, 174303.	3.0	9
32	Anion states and fragmentation of 2-chloroadenine upon low-energy electron collisions. Physical Chemistry Chemical Physics, 2015, 17, 28958-28965.	2.8	18
33	<i>N</i> -Acetylglycine Cation Tautomerization Enabled by the Peptide Bond. Journal of Physical Chemistry A, 2015, 119, 9581-9589.	2.5	5
34	The Molecular Mechanisms of DNA Single-Strand Breaks Induced by Low-Energy Electrons (<3eV). , 2014, , .		1
35	Electron driven reactions in sulphur containing analogues of uracil: the case of 2-thiouracil. Physical Chemistry Chemical Physics, 2014, 16, 25054-25061.	2.8	24
36	Anion formation in gas-phase potassium–uridine collisions. International Journal of Mass Spectrometry, 2014, 365-366, 243-247.	1.5	7

#	Article	IF	CITATIONS
37	Kinetics of low energy electron attachment to some fluorinated alcohols in the gas phase. Chemical Physics Letters, 2014, 591, 282-286.	2.6	4
38	On the role of fluoro-substituted nucleosides in DNA radiosensitization for tumor radiation therapy. RSC Advances, 2014, 4, 6825.	3.6	38
39	Dissociative electron attachment to gas phase thiothymine: experimental and theoretical approaches. Physical Chemistry Chemical Physics, 2014, 16, 5342-5348.	2.8	13
40	Electron driven processes in chlorodifluoroacetic acid methyl ester. European Physical Journal D, 2014, 68, 1.	1.3	3
41	Electron attachment to molecules studied by electron beam and electron swarm experiments. International Journal of Mass Spectrometry, 2014, 365-366, 98-105.	1.5	0
42	Electron attachment to the dipeptide alanyl-glycine. Chemical Physics Letters, 2013, 578, 54-58.	2.6	5
43	Electron-induced damage of biotin studied in the gas phase and in the condensed phase at a single-molecule level. New Journal of Physics, 2013, 15, 083045.	2.9	25
44	Low energy (0–12eV) electron driven reactions in linear and cyclic perfluorocompounds. International Journal of Mass Spectrometry, 2012, 325-327, 95-99.	1.5	1
45	Low energy electron attachment to the nucleotide deoxycytidine monophosphate: direct evidence for the molecular mechanisms of electron-induced DNA strand breaks. Physical Chemistry Chemical Physics, 2012, 14, 8287.	2.8	50
46	Damage of DNA by Low Energy Electrons (< 3 eV). Journal of Physics: Conference Series, 2012, 373, 012008.	0.4	9
47	Low energy electron attachment to N-acetylglycine. Chemical Physics Letters, 2012, 550, 47-51.	2.6	6
48	Decomposition of methionine by low energy electrons. Physical Chemistry Chemical Physics, 2012, 14, 8000-8004.	2.8	10
49	On the kinetics of thermal electron attachment to perfluoroethers. Chemical Physics Letters, 2012, 519-520, 25-28.	2.6	5
50	Electron attachment to the N-substituted amino acids N-methylglycine and N-methylalanine: Effective cleavage of the N–Cα bond at sub-excitation energies. Chemical Physics Letters, 2012, 533, 87-91.	2.6	7
51	On the relation between the activation energy for electron attachment reactions and the size of their thermal rate coefficients. Journal of Chemical Physics, 2011, 134, 064303.	3.0	11
52	Reactions in Trifluoropropene and Trifluoropropyne Triggered by Low-Energy (O–12 eV) Electrons: From Single Bond Cleavages to Complex Unimolecular Decompositions. Zeitschrift Fur Physikalische Chemie, 2011, 225, 493-505.	2.8	1
53	Electron-induced damage of DNA and its components: Experiments and theoretical models. Physics Reports, 2011, 508, 1-44.	25.6	272
54	Low energy (0–10 eV) electron driven reactions in the halogenated organic acids CCl3COOH, CClF2COOH, and CF3CHNH2COOH (trifluoroalanine). Journal of Chemical Physics, 2011, 135, 124307.	3.0	5

#	Article	IF	CITATIONS
55	The influence of the temperature on electron attachment to some halocontaining molecules. International Journal of Mass Spectrometry, 2010, 291, 13-16.	1.5	11
56	Electron induced reactions in molecular nanofilms of chlorodifluoroacetic acid (CClF2COOH): Desorption of fragment anions and formation of CO2. Journal of Chemical Physics, 2010, 133, 194503.	3.0	2
57	Dissociation of gaseous zwitterion glycine-betaine by slow electrons. Journal of Chemical Physics, 2010, 132, 204302.	3.0	10
58	A Single Slow Electron Triggers the Loss of Both Chlorine Atoms from the Anticancer Drug Cisplatin: Implications for Chemoradiation Therapy. Angewandte Chemie - International Edition, 2009, 48, 7904-7907.	13.8	62
59	Fragmentation of deprotonated d-ribose and d-fructose in MALDI—Comparison with dissociative electron attachment. International Journal of Mass Spectrometry, 2009, 280, 190-197.	1.5	15
60	On the absolute value for the cross-section of dissociative electron attachment (DEA) to the DNA base thymine. International Journal of Mass Spectrometry, 2009, 281, 89-91.	1.5	17
61	Unusual features in electron attachment to chlorodifluoroacetic acid (CCIF2COOH): Strong dissociative electron attachment near 0eV and associative attachment at 0.75eV. International Journal of Mass Spectrometry, 2009, 285, 131-136.	1.5	16
62	Dissociative electron attachment to amino-acids: The case of Leucine. Chemical Physics Letters, 2009, 477, 245-248.	2.6	16
63	Low-energy electron attachment to chloroform (CHCl3) molecules: A joint experimental and theoretical study. International Journal of Mass Spectrometry, 2008, 277, 130-141.	1.5	22
64	Excision of CNâ^' and OCNâ^' from acetamide and some amide derivatives triggered by low energy electrons. Physical Chemistry Chemical Physics, 2008, 10, 6954.	2.8	40
65	Low energy (0-12 eV) electron interaction with gas phase building blocks of DNA/RNA. Journal of Physics: Conference Series, 2008, 115, 012008.	0.4	0
66	Selective Bond Breaking in β-d-Ribose by Gas-Phase Electron Attachment around 8 eV. Journal of the American Chemical Society, 2007, 129, 6269-6277.	13.7	72
67	Low energy electron-induced reactions in gas phase 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose: A model system for the behavior of sugar in DNA. Journal of Chemical Physics, 2007, 126, 074308.	3.0	36
68	Thermal electron capture by some halopropanes. Radiation Physics and Chemistry, 2007, 76, 1017-1025.	2.8	7
69	A new apparatus for measuring rate constants and activation energies of thermal electron capture processes in the gas phase. International Journal of Mass Spectrometry, 2007, 268, 60-65.	1.5	19
70	Dissociative Electron Attachment to Phosphoric Acid Esters: The Direct Mechanism for Single Strand Breaks in DNA. Physical Review Letters, 2006, 97, 018105.	7.8	106
71	Selective Excision of C5 fromD-Ribose in the Gas Phase by Low-Energy Electrons (0–1 eV): Implications for the Mechanism of DNA Damage. Angewandte Chemie - International Edition, 2006, 45, 4851-4855.	13.8	109
72	Thermal electron capture by some chlorobromopropanes. European Physical Journal D, 2005, 35, 323-326.	1.3	5

#	Article	IF	CITATIONS
73	Low energy electron attachment by bromoalkanes. International Journal of Mass Spectrometry, 2004, 233, 199-205.	1.5	22
74	Low-Energy Electron Attachment by Chloroalkanes. Journal of Physical Chemistry A, 2003, 107, 11427-11432.	2.5	25
75	Electron attachment processes in gas mixtures containing haloethanes. Research on Chemical Intermediates, 2001, 27, 699-707.	2.7	9
76	Thermal electron capture in the mixtures of halocarbons and atmospheric gases. Journal of Radioanalytical and Nuclear Chemistry, 1998, 232, 71-73.	1.5	2