Larisa Somova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8149761/publications.pdf Version: 2024-02-01

LADISA SOMOVA

#	Article	IF	CITATIONS
1	Fucoidan Extracted from Fucus evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia. Marine Drugs, 2014, 12, 886-898.	2.2	29
2	APOPTOSIS AND INFECTIOUS DISEASES. Russian Journal of Infection and Immunity, 2015, 4, 303-318.	0.2	10
3	Metabolic Activity of Macrophages Infected with Hantavirus, an Agent of Hemorrhagic Fever with Renal Syndrome. Biochemistry (Moscow), 2005, 70, 990-997.	0.7	7
4	Effect of temperature on synthesis of polyphosphates in Yersinia pseudotuberculosis and Listeria monocytogenes under starvation conditions. Biochemistry (Moscow), 2006, 71, 437-440.	0.7	7
5	Clinical and morphological manifestations of immune system dysfunction in new coronavirus infection (COVID-19). Clinical and Experimental Morphology, 2021, 10, 11-20.	0.1	6
6	Pseudotuberculosis as persistent infection: etiopathogenetic preconditions. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2019, , 110-119.	0.3	6
7	Changes in the metabolic activity of macrophages under the influence of tick-borne encephalitis virus. Biochemistry (Moscow), 2007, 72, 199-207.	0.7	5
8	NO-producing activity of macrophages infected with tick-borne encephalitis virus. Bulletin of Experimental Biology and Medicine, 2008, 145, 344-347.	0.3	5
9	Neutrophil Apoptosis Induction by Tick-Borne Encephalitis Virus. Bulletin of Experimental Biology and Medicine, 2012, 153, 105-108.	0.3	5
10	Pathogenetic Role of Yersinia pseudotuberculosis Endotoxin in Hemostasis and Microcirculation Disturbances. Bulletin of Experimental Biology and Medicine, 2011, 150, 619-623.	0.3	4
11	Antiviral activity and pathogenetic targets for seaweed sulfated polysaccharides in herpesvirus infections. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2016, 10, 31-42.	0.2	4
12	Molecular and Genetic Characteristics of Cell Death in Prokaryotes. Molecular Genetics, Microbiology and Virology, 2018, 33, 73-83.	0.0	4
13	Morphological Validation of Hydroxyethylstarch Use during the Acute Period of Severe Brain Injury. Bulletin of Experimental Biology and Medicine, 2013, 155, 403-407.	0.3	3
14	Experimental evaluation of the effectiveness of wound dressings based on biologically active substances from marine hydrobionts. Russian Journal of Marine Biology, 2016, 42, 427-432.	0.2	3
15	STRATEGY OF PROGRAMMED CELL DEATH IN PROKARYOTES. Russian Journal of Infection and Immunity, 2015, 5, 15-26.	0.2	3
16	Inflammation induced by different plasmid types of russian Yersinia pseudotuberculosis strains. Russian Journal of Infection and Immunity, 2019, 9, 369-374.	0.2	3
17	PLASMID-ASSOCIATED VIRULENCE OF YERSINIA PSEUDOTUBERCULOSIS AND INFECTIOUS PROCESS. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2016, , 74-85.	0.3	3
18	Biochemical markers of virus cytopathogenicity in macrophages. Applied Biochemistry and Microbiology, 2013, 49, 64-72.	0.3	2

LARISA SOMOVA

#	Article	IF	CITATIONS
19	Effects of Immunomodulators on Functional Activity of Innate Immunity Cells Infected with Streptococcus pneumoniae. Bulletin of Experimental Biology and Medicine, 2015, 158, 461-464.	0.3	2
20	Granulomatous inflammation as a factor contributing to the persistence of the pathogen associated with Yersinia pseudotuberculosis infection. Clinical and Experimental Morphology, 2020, 9, 5-10.	0.1	2
21	The entry of the Picornaviridae virus family in resident macrophages. Cell and Tissue Biology, 2008, 2, 311-321.	0.2	1
22	Pathomorphosis of Experimental Infection in Mice, Infected by Streptococcus Pneumoniae, under the Effect of Immunotropic Drugs. Bulletin of Experimental Biology and Medicine, 2013, 155, 477-483.	0.3	1
23	Effect of Thermolabile Toxin from Yersinia pseudotuberculosis on Functions of Innate Immunity Cells. Bulletin of Experimental Biology and Medicine, 2014, 157, 483-487.	0.3	1
24	Morphogenesis of Experimental Infection Caused by Plasmid Variants of Yersinia pseudotuberculosis. Bulletin of Experimental Biology and Medicine, 2016, 162, 264-268.	0.3	1
25	Ultrastructural Changes of Bacteria in Static Cultures of Yersinia pseudotuberculosis under Long Storage under Conditions of Low Temperature. Bulletin of Experimental Biology and Medicine, 2020, 170, 223-225.	0.3	1
26	Pathogenetic Value of pVM82 Plasmid of Yersinia Pseudotuberculosis, Causative Agent of Far Eastern Scarlet-Like Fever. Molecular Genetics, Microbiology and Virology, 2020, 35, 243-247.	0.0	1
27	PSEUDOTUBERCULOSIS: PATHOGENETIC VALUE OF INNATE IMMUNITY CELLS. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2017, , 78-90.	0.3	1
28	THE FUNCTIONAL ACTIVITY OF INNATE IMMUNITY CELLS IN BACTERIAL INFECTION ON BACKGROUND OF THERMAL STRESS. Russian Journal of Infection and Immunity, 2018, 8, 43-53.	0.2	1
29	Heteromorphism of Persistence of Sapronosis Causative Agents in Cells in Various Environmental Conditions. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2020, , 62-71.	0.3	1
30	Skin Morphology at the Site of Postoperative Cicatrix Formed after the Use of Different Surgical Cutting Instruments. Bulletin of Experimental Biology and Medicine, 2008, 146, 820-822.	0.3	0
31	Metabolism of innate immune cells in bacterial infections. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2014, 8, 155-163.	0.2	0
32	Structural modifications of macrophages initiated by tick-borne encephalitis virus. Cell and Tissue Biology, 2017, 11, 275-285.	0.2	0
33	MORPHOLOGIC CONDITION OF THE LIVER IN NEWBORNS WITH INBORN CYTOMEGALOVIRUS INFECTION. Bulletin Physiology and Pathology of Respiration, 2018, 1, 60-63.	0.0	0
34	PATHOMORPHOLOGIC CHARACTERISTIC OF BRONCHOPULMONARY SYSTEM IN THE DIED NEWBORNS WITH THE INBORN CYTOMEGALOVIRUS INFECTION. Bulletin Physiology and Pathology of Respiration, 2018, 1, 63-67.	0.0	0
35	MORPHOLOGICAL STRUCTURE OF ADRENAL CORTEX IN FULL-TERM NEWBORNS WITH CONGENITAL CYTOMEGALOVIRUS INFECTION. Bulletin Physiology and Pathology of Respiration, 2018, 1, 70-73.	0.0	0
36	MORPHOLOGICAL STRUCTURE OF THE THYMUS IN NEWBORNS WITH CONGENITAL CYTOMEGALOVIRUS INFECTION. Bulletin Physiology and Pathology of Respiration, 2018, 1, 64-69.	0.0	0

#	Article	IF	CITATIONS
37	ECHOSTRUCTURE AND PATHOMORPHOLOGICAL CHARACTERISTICS OF THE CEREBROSPINAL FLUID SPACE OF THE BRAIN IN NEWBORNS WITH CONGENITAL CYTOMEGALOVIRUS INFECTION. Bulletin Physiology and Pathology of Respiration, 2019, 1, 94-99.	0.0	0
38	Heteromorphism of Persistence of Sapronosis Causative Agents in Cells in Various Environmental Conditions. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2020, 97, 62-71.	0.3	0
39	Pathomorphology of experimental infection caused by dormant <i>Yersinia pseudotuberculosis</i> strains. Russian Journal of Infection and Immunity, 2022, 12, 69-77.	0.2	0
40	Ultrastructure and Morphological Variability of Non-Culturable Forms of Yersinia pseudotuberculosis Bacteria. Bulletin of Experimental Biology and Medicine, 2022, , 1.	0.3	0