Ewa Mijowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8150116/publications.pdf

Version: 2024-02-01

53660 88477 6,296 166 45 70 citations h-index g-index papers 172 172 172 7641 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigating the release of ZnO nanoparticles from cement mortars on microbiological models. Applied Nanoscience (Switzerland), 2022, 12, 489-502.	1.6	14
2	Silica nanospheres as a key process element in the Green engineering for the synthesis of carbon nanotubes as a supercapacitors additives. Materials Research Bulletin, 2022, 146, 111620.	2.7	8
3	One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors. Renewable Energy, 2022, 185, 187-195.	4.3	39
4	Intumescent flame retardants inspired template-assistant synthesis of N/P dual-doped three-dimensional porous carbons for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 613, 35-46.	5.0	15
5	Boosting Portland cement-free composite performance via alkali-activation and reinforcement with pre-treated functionalised wheat straw. Industrial Crops and Products, 2022, 178, 114648.	2.5	15
6	Fabrication and characterization of a TiBs@MCN cable-like photocatalyst with high photocatalytic performance under visible light irradiation. New Journal of Chemistry, 2022, 46, 6319-6329.	1.4	3
7	Nickel Nanoparticles Encapsulated in Nitrogenâ€Doped Carbon Nanofibers as Excellent Bifunctional Catalyst for Hydrogen and Oxygen Evolution Processes. ChemCatChem, 2022, 14, .	1.8	4
8	Porous silica matrix as an efficient strategy to boosted photocatalytic performance of titania/carbon composite. Diamond and Related Materials, 2022, 125, 109027.	1.8	4
9	Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance. Energy, 2021, 217, 119399.	4.5	20
10	Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride. Beilstein Journal of Nanotechnology, 2021, 12, 473-484.	1.5	12
11	The impact of environmental water on the potential application of coreâ "shell titaniaâ" silica nanospheres as photocatalysts. Nanotechnology, 2021, 32, 315703.	1.3	1
12	Bifunctional Polymeric Carbon Nitride via Tuning Fabrication Conditions for Photocatalysis. Catalysts, 2021, 11, 651.	1.6	5
13	Fabrication of Paper Sheets Coatings Based on Chitosan/Bacterial Nanocellulose/ZnO with Enhanced Antibacterial and Mechanical Properties. International Journal of Molecular Sciences, 2021, 22, 7383.	1.8	10
14	Co-Existence of Iron Oxide Nanoparticles and Manganese Oxide Nanorods as Decoration of Hollow Carbon Spheres for Boosting Electrochemical Performance of Li-Ion Battery. Materials, 2021, 14, 6902.	1.3	1
15	Influence of Hydrogenation on Morphology, Chemical Structure and Photocatalytic Efficiency of Graphitic Carbon Nitride. International Journal of Molecular Sciences, 2021, 22, 13096.	1.8	18
16	Flexible Films as Anode Materials Based on rGO and TiO2/MnO2 in Li-Ion Batteries Free of Non-Active Agents. Energies, 2021, 14, 8168.	1.6	4
17	The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica. Applied Nanoscience (Switzerland), 2020, 10, 2627-2638.	1.6	46
18	Three dimensional graphene/carbonized metal-organic frameworks based high-performance supercapacitor. Carbon, 2020, 157, 55-63.	5.4	62

#	Article	IF	CITATIONS
19	Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications. Journal of Applied Polymer Science, 2020, 137, 48338.	1.3	45
20	Nanosized carbon black as synergist in PP/POE-MA/IFR system for simultaneously improving thermal, electrical and mechanical properties. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1091-1098.	2.0	16
21	Sustainable recycling of waste polystyrene into hierarchical porous carbon nanosheets with potential applications in supercapacitors. Nanotechnology, 2020, 31, 035402.	1.3	42
22	Folic Acid/Methotrexate Functionalized Mesoporous Silica Nanoflakes from Different Supports: Comparative Study. Applied Sciences (Switzerland), 2020, 10, 6465.	1.3	5
23	Potential Use of Silica Nanoparticles for the Microbial Stabilisation of Wine: An In Vitro Study Using Oenococcus oeni as a Model. Foods, 2020, 9, 1338.	1.9	3
24	Insight into the Effect of ZIFâ€8 Particle Size on the Performance in Nanocarbonâ€Based Supercapacitors. Chemistry - A European Journal, 2020, 26, 16328-16337.	1.7	14
25	Na3PO4 assistant dispersion of nano-CaCO3 template to enhance electrochemical interface: N/O/P co-doped porous carbon hybrids towards high-performance flexible supercapacitors. Composites Part B: Engineering, 2020, 199, 108256.	5.9	33
26	One-Step Synergistic Effect to Produce Two-Dimensional N-Doped Hierarchical Porous Carbon Nanosheets for High-Performance Flexible Supercapacitors. ACS Applied Energy Materials, 2020, 3, 8562-8572.	2.5	32
27	Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte. Materials, 2020, 13, 3919.	1.3	19
28	Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction. Materials, 2020, 13, 3918.	1.3	10
29	Nitrogen/Oxygen Enriched Hierarchical Porous Carbons Derived from Waste Peanut Shells Boosting Performance of Supercapacitors. Advanced Electronic Materials, 2020, 6, 2000450.	2.6	18
30	The Response of Pseudomonas aeruginosa PAO1 to UV-activated Titanium Dioxide/Silica Nanotubes. International Journal of Molecular Sciences, 2020, 21, 7748.	1.8	11
31	Controllable Carbonization of Plastic Waste into Three-Dimensional Porous Carbon Nanosheets by Combined Catalyst for High Performance Capacitor. Nanomaterials, 2020, 10, 1097.	1.9	33
32	Carbonized Lanthanum-Based Metal-Organic Framework with Parallel Arranged Channels for Azo-Dye Adsorption. Nanomaterials, 2020, 10, 1053.	1.9	7
33	Synthesis and Characterization of Nitrogen-doped Carbon Nanotubes Derived from g-C3N4. Materials, 2020, 13, 1349.	1.3	58
34	Co-etching effect to convert waste polyethylene terephthalate into hierarchical porous carbon toward excellent capacitive energy storage. Science of the Total Environment, 2020, 723, 138055.	3.9	55
35	A general approach towards carbonization of plastic waste into a well-designed 3D porous carbon framework for super lithium-ion batteries. Chemical Communications, 2020, 56, 9142-9145.	2.2	49
36	High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage. Scientific Reports, 2020, 10, 3518.	1.6	58

#	Article	IF	CITATIONS
37	Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries. Molecules, 2020, 25, 1064.	1.7	14
38	The effects of calcium–silicate–hydrate (C–S–H) seeds on reference microorganisms. Applied Nanoscience (Switzerland), 2020, 10, 4855-4867.	1.6	8
39	Enhancement of photocatalytic hydrogen evolution with catalysts based on carbonized MOF-5 and g-C ₃ N ₄ . RSC Advances, 2020, 10, 4032-4039.	1.7	21
40	Challenges in Studying the Incorporation of Nanomaterials to Building Materials on Microbiological Models. Springer Proceedings in Physics, 2019, , 285-303.	0.1	6
41	Non-cytotoxic hydroxyl-functionalized exfoliated boron nitride nanoflakes impair the immunological function of insect haemocytes in vivo. Scientific Reports, 2019, 9, 14027.	1.6	22
42	Well-Designed Porous Graphene Flakes for Lithium-Ion Batteries with Outstanding Rate Performance. Langmuir, 2019, 35, 12613-12619.	1.6	15
43	Large-Scale and Low-Cost Motivation of Nitrogen-Doped Commercial Activated Carbon for High-Energy-Density Supercapacitor. ACS Applied Energy Materials, 2019, 2, 4234-4243.	2.5	41
44	Multifunctional nitrogen-doped nanoporous carbons derived from metal–organic frameworks for efficient CO ₂ storage and high-performance lithium-ion batteries. New Journal of Chemistry, 2019, 43, 10405-10412.	1.4	12
45	MOF-5 derived carbon as material for CO ₂ absorption. RSC Advances, 2019, 9, 18527-18537.	1.7	53
46	Ultrathin NiO confined within hollow carbon sphere for efficient electrochemical energy storage. Journal of Alloys and Compounds, 2019, 797, 702-709.	2.8	14
47	Selective Synthesis of Magnetite Nanospheres with Controllable Morphologies on CNTs and Application to Lithiumâ€ion Batteries. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800924.	0.8	7
48	Formation of ultra-small Mn3O4 nanoparticles trapped in nanochannels of hollow carbon spheres by nanoconfinement with excellent supercapacitor performance. International Journal of Hydrogen Energy, 2019, 44, 13675-13683.	3.8	17
49	Hierarchical porous carbon sheets derived on a MgO template for high-performance supercapacitor applications. Nanotechnology, 2019, 30, 295703.	1.3	29
50	Electrochemical performance of MOF-5 derived carbon nanocomposites with 1D, 2D and 3D carbon structures. Electrochimica Acta, 2019, 307, 582-594.	2.6	29
51	Symmetric Supercapacitors Based on MnOOHâ€Coated Nanoporous Carbon toward High Energyâ€Storage Performance. ChemElectroChem, 2019, 6, 2302-2307.	1.7	11
52	Mass production of hierarchically porous carbon nanosheets by carbonizing "real-world―mixed waste plastics toward excellent-performance supercapacitors. Waste Management, 2019, 87, 691-700.	3.7	76
53	Evaluation of Nanoporous Carbon Synthesized from Direct Carbonization of a Metal–Organic Complex as a Highly Effective Dye Adsorbent and Supercapacitor. Nanomaterials, 2019, 9, 601.	1.9	15
54	Nitrogen-doped porous carbon embedded with cobalt nanoparticles for excellent oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 546, 344-350.	5.0	21

#	Article	IF	Citations
55	Size-Dependent in Vitro Biocompatibility and Uptake Process of Polymeric Carbon Nitride. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47739-47749.	4.0	14
56	DOPO-Functionalized Molybdenum Disulfide and its Impact on the Thermal Properties of Polyethylene and Poly(Lactic Acid) Composites. Nanomaterials, 2019, 9, 1637.	1.9	5
57	Core/Shell Structure of Mesoporous Carbon Spheres and g-C3N4 for Acid Red 18 Decolorization. Catalysts, 2019, 9, 1007.	1.6	8
58	Graphitic Carbon Nitride and Titanium Dioxide Modified with 1 D and 2 D Carbon Structures for Photocatalysis. ChemSusChem, 2019, 12, 612-620.	3.6	31
59	From polystyrene waste to porous carbon flake and potential application in supercapacitor. Waste Management, 2019, 85, 333-340.	3.7	80
60	Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochimica Acta, 2019, 294, 183-191.	2.6	78
61	Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. Journal of Power Sources, 2019, 412, 1-9.	4.0	150
62	Large-scale converting waste coffee grounds into functional carbon materials as high-efficient adsorbent for organic dyes. Bioresource Technology, 2019, 272, 92-98.	4.8	78
63	Facile synthesis and properties of iron oxide spheres coated with carbon. Materials Letters, 2018, 223, 235-238.	1.3	2
64	Hierarchical porous carbon materials from nanosized metal-organic complex for high-performance symmetrical supercapacitor. Electrochimica Acta, 2018, 269, 580-589.	2.6	47
65	Application of Carbonized Metal–Organic Framework as Efficient Adsorbent of Cationic Dye. Industrial & Engineering Chemistry Research, 2018, 57, 4867-4879.	1.8	37
66	Adsorption of cationic dyes onto Fe@graphite core–shell magnetic nanocomposite: Equilibrium, kinetics and thermodynamics. Chemical Engineering Research and Design, 2018, 129, 259-270.	2.7	98
67	Poly(vinylidene fluoride) and Carbon Derivative Structures from Eco-Friendly MOF-5 for Supercapacitor Electrode Preparation with Improved Electrochemical Performance. Nanomaterials, 2018, 8, 890.	1.9	25
68	Synthesis of Polylysine/Silica Hybrids through Branched-Polylysine-Mediated Biosilicification. ACS Omega, 2018, 3, 17573-17580.	1.6	7
69	Application of the nanoindentation method in assessing of properties of cement composites modified with silica-magnetite nanostructures. MATEC Web of Conferences, 2018, 163, 02002.	0.1	1
70	A novel stiffener skeleton strategy in catalytic carbonization system with enhanced carbon layer structure and improved fire retardancy. Composites Science and Technology, 2018, 164, 82-91.	3.8	37
71	The effects of Fe3O4 and Fe3O4/SiO2 nanoparticles on the mechanical properties of cement mortars exposed to elevated temperatures. Construction and Building Materials, 2018, 182, 441-450.	3.2	28
72	Cobalt/Carbon Nanocomposite as Oxygen Evolution Reaction Electrocatalyst. ChemElectroChem, 2018, 5, 2681-2685.	1.7	11

#	Article	IF	CITATIONS
73	Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials. Nanomaterials, 2018, 8, 212.	1.9	92
74	Hexagonal Boron Nitride Functionalized with Au Nanoparticlesâ€"Properties and Potential Biological Applications. Nanomaterials, 2018, 8, 605.	1.9	48
75	Microwave-assisted hydrothermal synthesis and electrochemical studies of α- and h-MoO3. Journal of Solid State Electrochemistry, 2018, 22, 3651-3661.	1.2	19
76	Waste-free synthesis of silica nanospheres and silica nanocoatings from recycled ethanol–ammonium solution. Chemical Papers, 2017, 71, 841-848.	1.0	10
77	Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. Journal of Colloid and Interface Science, 2017, 496, 188-200.	5.0	331
78	Removal of anionic dyes using magnetic Fe@graphite core-shell nanocomposite as an adsorbent from aqueous solutions. Journal of Colloid and Interface Science, 2017, 497, 155-164.	5.0	44
79	The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates. Construction and Building Materials, 2017, 137, 420-431.	3.2	105
80	Mechanism of <scp>M</scp> <i></i> <scp>O</scp> _{<i>y</i>} <nanoparticles <scp="">CNTs for catalytic carbonization of polyethylene and application to flame retardancy. Journal of Applied Polymer Science, 2017, 134, 45233.</nanoparticles>	1.3	12
81	Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chemical Engineering Research and Design, 2017, 123, 35-49.	2.7	126
82	Graphene nanoflakes functionalized with cobalt/cobalt oxides formation during cobalt organic framework carbonization. Dalton Transactions, 2017, 46, 7722-7732.	1.6	14
83	Comparative in vitro study of single and four layer graphene oxide nanoflakes — Cytotoxicity and cellular uptake. Toxicology in Vitro, 2017, 41, 205-213.	1.1	25
84	Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica. Applied Surface Science, 2017, 407, 391-397.	3.1	56
85	The covalent and non-covalent conjugation of graphene oxide with hydroxycamptothecin in hyperthermia for its anticancer activity. Journal of Alloys and Compounds, 2017, 709, 112-124.	2.8	10
86	Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis. Applied Surface Science, 2017, 398, 56-62.	3.1	118
87	Porous nanopeapod Pd catalyst with excellent stability and efficiency. Chemical Communications, 2017, 53, 740-742.	2.2	10
88	Facile synthesis of porous iron oxide/graphene hybrid nanocomposites and potential application in electrochemical energy storage. New Journal of Chemistry, 2017, 41, 13553-13559.	1.4	21
89	Preparation, thermal conductivity, and thermal stability of flame retardant polyethylene with exfoliated MoS2/MxOy. New Journal of Chemistry, 2017, 41, 13287-13292.	1.4	19
90	Equilibrium and kinetics studies for the adsorption of Ni ²⁺ and Fe ³⁺ ions from aqueous solution by graphene oxide. Polish Journal of Chemical Technology, 2017, 19, 120-129.	0.3	20

#	Article	IF	Citations
91	PANI/NaTaO ₃ composite photocatalyst for enhanced hydrogen generation under UV light irradiation. Polish Journal of Chemical Technology, 2017, 19, 115-119.	0.3	3
92	Effect of iron oxide impregnated in hollow carbon sphere as symmetric supercapacitors. Journal of Alloys and Compounds, 2017, 726, 466-473.	2.8	23
93	Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. International Journal of Hydrogen Energy, 2017, 42, 30461-30469.	3.8	23
94	Properties of Cement Composites Modified with Silica-magnetite Nanostructures. Procedia Engineering, 2017, 196, 105-112.	1.2	7
95	Graphene-based electrochemical biosensing system for medical diagnostics. , 2017, , .		1
96	The effects of silica/titania nanocomposite on the mechanical and bactericidal properties of cement mortars. Construction and Building Materials, 2017, 150, 738-746.	3.2	83
97	A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite. Beilstein Journal of Nanotechnology, 2017, 8, 1508-1514.	1.5	13
98	Time Dependent Influence of Rotating Magnetic Field on Bacterial Cellulose. International Journal of Polymer Science, 2016, 2016, 1-13.	1.2	9
99	Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials. Materials, 2016, 9, 701.	1.3	70
100	Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage. Chemical Physics Letters, 2016, 647, 14-19.	1.2	36
101	Y2O3:Eu nanocrystals as biomarkers prepared by a microwave hydrothermal method. Optical Materials, 2016, 59, 157-164.	1.7	20
102	The Influence of Nano-Fe3O4 on the Microstructure and Mechanical Properties of Cementitious Composites. Nanoscale Research Letters, 2016, 11, 182.	3.1	92
103	Investigating the Interaction Between Streptomyces sp. and Titania/Silica Nanospheres. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	16
104	Reduction of Tb4+ ions in luminescent Y2O3:Tb nanorods prepared by microwave hydrothermal method. Journal of Rare Earths, 2016, 34, 774-781.	2.5	37
105	A facile synthesis method and electrochemical studies of a hierarchical structured MoS ₂ /C-nanocomposite. RSC Advances, 2016, 6, 76084-76092.	1.7	21
106	Thermally induced formation of zinc oxide nanostructures with tailoring morphology during metal organic framework (MOF-5) carbonization process. Materials and Design, 2016, 110, 740-748.	3.3	49
107	Luminescence enhancement in nanocrystalline Eu2O3 nanorods – Microwave hydrothermal crystallization and thermal degradation of cubic phase. Optical Materials, 2016, 59, 76-82.	1.7	11
108	Effect of GO-Fe ₃ O ₄ and rotating magnetic field on cellular metabolic activity of mammalian cells. Journal of Biomaterials Applications, 2016, 30, 1392-1406.	1.2	12

#	Article	IF	Citations
109	Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application. Nanoscale Research Letters, 2015, 10, 430.	3.1	18
110	Controllable Synthesis of 3D Hollowâ€Carbonâ€Spheres/Grapheneâ€Flake Hybrid Nanostructures from Polymer Nanocomposite by Selfâ€Assembly and Feasibility for Lithiumâ€Ion Batteries. Particle and Particle Systems Characterization, 2015, 32, 874-879.	1.2	18
111	Reduced graphene oxide and inorganic nanoparticles composites – synthesis and characterization. Polish Journal of Chemical Technology, 2015, 17, 95-103.	0.3	10
112	The Effect of Nanosilica on the Mechanical Properties of polymer-Cement Composites (PCC). Procedia Engineering, 2015, 108, 139-145.	1.2	39
113	Study on efficient removal of anionic, cationic and nonionic dyes from aqueous solutions by means of mesoporous carbon nanospheres with empty cavity. Chemical Engineering Research and Design, 2015, 94, 242-253.	2.7	52
114	Effect of graphene thickness on photocatalytic activity of TiO2-graphene nanocomposites. Applied Surface Science, 2015, 331, 193-199.	3.1	73
115	Nanocomposite of cement/graphene oxide – Impact on hydration kinetics and Young's modulus. Construction and Building Materials, 2015, 78, 234-242.	3.2	168
116	A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue. Journal of Colloid and Interface Science, 2015, 445, 195-204.	5.0	74
117	Palladium nanoparticles deposited on graphene and its electrochemical performance for glucose sensing. Applied Surface Science, 2015, 355, 587-592.	3.1	36
118	Beaded structured CNTs-Fe ₃ O ₄ @C with low Fe ₃ O ₄ content as anode materials with extra enhanced performances in lithium ion batteries. RSC Advances, 2015, 5, 28864-28869.	1.7	27
119	Synergistic effect of carbon fibers and carbon nanotubes on improving thermal stability and flame retardancy of polypropylene: a combination of a physical network and chemical crosslinking. RSC Advances, 2015, 5, 5484-5493.	1.7	12
120	Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. Journal of Materials Chemistry A, 2015, 3, 341-351.	5.2	156
121	New insights into the role of lattice oxygen in the catalytic carbonization of polypropylene into high value-added carbon nanomaterials. New Journal of Chemistry, 2015, 39, 962-971.	1.4	8
122	Development of the Mobile PoC Graphene-Based Biosensing Device Using Electrochemical Impedance Spectroscopy (EIS). IFMBE Proceedings, 2015, , 20-23.	0.2	2
123	Removal of Ni ²⁺ from Aqueous Solutions by Adsorption Onto Magnetic Multiwalled Carbon Nanotube Nanocomposite. Polish Journal of Chemical Technology, 2014, 16, 87-94.	0.3	10
124	High Pressure Synthesis versus Calcination – Different Approaches to Crystallization of Zirconium Dioxide. Polish Journal of Chemical Technology, 2014, 16, 99-105.	0.3	11
125	Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. Nanoscale Research Letters, 2014, 9, 656.	3.1	77
126	Combination of fumed silica with carbon black for simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene. Polymer, 2014, 55, 2998-3007.	1.8	40

#	Article	IF	CITATIONS
127	Synergistic effect of activated carbon and Ni2O3 in promoting the thermal stability and flame retardancy of polypropylene. Polymer Degradation and Stability, 2014, 99, 18-26.	2.7	38
128	Synergistic effect of fumed silica with Ni2O3 on improving flame retardancy of poly(lactic acid). Polymer Degradation and Stability, 2014, 104, 18-27.	2.7	39
129	Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. RSC Advances, 2014, 4, 33776-33784.	1.7	28
130	Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ACS Sustainable Chemistry and Engineering, 2014, 2, 2837-2844.	3.2	103
131	One-pot synthesis of core/shell Co@C spheres by catalytic carbonization of mixed plastics and their application in the photo-degradation of Congo red. Journal of Materials Chemistry A, 2014, 2, 7461-7470.	5.2	41
132	Upcycle waste plastics to magnetic carbon materials for dye adsorption from polluted water. RSC Advances, 2014, 4, 26817.	1.7	13
133	Striking influence of NiO catalyst diameter on the carbonization of polypropylene into carbon nanomaterials and their high performance in the adsorption of oils. RSC Advances, 2014, 4, 33806-33814.	1.7	28
134	Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity. Energy, 2014, 75, 549-554.	4.5	58
135	Superstable magnetic nanoreactors with high efficiency for Suzuki-coupling reactions. Nanoscale, 2014, 6, 12884-12889.	2.8	16
136	Upcycling Waste Polypropylene into Graphene Flakes on Organically Modified Montmorillonite. Industrial & Engineering Chemistry Research, 2014, 53, 4173-4181.	1.8	97
137	Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO ₂ nanoparticles – synthesis, characterization and photocatalytic activity. International Journal of Materials Research, 2014, 105, 900-906.	0.1	4
138	Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes. Biomedical Microdevices, 2014, 16, 449-458.	1.4	15
139	Effect of incorporation route on dispersion of mesoporous silica nanospheres in cement mortar. Construction and Building Materials, 2014, 66, 418-421.	3.2	30
140	Catalytic carbonization of polypropylene into cup-stacked carbon nanotubes with high performances in adsorption of heavy metallic ions and organic dyes. Chemical Engineering Journal, 2014, 248, 27-40.	6.6	71
141	Striking influence of chain structure of polyethylene on the formation of cup-stacked carbon nanotubes/carbon nanofibers under the combined catalysis of CuBr and NiO. Applied Catalysis B: Environmental, 2014, 147, 592-601.	10.8	60
142	Converting mixed plastics into mesoporous hollow carbon spheres with controllable diameter. Applied Catalysis B: Environmental, 2014, 152-153, 289-299.	10.8	65
143	Preliminary study towards photoactivity enhancement using a biocompatible titanium dioxide/carbon nanotubes composite. Journal of Alloys and Compounds, 2014, 605, 173-178.	2.8	13
144	Adsorption Kinetics of Acid Dye Acid Red 88 onto Magnetic Multiâ€∢scp>W⟨ scp>alled Carbon Nanotubesâ€∢scp>F⟨ scp>e⟨sub>3⟨ sub>⟨scp>C⟨ scp> Nanocomposite. Clean - Soil, Air, Water, 2014, 42, 284-294.	0.7	43

#	Article	IF	Citations
145	Selective oxidation of metallic single-walled carbon nanotubes. Chemical Papers, 2013, 67, .	1.0	4
146	Electrochemical Characteristics of Discrete, Uniform, and Monodispersed Hollow Mesoporous Carbon Spheres in Double‣ayered Supercapacitors. Chemistry - an Asian Journal, 2013, 8, 2627-2633.	1.7	18
147	Catalytic conversion of linear low density polyethylene into carbon nanomaterials under the combined catalysis of Ni2O3 and poly(vinyl chloride). Chemical Engineering Journal, 2013, 215-216, 339-347.	6.6	61
148	In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 16179-16184.	3.8	33
149	Effect of the added amount of organically-modified montmorillonite on the catalytic carbonization of polypropylene into cup-stacked carbon nanotubes. Chemical Engineering Journal, 2013, 225, 798-808.	6.6	64
150	Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. Journal of Colloid and Interface Science, 2013, 398, 152-160.	5.0	217
151	Nanoconfinement Induced Formation of Core/Shell Structured Mesoporous Carbon Spheres Coated with Solid Carbon Shell. ACS Applied Materials & Interfaces, 2013, 5, 3042-3047.	4.0	15
152	Application of hollow mesoporous carbon nanospheres as an high effective adsorbent for the fast removal of acid dyes from aqueous solutions. Chemical Engineering Journal, 2013, 228, 824-833.	6.6	78
153	Synthesis, characterization and growth mechanism of mesoporous hollow carbon nanospheres by catalytic carbonization of polystyrene. Microporous and Mesoporous Materials, 2013, 176, 31-40.	2.2	47
154	Facile synthesis of hollow silica spheres with nanoholes. Dalton Transactions, 2013, 42, 6381.	1.6	7
155	Striking influence of Fe2O3 on the "catalytic carbonization―of chlorinated poly(vinyl chloride) into carbon microspheres with high performance in the photo-degradation of Congo red. Journal of Materials Chemistry A, 2013, 1, 5247.	5.2	69
156	Striking Influence about HZSM-5 Content and Nickel Catalyst on Catalytic Carbonization of Polypropylene and Polyethylene into Carbon Nanomaterials. Industrial & Engineering Chemistry Research, 2013, 52, 15578-15588.	1.8	17
157	Synthesis and Characterization of K-Ta Mixed Oxides for Hydrogen Generation in Photocatalysis. International Journal of Photoenergy, 2012, 2012, 1-7.	1.4	7
158	Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism. Applied Catalysis A: General, 2012, 449, 112-120.	2.2	114
159	Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. Journal of Nanoparticle Research, 2012, 14, 1248.	0.8	62
160	Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite: Kinetics, equilibrium and thermodynamics. Chemical Engineering Journal, 2012, 210, 87-95.	6.6	158
161	New synthesis method of sword-sheath structured carbon nanotubes. , 2012, , .		1
162	New easy way preparation of core/shell structured SnO2@carbon spheres and application for lithium-ion batteries. Journal of Power Sources, 2012, 216, 475-481.	4.0	38

#	Article	IF	CITATION
163	Carbon-modified TiO2 for photocatalysis. Nanoscale Research Letters, 2012, 7, 235.	3.1	21
164	Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors. Nanoscale Research Letters, 2012, 7, 269.	3.1	32
165	CVD generated mesoporous hollow carbon spheres as supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 246-250.	2.3	68
166	Synthesis, characterization and photocatalytic properties of lithium tantalate. Materials Characterization, 2012, 68, 71-76.	1.9	21