De-Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8150006/publications.pdf Version: 2024-02-01

DE-LI WANC

#	Article	IF	CITATIONS
1	Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 2013, 12, 81-87.	13.3	1,768
2	Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition. Nano Letters, 2007, 7, 323-328.	4.5	433
3	Shape-Controlled Synthesis of MnO ₂ Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction. Journal of Physical Chemistry C, 2010, 114, 1694-1700.	1.5	432
4	A Solution-Phase Bifunctional Catalyst for Lithium–Oxygen Batteries. Journal of the American Chemical Society, 2014, 136, 8941-8946.	6.6	409
5	One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2014, 50, 4839-4842.	2.2	302
6	Pt-Decorated PdCo@Pd/C Coreâ^Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2010, 132, 17664-17666.	6.6	300
7	Tuning Oxygen Reduction Reaction Activity via Controllable Dealloying: A Model Study of Ordered Cu ₃ Pt/C Intermetallic Nanocatalysts. Nano Letters, 2012, 12, 5230-5238.	4.5	291
8	Template-Free Synthesis of Hollow-Structured Co ₃ O ₄ Nanoparticles as High-Performance Anodes for Lithium-Ion Batteries. ACS Nano, 2015, 9, 1775-1781.	7.3	275
9	Stringed "tube on cube―nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy and Environmental Science, 2018, 11, 2372-2381.	15.6	255
10	Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. ACS Catalysis, 2018, 8, 3237-3256.	5.5	245
11	Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. Journal of the American Chemical Society, 2014, 136, 9643-9649.	6.6	220
12	Porous Structured Ni–Fe–P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 26134-26142.	4.0	220
13	Hypercrosslinked polymers enabled micropore-dominant N, S Co-Doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy, 2019, 65, 103993.	8.2	204
14	Amylopectin Wrapped Graphene Oxide/Sulfur for Improved Cyclability of Lithium–Sulfur Battery. ACS Nano, 2013, 7, 8801-8808.	7.3	181
15	Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2014, 39, 16043-16052.	3.8	180
16	Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. ACS Catalysis, 2018, 8, 2464-2472.	5.5	175
17	Defect and DopingÂCo-Engineered Non-Metal Nanocarbon ORR Electrocatalyst. Nano-Micro Letters, 2021, 13, 65.	14.4	169
18	3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702381.	10.2	165

#	Article	IF	CITATIONS
19	Facile Synthesis of Carbon-Supported Pd–Co Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts and Their Enhanced Activity and Stability with Monolayer Pt Decoration. Chemistry of Materials, 2012, 24, 2274-2281.	3.2	163
20	Three-Dimensional Tracking and Visualization of Hundreds of Ptâ^'Co Fuel Cell Nanocatalysts During Electrochemical Aging. Nano Letters, 2012, 12, 4417-4423.	4.5	162
21	Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. Nano Energy, 2017, 32, 511-519.	8.2	143
22	HPW/MCMâ€41 Phosphotungstic Acid/Mesoporous Silica Composites as Novel Protonâ€Exchange Membranes for Elevatedâ€Temperature Fuel Cells. Advanced Materials, 2010, 22, 971-976.	11.1	141
23	Morphology and Activity Tuning of Cu ₃ Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Dealloying. Nano Letters, 2015, 15, 1343-1348.	4.5	131
24	Highly Stable and CO-Tolerant Pt/Ti _{0.7} W _{0.3} O ₂ Electrocatalyst for Proton-Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 2010, 132, 10218-10220.	6.6	129
25	One-Nanometer-Thick Pt ₃ Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. ACS Catalysis, 2019, 9, 4488-4494.	5.5	126
26	Nitrogen and sulfur co-doping of 3D hollow-structured carbon spheres as an efficient and stable metal free catalyst for the oxygen reduction reaction. Nanoscale, 2016, 8, 19086-19092.	2.8	125
27	A Surfactant-Free Strategy for Synthesizing and Processing Intermetallic Platinum-Based Nanoparticle Catalysts. Journal of the American Chemical Society, 2012, 134, 18453-18459.	6.6	116
28	Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 ₀ â€PtZn Fuel Cell Cathode. Advanced Energy Materials, 2020, 10, 2000179.	10.2	112
29	From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 10731-10739.	5.2	111
30	Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 4879-4885.	5.2	110
31	Sea urchin-like Ni–Fe sulfide architectures as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12350-12357.	5.2	109
32	MoS ₂ –MoP heterostructured nanosheets on polymer-derived carbon as an electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 616-622.	5.2	104
33	Ultrathin Nonâ€van der Waals Magnetic Rhombohedral Cr ₂ S ₃ : Spaceâ€Confined Chemical Vapor Deposition Synthesis and Raman Scattering Investigation. Advanced Functional Materials, 2019, 29, 1805880.	7.8	103
34	Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size. Journal of Materials Chemistry A, 2017, 5, 9867-9872.	5.2	98
35	Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 7062-7069.	5.2	98
36	Copper-Induced Formation of Structurally Ordered Pt–Fe–Cu Ternary Intermetallic Electrocatalysts with Tunable Phase Structure and Improved Stability. Chemistry of Materials, 2018, 30, 5987-5995.	3.2	96

#	Article	IF	CITATIONS
37	Hierarchically Porous Electrocatalyst with Vertically Aligned Defect-Rich CoMoS Nanosheets for the Hydrogen Evolution Reaction in an Alkaline Medium. ACS Applied Materials & Interfaces, 2017, 9, 5288-5294.	4.0	93
38	Self-supported ternary Ni-Fe-P nanosheets derived from metal-organic frameworks as efficient overall water splitting electrocatalysts. Electrochimica Acta, 2017, 258, 423-432.	2.6	90
39	Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells. Chemical Communications, 2010, 46, 2058.	2.2	87
40	Anchoring ultrafine Pt electrocatalysts on TiO2-C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 237, 228-236.	10.8	85
41	Accurate Control Multiple Active Sites of Carbonaceous Anode for High Performance Sodium Storage: Insights into Capacitive Contribution Mechanism. Advanced Energy Materials, 2020, 10, 1903312.	10.2	85
42	Golden Palladium Zinc Ordered Intermetallics as Oxygen Reduction Electrocatalysts. ACS Nano, 2019, 13, 5968-5974.	7.3	83
43	Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 282, 119617.	10.8	80
44	Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage. Particle and Particle Systems Characterization, 2014, 31, 515-539.	1.2	77
45	Hypercrosslinked Polymerization Enabled Nâ€Đoped Carbon Confined Fe ₂ O ₃ Facilitating Li Polysulfides Interface Conversion for Li–S Batteries. Advanced Energy Materials, 2021, 11, 2101780.	10.2	77
46	Space-confined vapor deposition synthesis of two dimensional materials. Nano Research, 2018, 11, 2909-2931.	5.8	76
47	Turning Waste into Treasure: Regulating the Oxygen Corrosion on Fe Foam for Efficient Electrocatalysis. Small, 2020, 16, e2000663.	5.2	76
48	Tailoring the Antipoisoning Performance of Pd for Formic Acid Electrooxidation via an Ordered PdBi Intermetallic. ACS Catalysis, 2020, 10, 9977-9985.	5.5	75
49	Tetrahydrofuran-functionalized multi-walled carbon nanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells. Electrochimica Acta, 2010, 55, 2964-2971.	2.6	74
50	Supramolecular gel-assisted synthesis of double shelled Co@CoO@N–C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction. Nanoscale, 2016, 8, 4681-4687.	2.8	74
51	Restricting Growth of Ni ₃ Fe Nanoparticles on Heteroatom-Doped Carbon Nanotube/Graphene Nanosheets as Air-Electrode Electrocatalyst for Zn–Air Battery. ACS Applied Materials & Interfaces, 2018, 10, 38093-38100.	4.0	74
52	Sulphur modulated Ni3FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air battery performance. Applied Catalysis B: Environmental, 2020, 274, 119086.	10.8	73
53	Coalescence in the Thermal Annealing of Nanoparticles: An in Situ STEM Study of the Growth Mechanisms of Ordered Pt–Fe Nanoparticles in a KCl Matrix. Chemistry of Materials, 2013, 25, 1436-1442.	3.2	72
54	An Alloying-Degree-Controlling Step in the Impregnation Synthesis of PtRu/C Catalysts. Journal of Physical Chemistry C, 2007, 111, 16416-16422.	1.5	71

#	Article	IF	CITATIONS
55	Hollowâ€Structured Carbonâ€Supported Nickel Cobaltite Nanoparticles as an Efficient Bifunctional Electrocatalyst for the Oxygen Reduction and Evolution Reactions. ChemCatChem, 2016, 8, 736-742.	1.8	70
56	Hierarchical Bimetallic Ni–Co–P Microflowers with Ultrathin Nanosheet Arrays for Efficient Hydrogen Evolution Reaction over All pH Values. ACS Applied Materials & Interfaces, 2019, 11, 42233-42242.	4.0	70
57	Transforming Damage into Benefit: Corrosion Engineering Enabled Electrocatalysts for Water Splitting. Advanced Functional Materials, 2021, 31, 2009032.	7.8	70
58	Efficient Electrochemical Production of H ₂ O ₂ on Hollow N-Doped Carbon Nanospheres with Abundant Micropores. ACS Applied Materials & Interfaces, 2021, 13, 29551-29557.	4.0	70
59	Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes. Energy and Environmental Science, 2021, 14, 2620-2638.	15.6	68
60	Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. Nature Communications, 2016, 7, 11941.	5.8	67
61	Nitrogen and sulfur co-doping of partially exfoliated MWCNTs as 3-D structured electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 5678-5684.	5.2	66
62	Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution. Electrochimica Acta, 2017, 232, 254-261.	2.6	66
63	Effects of crystal phase and composition on structurally ordered Pt–Co–Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. Journal of Materials Chemistry A, 2018, 6, 5848-5855.	5.2	66
64	Atomic rearrangement from disordered to ordered Pd-Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. Nano Energy, 2018, 50, 70-78.	8.2	66
65	Infiltrating sulfur in hierarchical architecture MWCNT@meso C core–shell nanocomposites for lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2013, 15, 9051.	1.3	65
66	Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale. Nature Communications, 2016, 7, 13335.	5.8	65
67	Self-Optimized Ligand Effect in L1 ₂ -PtPdFe Intermetallic for Efficient and Stable Alkaline Hydrogen Oxidation Reaction. ACS Catalysis, 2020, 10, 15207-15216.	5.5	64
68	Tuning the atomic configuration of Co-N-C electrocatalyst enables highly-selective H2O2 production in acidic media. Applied Catalysis B: Environmental, 2022, 310, 121312.	10.8	64
69	Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 7727-7731.	5.2	61
70	Effect of KOH etching on the structure and electrochemical performance of SiOC anodes for lithium-ion batteries. Electrochimica Acta, 2017, 245, 287-295.	2.6	61
71	In situ coupling of NiFe nanoparticles with N-doped carbon nanofibers for Zn-air batteries driven water splitting. Applied Catalysis B: Environmental, 2021, 285, 119856.	10.8	60
72	Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries. Electrochimica Acta, 2016, 210, 130-137.	2.6	59

#	Article	IF	CITATIONS
73	Coordination effect of network NiO nanosheet and a carbon layer on the cathode side in constructing a high-performance lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 6503-6509.	5.2	58
74	Composition-dependent electrocatalytic activities of NiFe-based selenides for the oxygen evolution reaction. Electrochimica Acta, 2018, 291, 64-72.	2.6	58
75	Recent Progress of Palladium-Based Electrocatalysts for the Formic Acid Oxidation Reaction. Energy & Fuels, 2020, 34, 9137-9153.	2.5	57
76	Hollow Porous Carbon-Confined Atomically Ordered PtCo ₃ Intermetallics for an Efficient Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 5380-5387.	5.5	57
77	Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis. Applied Catalysis B: Environmental, 2020, 279, 119370.	10.8	55
78	Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland. PLoS ONE, 2016, 11, e0159680.	1.1	55
79	Microporous Organic Polymers Derived Microporous Carbon Supported Pd Catalysts for Oxygen Reduction Reaction: Impact of Framework and Heteroatom. Journal of Physical Chemistry C, 2016, 120, 2187-2197.	1.5	54
80	Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries. Nano Energy, 2016, 20, 212-220.	8.2	53
81	Nano-structured PdxPt1â^'x/Ti anodes prepared by electrodeposition for alcohol electrooxidation. Electrochimica Acta, 2009, 54, 5486-5491.	2.6	52
82	Highly nitrogen and sulfur dual-doped carbon microspheres for supercapacitors. Science Bulletin, 2017, 62, 1011-1017.	4.3	52
83	Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction. Chinese Chemical Letters, 2016, 27, 597-601.	4.8	51
84	Controllable construction of flower-like FeS/Fe2O3 composite for lithium storage. Journal of Power Sources, 2018, 392, 193-199.	4.0	50
85	Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and <i>in Situ</i> Transmission Electron Microscopy. ACS Nano, 2018, 12, 7866-7874.	7.3	49
86	3D hollow structured Co ₂ FeO ₄ /MWCNT as an efficient non-precious metal electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 1601-1608.	5.2	48
87	Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors. Chinese Chemical Letters, 2017, 28, 2227-2230.	4.8	47
88	Ultra-low loading Pt decorated coral-like Pd nanochain networks with enhanced activity and stability towards formic acid electrooxidation. Journal of Materials Chemistry A, 2013, 1, 1548-1552.	5.2	46
89	Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. Journal of Materials Chemistry A, 2015, 3, 22129-22135.	5.2	46
90	Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbon nanotubes. Physical Chemistry Chemical Physics, 2011, 13, 4400.	1.3	45

#	Article	IF	CITATIONS
91	Nitrogenâ€Doped Hierarchical Porous Carbons Derived from Sodium Alginate as Efficient Oxygen Reduction Reaction Electrocatalysts. ChemCatChem, 2017, 9, 809-815.	1.8	45
92	Methanol Oxidation Using Ternary Ordered Intermetallic Electrocatalysts: A DEMS Study. ACS Catalysis, 2020, 10, 770-776.	5.5	45
93	MoO2 modulated electrocatalytic properties of Ni: investigate from hydrogen oxidation reaction to hydrogen evolution reaction. Electrochimica Acta, 2019, 324, 134892.	2.6	44
94	Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Research, 2020, 13, 2365-2370.	5.8	44
95	Insight into the hydrogen oxidation electrocatalytic performance enhancement on Ni via oxophilic regulation of MoO2. Journal of Energy Chemistry, 2021, 54, 202-207.	7.1	44
96	Shoot population recruitment from a bud bank over two seasons of undisturbed growth of <i>Leymus chinensis</i> . Botany, 2009, 87, 1242-1249.	0.5	43
97	Facile self-template fabrication of hierarchical nickel-cobalt phosphide hollow nanoflowers with enhanced hydrogen generation performance. Science Bulletin, 2019, 64, 1675-1684.	4.3	43
98	Recent advances on metal alkoxide-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2020, 8, 10130-10149.	5.2	43
99	Nanomaterial datasets to advance tomography in scanning transmission electron microscopy. Scientific Data, 2016, 3, 160041.	2.4	42
100	Nitrogen-inserted nickel nanosheets with controlled orbital hybridization and strain fields for boosted hydrogen oxidation in alkaline electrolytes. Energy and Environmental Science, 2022, 15, 1234-1242.	15.6	42
101	Self-assembly of HPW on Pt/C nanoparticles with enhanced electrocatalysis activity for fuel cell applications. Applied Catalysis B: Environmental, 2011, 103, 311-317.	10.8	41
102	Tuning the electrocatalytic activity of Pt by structurally ordered PdFe/C for the hydrogen oxidation reaction in alkaline media. Journal of Materials Chemistry A, 2018, 6, 11346-11352.	5.2	41
103	High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo2O4/CNT nanocomposite. Electrochimica Acta, 2017, 244, 8-15.	2.6	39
104	Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis. Nano Energy, 2020, 74, 104877.	8.2	39
105	Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity. ACS Applied Materials & Interfaces, 2017, 9, 28604-28611.	4.0	38
106	Molybdenum-doped titanium dioxide supported low-Pt electrocatalyst for highly efficient and stable hydrogen evolution reaction. Chinese Chemical Letters, 2021, 32, 765-769.	4.8	38
107	Tuning Coal into Graphene-Like Nanocarbon for Electrochemical H ₂ O ₂ Production with Nearly 100% Faraday Efficiency. ACS Sustainable Chemistry and Engineering, 2021, 9, 9369-9375.	3.2	37
108	Boosting alkaline hydrogen electrooxidation on an unconventional fcc-Ru polycrystal. Journal of Energy Chemistry, 2021, 61, 15-22.	7.1	36

#	Article	IF	CITATIONS
109	Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions. Ultramicroscopy, 2014, 140, 26-31.	0.8	35
110	Pyranoid-O-dominated graphene-like nanocarbon for two-electron oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 307, 121173.	10.8	34
111	Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction. Chinese Journal of Catalysis, 2019, 40, 1867-1873.	6.9	33
112	Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to <i>in situ</i> XAFS characterization. Nanoscale, 2019, 11, 20301-20306.	2.8	33
113	Effectively suppressing lithium dendrite growth <i>via</i> an es-LiSPCE single-ion conducting nano fiber membrane. Journal of Materials Chemistry A, 2020, 8, 2518-2528.	5.2	33
114	The Effect of Plant Growth Regulators and Sucrose on the Micropropagation and Microtuberization of Dioscorea nipponica Makino. Journal of Plant Growth Regulation, 2007, 26, 38-45.	2.8	32
115	Acid promoted Ni/NiO monolithic electrode for overall water splitting in alkaline medium. Science China Materials, 2017, 60, 918-928.	3.5	32
116	Ultrafine molybdenum carbide nanoparticles supported on nitrogen doped carbon nanosheets for hydrogen evolution reaction. Chinese Chemical Letters, 2019, 30, 192-196.	4.8	32
117	Carbon-enriched SiOC ceramics with hierarchical porous structure as anodes for lithium storage. Electrochimica Acta, 2021, 372, 137899.	2.6	32
118	Synergistic regulation of nickel doping/hierarchical structure in cobalt sulfide for high performance zinc-air battery. Applied Catalysis B: Environmental, 2021, 298, 120539.	10.8	31
119	Glucose-derived carbon sphere supported CoP as efficient and stable electrocatalysts for hydrogen evolution reaction. Journal of Energy Chemistry, 2017, 26, 1147-1152.	7.1	30
120	Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage. Journal of Energy Chemistry, 2020, 47, 188-195.	7.1	30
121	Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation. Nano Research, 2022, 15, 3927-3932.	5.8	30
122	Various Structured Molybdenum-based Nanomaterials as Advanced Anode Materials for Lithium ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 12366-12372.	4.0	29
123	Multiple Active Sites Carbonaceous Anodes for Na ⁺ Storage: Synthesis, Electrochemical Properties and Reaction Mechanism Analysis. Advanced Functional Materials, 2021, 31, 2007247.	7.8	29
124	Rational Design and Engineering of Nanomaterials Derived from Prussian Blue and Its Analogs for Electrochemical Water Splitting. Chemistry - an Asian Journal, 2020, 15, 958-972.	1.7	28
125	Surface engineering of PdFe ordered intermetallics for efficient oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 408, 127297.	6.6	27
126	Synthesis of highly stable and methanol-tolerant electrocatalyst for oxygen reduction: Co supporting on N-doped-C hybridized TiO2. Electrochimica Acta, 2015, 180, 564-573.	2.6	26

#	Article	IF	CITATIONS
127	Ultralow content of Pt on Pd–Co–Cu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction. Nano Energy, 2016, 27, 475-481.	8.2	26
128	Phase conversion of Pt3Ni2/C from disordered alloy to ordered intermetallic with strained lattice for oxygen reduction reaction. Electrochimica Acta, 2018, 283, 1253-1260.	2.6	26
129	A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes. Sustainable Energy and Fuels, 2017, 1, 823-831.	2.5	24
130	Molybdenum carbides embedded on carbon nanotubes for efficient hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2017, 801, 7-13.	1.9	23
131	Controlling the Valenceâ€Electron Arrangement of Nickel Active Centers for Efficient Hydrogen Oxidation Electrocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
132	Pt skin on Pd–Co–Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. Nanoscale, 2016, 8, 14793-14802.	2.8	22
133	A Lowâ€Temperature Carbon Encapsulation Strategy for Stable and Poisoningâ€Tolerant Electrocatalysts. Small Methods, 2021, 5, e2100937.	4.6	22
134	Highly dispersed Co atoms anchored in porous nitrogen-doped carbon for acidic H2O2 electrosynthesis. Chemical Engineering Journal, 2022, 438, 135619.	6.6	21
135	Optimizing Formic Acid Electro-oxidation Performance by Restricting the Continuous Pd Sites in Pd–Sn Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12239-12247.	3.2	20
136	Semi-interpenetrating polymer networks toward sulfonated poly(ether ether ketone) membranes for high concentration direct methanol fuel cell. Chinese Chemical Letters, 2019, 30, 299-304.	4.8	19
137	Coupling Co–N–C with MXenes Yields Highly Efficient Catalysts for H ₂ O ₂ Production in Acidic Media. ACS Applied Materials & Interfaces, 2022, 14, 11350-11358.	4.0	19
138	Nb2CT MXenes functionalized Coâ^'NC enhancing electrochemical H2O2 production for organics degradation. Applied Catalysis B: Environmental, 2022, 317, 121737.	10.8	19
139	Engineering Ir Atomic Configuration for Switching the Pathway of Formic Acid Electrooxidation Reaction. Advanced Functional Materials, 2022, 32, 2107672.	7.8	18
140	Corrosion-assisted large-scale production of hierarchical iron rusts/Ni(OH)2 nanosheet-on-microsphere arrays for efficient electrocatalysis. Electrochimica Acta, 2020, 353, 136478.	2.6	17
141	A self-supported heterogeneous bimetallic phosphide array electrode enables efficient hydrogen evolution from saline water splitting. Nano Research, 2023, 16, 3658-3664.	5.8	17
142	Oxides overlayer confined Ni3Sn2 alloy enable enhanced lithium storage performance. Journal of Power Sources, 2019, 441, 227185.	4.0	15
143	Regulated iron corrosion towards fabricating large-area self-supporting electrodes for efficient oxygen evolution reaction. Journal of Materials Chemistry A, 0, , .	5.2	14
144	Hyperporous arbon‣upported Nonprecious Metal Electrocatalysts for the Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2018, 13, 2671-2676.	1.7	13

#	Article	IF	CITATIONS
145	Enhanced electrocatalytic activity and stability of Pd ₃ V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 20966-20972.	5.2	12
146	Engineering Location and Supports of Atomically Ordered <i>L1₀</i> â€₽dFe Intermetallics for Ultraâ€Anticorrosion Electrocatalysis. Advanced Functional Materials, 2022, 32, .	7.8	11
147	Revealing the complex lithiation pathways and kinetics of core-shell NiO@CuO electrode. Energy Storage Materials, 2022, 51, 11-18.	9.5	11
148	A Mechanistic Differential Electrochemical Mass Spectrometry (DEMS) and in situ Fourier Transform Infrared Investigation of Dimethoxymethane Electro-Oxidation at Platinum. Journal of Physical Chemistry C, 2011, 115, 13293-13302.	1.5	8
149	Facile synthesis of sub-monolayer Sn, Ru, and RuSn decorated Pt/C nanoparticles for formaldehyde electrooxidation. Journal of Electroanalytical Chemistry, 2014, 712, 55-61.	1.9	8
150	Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 149-164.	2.2	8
151	Tuning the hydrogen and hydroxyl adsorption on Ru nanoparticles for hydrogen electrode reactions via size controlling. Chinese Chemical Letters, 2023, 34, 107622.	4.8	7
152	Quantitative Property–Activity Relationship of PtRu/C Catalysts for Methanol Oxidation. ChemPhysChem, 2008, 9, 1986-1988.	1.0	6
153	Engineering titanium oxide-based support for electrocatalysis. Journal of Energy Chemistry, 2022, 67, 168-183.	7.1	6
154	Oxygen Reduction: Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 _O â€PtZn Fuel Cell Cathode (Adv. Energy Mater. 29/2020). Advanced Energy Materials, 2020, 10, 2070124.	10.2	5
155	Semi-Interpenetrating Polymer Network Membranes from SPEEK and BPPO for High Concentration DMFC. ACS Applied Energy Materials, 0, , .	2.5	4
156	Two-Dimensional Wrinkled N-Rich Carbon Nanosheets Fabricated from Chitin via Fast Pyrolysis as Optimized Electrocatalyst. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
157	Correction to Porous Structured Ni–Fe–P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 3152-3152.	4.0	3
158	Controlling the Valenceâ€Electron Arrangement of Nickel Active Centers for Efficient Hydrogen Oxidation Electrocatalysis. Angewandte Chemie, 0, , .	1.6	1
159	HPW/MCM-41 Mesoporous Silica Composites as Novel Proton Exchange Membranes for Elevated Temperature Fuel Cells. ECS Transactions, 2009, 25, 1927-1933.	0.3	0
160	High Temperature Ceramic Proton Exchange Membranes for Direct Methanol Fuel Cells. ECS Transactions, 2010, 26, 269-277.	0.3	0
161	用䰎é",离å电æ±çš"ä,ç©°æ—æœ°éžé‡'属纳米ææ−™çš"ç"ç©¶èչ›å±•. Scientia Sinica Chimica, 2014, 44	, 13 <u>b</u> 321324	4. o