De-Li Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/8150006/de-li-wang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 149
 10,130
 52
 97

 papers
 h-index
 g-index

 161
 11,939
 11.7
 6.48

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
149	Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. <i>Nature Materials</i> , 2013 , 12, 81-7	27	1467
148	Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. <i>Nano Letters</i> , 2007 , 7, 323-8	11.5	405
147	Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 1694-1700	3.8	403
146	A solution-phase bifunctional catalyst for lithium-oxygen batteries. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8941-6	16.4	356
145	Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17664-6	16.4	286
144	One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. <i>Chemical Communications</i> , 2014 , 50, 4839-42	5.8	266
143	Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. <i>Nano Letters</i> , 2012 , 12, 5230-8	11.5	259
142	Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. <i>ACS Nano</i> , 2015 , 9, 1775-81	16.7	250
141	Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9643-9	16.4	198
140	Stringed Bube on cubelhanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium Bulfur batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 2372-2381	35.4	193
139	Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. <i>ACS Catalysis</i> , 2018 , 8, 3237-3256	13.1	171
138	Amylopectin wrapped graphene oxide/sulfur for improved cyclability of lithium-sulfur battery. <i>ACS Nano</i> , 2013 , 7, 8801-8	16.7	167
137	Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 26134-26142	9.5	162
136	Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 16043-16052	6.7	154
135	Facile Synthesis of Carbon-Supported Pdto CoreBhell Nanoparticles as Oxygen Reduction Electrocatalysts and Their Enhanced Activity and Stability with Monolayer Pt Decoration. <i>Chemistry of Materials</i> , 2012 , 24, 2274-2281	9.6	154
134	Three-dimensional tracking and visualization of hundreds of Pt-Co fuel cell nanocatalysts during electrochemical aging. <i>Nano Letters</i> , 2012 , 12, 4417-23	11.5	145
133	3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702381	21.8	132

(2018-2018)

132	Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. <i>ACS Catalysis</i> , 2018 , 8, 2464-2472	13.1	129
131	HPW/MCM-41 phosphotungstic acid/mesoporous silica composites as novel proton-exchange membranes for elevated-temperature fuel cells. <i>Advanced Materials</i> , 2010 , 22, 971-6	24	124
130	Hypercrosslinked polymers enabled micropore-dominant N, S Co-Doped porous carbon for ultrafast electron/ion transport supercapacitors. <i>Nano Energy</i> , 2019 , 65, 103993	17.1	122
129	Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. <i>Nano Energy</i> , 2017 , 32, 511-519	17.1	119
128	Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10218-20	16.4	113
127	Morphology and activity tuning of CuPt/C ordered intermetallic nanoparticles by selective electrochemical dealloying. <i>Nano Letters</i> , 2015 , 15, 1343-8	11.5	108
126	Nitrogen and sulfur co-doping of 3D hollow-structured carbon spheres as an efficient and stable metal free catalyst for the oxygen reduction reaction. <i>Nanoscale</i> , 2016 , 8, 19086-19092	7.7	107
125	A surfactant-free strategy for synthesizing and processing intermetallic platinum-based nanoparticle catalysts. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18453-9	16.4	90
124	MoS2MoP heterostructured nanosheets on polymer-derived carbon as an electrocatalyst for hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 616-622	13	86
123	Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells. <i>Chemical Communications</i> , 2010 , 46, 2058-60	5.8	83
122	One-Nanometer-Thick Pt3Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. <i>ACS Catalysis</i> , 2019 , 9, 4488-4494	13.1	80
121	From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: an efficient electrocatalyst for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10731-10739	13	79
120	Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9867-9872	13	77
119	Hierarchically Porous Electrocatalyst with Vertically Aligned Defect-Rich CoMoS Nanosheets for the Hydrogen Evolution Reaction in an Alkaline Medium. <i>ACS Applied Materials & Description</i> 1, 2017, 9, 5288-5294	9.5	76
118	Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction. Journal of Materials Chemistry A, 2017 , 5, 4879-4885	13	75
117	Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 515-539	3.1	73
116	Tetrahydrofuran-functionalized multi-walled carbon nanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells. <i>Electrochimica Acta</i> , 2010 , 55, 2964-2971	6.7	70
115	Copper-Induced Formation of Structurally Ordered PtHefu Ternary Intermetallic Electrocatalysts with Tunable Phase Structure and Improved Stability. <i>Chemistry of Materials</i> , 2018 , 30, 5987-5995	9.6	68

114	Ultrathin Non-van der Waals Magnetic Rhombohedral Cr2S3: Space-Confined Chemical Vapor Deposition Synthesis and Raman Scattering Investigation. <i>Advanced Functional Materials</i> , 2019 , 29, 1805	5 88 6	68
113	Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7062-7069	13	67
112	Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction. <i>Nanoscale</i> , 2016 , 8, 4681-7	7.7	67
111	Self-supported ternary Ni-Fe-P nanosheets derived from metal-organic frameworks as efficient overall water splitting electrocatalysts. <i>Electrochimica Acta</i> , 2017 , 258, 423-432	6.7	67
110	An Alloying-Degree-Controlling Step in the Impregnation Synthesis of PtRu/C Catalysts. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16416-16422	3.8	65
109	Infiltrating sulfur in hierarchical architecture MWCNT@meso C core-shell nanocomposites for lithium-sulfur batteries. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9051-7	3.6	63
108	Anchoring ultrafine Pt electrocatalysts on TiO2-C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 228	3- 21 8 3- 23 6	62
107	Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution. <i>Electrochimica Acta</i> , 2017 , 232, 254-261	6.7	61
106	Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. <i>Nature Communications</i> , 2016 , 7, 11941	17.4	58
105	Coalescence in the Thermal Annealing of Nanoparticles: An in Situ STEM Study of the Growth Mechanisms of Ordered PtBe Nanoparticles in a KCl Matrix. <i>Chemistry of Materials</i> , 2013 , 25, 1436-1442	9.6	58
104	Golden Palladium Zinc Ordered Intermetallics as Oxygen Reduction Electrocatalysts. <i>ACS Nano</i> , 2019 , 13, 5968-5974	16.7	56
103	Nitrogen and sulfur co-doping of partially exfoliated MWCNTs as 3-D structured electrocatalysts for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5678-5684	13	56
102	Hollow-Structured Carbon-Supported Nickel Cobaltite Nanoparticles as an Efficient Bifunctional Electrocatalyst for the Oxygen Reduction and Evolution Reactions. <i>ChemCatChem</i> , 2016 , 8, 736-742	5.2	55
101	Restricting Growth of NiFe Nanoparticles on Heteroatom-Doped Carbon Nanotube/Graphene Nanosheets as Air-Electrode Electrocatalyst for Zn-Air Battery. <i>ACS Applied Materials & Materials & Interfaces</i> , 2018 , 10, 38093-38100	9.5	55
100	Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L10-PtZn Fuel Cell Cathode. <i>Advanced Energy Materials</i> , 2020 , 10, 2000179	21.8	54
99	Sea urchin-like Nife sulfide architectures as efficient electrocatalysts for the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12350-12357	13	52
98	Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7727-7731	13	52
97	Defect and Doping Co-Engineered Non-Metal Nanocarbon ORR Electrocatalyst. <i>Nano-Micro Letters</i> , 2021 , 13, 65	19.5	49

96	Atomic rearrangement from disordered to ordered Pd-Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. <i>Nano Energy</i> , 2018 , 50, 70-78	17.1	48	
95	Space-confined vapor deposition synthesis of two dimensional materials. <i>Nano Research</i> , 2018 , 11, 290	9- <u>2</u> 931	47	
94	Accurate Control Multiple Active Sites of Carbonaceous Anode for High Performance Sodium Storage: Insights into Capacitive Contribution Mechanism. <i>Advanced Energy Materials</i> , 2020 , 10, 190331	12 ^{21.8}	47	
93	Effects of crystal phase and composition on structurally ordered Pttoni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5848-5	58 ¹⁵³ 5	46	
92	Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale. <i>Nature Communications</i> , 2016 , 7, 13335	17.4	46	
91	Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries. <i>Electrochimica Acta</i> , 2016 , 210, 130-137	6.7	46	
90	Microporous Organic Polymers Derived Microporous Carbon Supported Pd Catalysts for Oxygen Reduction Reaction: Impact of Framework and Heteroatom. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2187-2197	3.8	45	
89	Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction. <i>Chinese Chemical Letters</i> , 2016 , 27, 597-601	8.1	45	
88	Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries. <i>Nano Energy</i> , 2016 , 20, 212-220	17.1	44	
87	Hierarchical Bimetallic Ni-Co-P Microflowers with Ultrathin Nanosheet Arrays for Efficient Hydrogen Evolution Reaction over All pH Values. <i>ACS Applied Materials & Distriction Communication Communic</i>	3 3.4 22	4 2 4	
86	Ultra-low loading Pt decorated coral-like Pd nanochain networks with enhanced activity and stability towards formic acid electrooxidation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1548-1552	13	44	
85	Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbon nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4400-10	3.6	44	
84	Sulphur modulated Ni3FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air battery performance. <i>Applied Catalysis B: Environmental</i> , 2020 , 274, 119086	21.8	43	
83	Coordination effect of network NiO nanosheet and a carbon layer on the cathode side in constructing a high-performance lithium ulfur battery. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6503-	6509	43	
82	Nano-structured PdxPt1☑/Ti anodes prepared by electrodeposition for alcohol electrooxidation. <i>Electrochimica Acta</i> , 2009 , 54, 5486-5491	6.7	43	
81	Structurally ordered PtIn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22129-22135	13	40	
80	3D hollow structured Co2FeO4/MWCNT as an efficient non-precious metal electrocatalyst for oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1601-1608	13	39	
79	Composition-dependent electrocatalytic activities of NiFe-based selenides for the oxygen evolution reaction. <i>Electrochimica Acta</i> , 2018 , 291, 64-72	6.7	39	

78	Self-assembly of HPW on Pt/C nanoparticles with enhanced electrocatalysis activity for fuel cell applications. <i>Applied Catalysis B: Environmental</i> , 2011 , 103, 311-317	21.8	38
77	Nanomaterial datasets to advance tomography in scanning transmission electron microscopy. <i>Scientific Data</i> , 2016 , 3, 160041	8.2	36
76	High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo2O4/CNT nanocomposite. <i>Electrochimica Acta</i> , 2017 , 244, 8-15	6.7	35
75	Effect of KOH etching on the structure and electrochemical performance of SiOC anodes for lithium-ion batteries. <i>Electrochimica Acta</i> , 2017 , 245, 287-295	6.7	35
74	Highly nitrogen and sulfur dual-doped carbon microspheres for supercapacitors. <i>Science Bulletin</i> , 2017 , 62, 1011-1017	10.6	35
73	Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors. <i>Chinese Chemical Letters</i> , 2017 , 28, 2227-2230	8.1	35
72	Recent Progress of Palladium-Based Electrocatalysts for the Formic Acid Oxidation Reaction. <i>Energy & Energy & </i>	4.1	34
71	Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland. <i>PLoS ONE</i> , 2016 , 11, e0159680	3.7	34
70	Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and in Situ Transmission Electron Microscopy. <i>ACS Nano</i> , 2018 , 12, 7866-7874	16.7	33
69	Controllable construction of flower-like FeS/Fe2O3 composite for lithium storage. <i>Journal of Power Sources</i> , 2018 , 392, 193-199	8.9	33
68	Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity. <i>ACS Applied Materials & </i>	9.5	33
67	Shoot population recruitment from a bud bank over two seasons of undisturbed growth of Leymus chinensis. <i>Botany</i> , 2009 , 87, 1242-1249	1.3	33
66	Breaking the Crowther limit: combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions. <i>Ultramicroscopy</i> , 2014 , 140, 26-31	3.1	32
65	Nitrogen-Doped Hierarchical Porous Carbons Derived from Sodium Alginate as Efficient Oxygen Reduction Reaction Electrocatalysts. <i>ChemCatChem</i> , 2017 , 9, 809-815	5.2	32
64	Tuning the electrocatalytic activity of Pt by structurally ordered PdFe/C for the hydrogen oxidation reaction in alkaline media. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11346-11352	13	31
63	Tailoring the Antipoisoning Performance of Pd for Formic Acid Electrooxidation via an Ordered PdBi Intermetallic. <i>ACS Catalysis</i> , 2020 , 10, 9977-9985	13.1	30
62	Turning Waste into Treasure: Regulating the Oxygen Corrosion on Fe Foam for Efficient Electrocatalysis. <i>Small</i> , 2020 , 16, e2000663	11	29
61	Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2021 , 282, 119617	21.8	29

(2017-2020)

60	Self-Optimized Ligand Effect in L12-PtPdFe Intermetallic for Efficient and Stable Alkaline Hydrogen Oxidation Reaction. <i>ACS Catalysis</i> , 2020 , 10, 15207-15216	13.1	25	
59	Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis. <i>Nano Energy</i> , 2020 , 74, 104877	17.1	25	
58	Recent advances on metal alkoxide-based electrocatalysts for water splitting. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 10130-10149	13	25	
57	Ultrafine molybdenum carbide nanoparticles supported on nitrogen doped carbon nanosheets for hydrogen evolution reaction. <i>Chinese Chemical Letters</i> , 2019 , 30, 192-196	8.1	25	
56	MoO2 modulated electrocatalytic properties of Ni: investigate from hydrogen oxidation reaction to hydrogen evolution reaction. <i>Electrochimica Acta</i> , 2019 , 324, 134892	6.7	25	
55	The Effect of Plant Growth Regulators and Sucrose on the Micropropagation and Microtuberization of Dioscorea nipponica Makino. <i>Journal of Plant Growth Regulation</i> , 2007 , 26, 38-45	4.7	25	
54	In situ coupling of NiFe nanoparticles with N-doped carbon nanofibers for Zn-air batteries driven water splitting. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119856	21.8	25	
53	Various Structured Molybdenum-based Nanomaterials as Advanced Anode Materials for Lithium ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 12366-12372	9.5	24	
52	Glucose-derived carbon sphere supported CoP as efficient and stable electrocatalysts for hydrogen evolution reaction. <i>Journal of Energy Chemistry</i> , 2017 , 26, 1147-1152	12	24	
51	Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction. <i>Chinese Journal of Catalysis</i> , 2019 , 40, 1867-1873	11.3	24	
50	A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 823-831	5.8	23	
49	Facile self-template fabrication of hierarchical nickel-cobalt phosphide hollow nanoflowers with enhanced hydrogen generation performance. <i>Science Bulletin</i> , 2019 , 64, 1675-1684	10.6	23	
48	Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. <i>Nano Research</i> , 2020 , 13, 2365-2370	10	22	
47	Insight into the hydrogen oxidation electrocatalytic performance enhancement on Ni via oxophilic regulation of MoO2. <i>Journal of Energy Chemistry</i> , 2021 , 54, 202-207	12	22	
46	Synthesis of highly stable and methanol-tolerant electrocatalyst for oxygen reduction: Co supporting on N-doped-C hybridized TiO2. <i>Electrochimica Acta</i> , 2015 , 180, 564-573	6.7	21	
45	Phase conversion of Pt3Ni2/C from disordered alloy to ordered intermetallic with strained lattice for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2018 , 283, 1253-1260	6.7	21	
44	Ultralow content of Pt on Pdtotu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction. <i>Nano Energy</i> , 2016 , 27, 475-481	17.1	21	
43	Acid promoted Ni/NiO monolithic electrode for overall water splitting in alkaline medium. <i>Science China Materials</i> , 2017 , 60, 918-928	7.1	20	

42	Methanol Oxidation Using Ternary Ordered Intermetallic Electrocatalysts: A DEMS Study. <i>ACS Catalysis</i> , 2020 , 10, 770-776	13.1	20
41	Effectively suppressing lithium dendrite growth via an es-LiSPCE single-ion conducting nano fiber membrane. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2518-2528	13	19
40	Molybdenum carbides embedded on carbon nanotubes for efficient hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2017 , 801, 7-13	4.1	19
39	Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes. <i>Energy and Environmental Science</i> , 2021 , 14, 2620-2638	35.4	19
38	Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. <i>Nanoscale</i> , 2016 , 8, 14793-802	7.7	18
37	Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization. <i>Nanoscale</i> , 2019 , 11, 20301-20306	7.7	18
36	Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage. <i>Journal of Energy Chemistry</i> , 2020 , 47, 188-195	12	17
35	Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis. <i>Applied Catalysis B: Environmental</i> , 2020 , 279, 119370	21.8	17
34	Transforming Damage into Benefit: Corrosion Engineering Enabled Electrocatalysts for Water Splitting. <i>Advanced Functional Materials</i> , 2021 , 31, 2009032	15.6	17
33	Molybdenum-doped titanium dioxide supported low-Pt electrocatalyst for highly efficient and stable hydrogen evolution reaction. <i>Chinese Chemical Letters</i> , 2021 , 32, 765-769	8.1	16
32	Rational Design and Engineering of Nanomaterials Derived from Prussian Blue and Its Analogs for Electrochemical Water Splitting. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 958-972	4.5	15
31	Efficient Electrochemical Production of HO on Hollow N-Doped Carbon Nanospheres with Abundant Micropores. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 ,	9.5	15
30	Semi-interpenetrating polymer networks toward sulfonated poly(ether ether ketone) membranes for high concentration direct methanol fuel cell. <i>Chinese Chemical Letters</i> , 2019 , 30, 299-304	8.1	15
29	Hypercrosslinked Polymerization Enabled N-Doped Carbon Confined Fe2O3 Facilitating Li Polysulfides Interface Conversion for LiB Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101780	21.8	14
28	Hyperporous-Carbon-Supported Nonprecious Metal Electrocatalysts for the Oxygen Reduction Reaction. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 2671-2676	4.5	12
27	Synergistic regulation of nickel doping/hierarchical structure in cobalt sulfide for high performance zinc-air battery. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120539	21.8	12
26	Oxides overlayer confined Ni3Sn2 alloy enable enhanced lithium storage performance. <i>Journal of Power Sources</i> , 2019 , 441, 227185	8.9	11
25	Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20966-20972	13	10

24	Surface engineering of PdFe ordered intermetallics for efficient oxygen reduction electrocatalysis. <i>Chemical Engineering Journal</i> , 2021 , 408, 127297	14.7	10
23	Boosting alkaline hydrogen electrooxidation on an unconventional fcc-Ru polycrystal. <i>Journal of Energy Chemistry</i> , 2021 , 61, 15-22	12	10
22	Corrosion-assisted large-scale production of hierarchical iron rusts/Ni(OH)2 nanosheet-on-microsphere arrays for efficient electrocatalysis. <i>Electrochimica Acta</i> , 2020 , 353, 136478	6.7	9
21	Facile synthesis of sub-monolayer Sn, Ru, and RuSn decorated Pt/C nanoparticles for formaldehyde electrooxidation. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 712, 55-61	4.1	8
20	A Mechanistic Differential Electrochemical Mass Spectrometry (DEMS) and in situ Fourier Transform Infrared Investigation of Dimethoxymethane Electro-Oxidation at Platinum. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 13293-13302	3.8	8
19	Carbon-enriched SiOC ceramics with hierarchical porous structure as anodes for lithium storage. <i>Electrochimica Acta</i> , 2021 , 372, 137899	6.7	8
18	Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2017 , 33, 149-164	3.8	7
17	Optimizing Formic Acid Electro-oxidation Performance by Restricting the Continuous Pd Sites in PdBn Nanocatalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 12239-12247	8.3	6
16	Multiple Active Sites Carbonaceous Anodes for Na+ Storage: Synthesis, Electrochemical Properties and Reaction Mechanism Analysis. <i>Advanced Functional Materials</i> , 2021 , 31, 2007247	15.6	6
15	Tuning Coal into Graphene-Like Nanocarbon for Electrochemical H2O2 Production with Nearly 100% Faraday Efficiency. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 9369-9375	8.3	6
14	Quantitative property-activity relationship of PtRu/C catalysts for methanol oxidation. <i>ChemPhysChem</i> , 2008 , 9, 1986-8	3.2	4
13	Nitrogen-inserted nickel nanosheets with controlled orbital hybridization and strain fields for boosted hydrogen oxidation in alkaline electrolytes. <i>Energy and Environmental Science</i> ,	35.4	4
12	A Low-Temperature Carbon Encapsulation Strategy for Stable and Poisoning-Tolerant Electrocatalysts <i>Small Methods</i> , 2021 , 5, e2100937	12.8	4
11	Correction to Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. <i>ACS Applied Materials & Design Section</i> , 10, 3152	9.5	3
10	Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation. <i>Nano Research</i> ,1	10	3
9	Engineering Ir Atomic Configuration for Switching the Pathway of Formic Acid Electrooxidation Reaction. <i>Advanced Functional Materials</i> ,2107672	15.6	3
8	Tuning the atomic configuration of Co-N-C electrocatalyst enables highly-selective H2O2 production in acidic media. <i>Applied Catalysis B: Environmental</i> , 2022 , 310, 121312	21.8	3
7	Hollow Porous Carbon-Confined Atomically Ordered PtCo3 Intermetallics for an Efficient Oxygen Reduction Reaction. <i>ACS Catalysis</i> ,5380-5387	13.1	3

6	Two-Dimensional Wrinkled N-Rich Carbon Nanosheets Fabricated from Chitin via Fast Pyrolysis as Optimized Electrocatalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 ,	8.3	2
5	Pyranoid-O-dominated graphene-like nanocarbon for two-electron oxygen reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2022 , 307, 121173	21.8	2
4	Oxygen Reduction: Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L10-PtZn Fuel Cell Cathode (Adv. Energy Mater. 29/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070124	21.8	2
3	Semi-Interpenetrating Polymer Network Membranes from SPEEK and BPPO for High Concentration DMFC. ACS Applied Energy Materials, 2018,	6.1	2
2	Engineering titanium oxide-based support for electrocatalysis. <i>Journal of Energy Chemistry</i> , 2021 , 67, 168-168	12	1
1	Highly dispersed Co atoms anchored in porous nitrogen-doped carbon for acidic H2O2 electrosynthesis. <i>Chemical Engineering Journal</i> , 2022 , 438, 135619	14.7	1