
Zhaorong Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/814954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bubble-template-assisted synthesis of hollow fullerene-like MoS ₂ nanocages as a lithium ion battery anode material. Journal of Materials Chemistry A, 2016, 4, 51-58.	10.3	344
2	Powder exfoliated MoS ₂ nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes. Nanoscale, 2019, 11, 1887-1900.	5.6	93
3	Selective Preparation of 1T- and 2H-Phase MoS ₂ Nanosheets with Abundant Monolayer Structure and Their Applications in Energy Storage Devices. ACS Applied Energy Materials, 2020, 3, 998-1009.	5.1	50
4	Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by enlarging crystal cell from a nanoplate precursor. Journal of Power Sources, 2016, 307, 665-672.	7.8	48
5	A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions. Journal of Power Sources, 2015, 282, 158-168.	7.8	47
6	Synthesis and characterization of high-density non-spherical Ni(OH)2 cathode material for Ni–MH batteries. International Journal of Hydrogen Energy, 2010, 35, 9716-9724.	7.1	46
7	Synthesis, characterization and electrochemical performance of high-density aluminum substituted α-nickel hydroxide cathode material for nickel-based rechargeable batteries. Journal of Power Sources, 2014, 270, 121-130.	7.8	46
8	The synthesis of Li(Ni1/3Co1/3Mn1/3)O2 using eutectic mixed lithium salt LiNO3–LiOH. Electrochimica Acta, 2009, 54, 6529-6535.	5.2	44
9	Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH)2 as cathode materials for Ni–metal hydride batteries. Journal of Power Sources, 2011, 196, 7797-7805.	7.8	42
10	Facile synthesis of LiAl0.1Mn1.9O4 as cathode material for lithium ion batteries: towards rate and cycling capabilities at an elevated temperature. Electrochimica Acta, 2014, 134, 338-346.	5.2	40
11	Facile and Nonradiation Pretreated Membrane as a High Conductive Separator for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20184-20189.	8.0	39
12	Electrochemical performance of solid sphere spinel LiMn2O4 with high tap density synthesized by porous spherical Mn3O4. Electrochimica Acta, 2014, 123, 254-259.	5.2	38
13	Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method. Electrochimica Acta, 2008, 53, 5927-5933.	5.2	37
14	Synthesis of γ-CoOOH and its effects on the positive electrodes of nickel batteries. International Journal of Hydrogen Energy, 2009, 34, 2435-2439.	7.1	34
15	Low-temperature synthesis of LiMnPO 4 /RGO cathode material with excellent voltage platform and cycle performance. Electrochimica Acta, 2017, 225, 272-282.	5.2	34
16	Synthesis of novel spherical Fe3O4@Ni3S2 composite as improved anode material for rechargeable nickel-iron batteries. Electrochimica Acta, 2017, 240, 456-465.	5.2	33
17	Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping. Electrochimica Acta, 2019, 319, 587-595.	5.2	32
18	Preparation of oxygen-deficient WO3- nanosheets and their characterization as anode materials for high-performance Li-ion batteries. Electrochimica Acta, 2019, 298, 640-649.	5.2	32

ZHAORONG CHANG

T

#	Article	IF	CITATIONS
19	Surface modification of spherical nickel hydroxide for nickel electrodes. Electrochemistry Communications, 1999, 1, 513-516.	4.7	31
20	Facile fabrication of LiMn2O4 microspheres from multi-shell MnO2 for high-performance lithium-ion batteries. Materials Letters, 2014, 135, 75-78.	2.6	28
21	Glucose-Assisted Synthesis of Highly Dispersed LiMnPO 4 Nanoparticles at a Low Temperature for Lithium Ion Batteries. Electrochimica Acta, 2016, 189, 205-214.	5.2	28
22	Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO4)2O2F@C as high performance cathode for sodium & lithium-ion batteries. Science China Materials, 2019, 62, 474-486.	6.3	28
23	Effects of different methods of cobalt addition on the performance of nickel electrodes. Journal of Power Sources, 1999, 77, 69-73.	7.8	26
24	Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries. Journal of Alloys and Compounds, 2015, 632, 222-228.	5.5	25
25	Glucose assisted synthesis of hollow spindle LiMnPO 4 /C nanocomposites for high performance Li-ion batteries. Electrochimica Acta, 2015, 178, 420-428.	5.2	24
26	Novel Application of Repaired LiFePO ₄ as a Candidate Anode Material for Advanced Alkaline Rechargeable Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 13312-13323.	6.7	24
27	Carbon gel assisted low temperature liquid-phase synthesis of C-LiFePO4/graphene layers with high rate and cycle performances. Journal of Power Sources, 2015, 295, 131-138.	7.8	21
28	Effects of precursor treatment on the structure and electrochemical properties of spinel LiMn2O4 cathode. Journal of Alloys and Compounds, 2013, 566, 16-21.	5.5	20
29	Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Materials Chemistry and Physics, 2016, 171, 137-144.	4.0	20
30	Synthesis of NiS coated Fe3O4 nanoparticles as high-performance positive materials for alkaline nickel-iron rechargeable batteries. International Journal of Hydrogen Energy, 2017, 42, 24939-24947.	7.1	20
31	Effects of precursor treatment with reductant or oxidant on the structure and electrochemical properties of LiNi0.5Mn1.5O4. Electrochimica Acta, 2010, 55, 5506-5510.	5.2	19
32	Regulation of the discharge reservoir of negative electrodes in Ni–MH batteries by using Ni(OH) (x=) Tj ETQc	0 0 0 ggBT	/Overlock 10
33	Influence of preparation conditions of spherical nickel hydroxide on its electrochemical properties. Journal of Power Sources, 1998, 74, 252-254.	7.8	18
34	Effects of γ-CoOOH coating on the high-temperature and high-rate performances of spherical nickel hydroxide electrodes. International Journal of Hydrogen Energy, 2014, 39, 3895-3903.	7.1	18
35	Enhancement of the high-temperature performance of advanced nickel–metal hydride batteries with NaOH electrolyte containing NaBO2. International Journal of Hydrogen Energy, 2013, 38, 10616-10624.	7.1	16
36	Synthesis of high-purity LiMn2O4 with enhanced electrical properties from electrolytic manganese dioxide treated by sulfuric acid-assisted hydrothermal method. Journal of Solid State Electrochemistry, 2013, 17, 2849-2856.	2.5	15

ZHAORONG CHANG

#	Article	IF	CITATIONS
37	Calcium metaborate as a cathode additive to improve the high-temperature properties of nickel hydroxide electrodes for nickel–metal hydride batteries. Journal of Power Sources, 2014, 263, 110-117.	7.8	15
38	Enhanced electrochemical performance of high-density Al-substituted α-nickel hydroxide by a novel anion exchange method using NaCl solution. International Journal of Hydrogen Energy, 2015, 40, 1852-1858.	7.1	15
39	Synthesis of CoO/Reduced Graphene Oxide Composite as an Alternative Additive for the Nickel Electrode in Alkaline Secondary Batteries. Electrochimica Acta, 2015, 180, 373-381.	5.2	15
40	Li-rich layered Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ derivedÂfrom transition metal carbonate with a micro–nanostructure as a cathode material for high-performance Li-ion batteries. RSC Advances, 2016, 6, 96714-96720.	3.6	15
41	Preparation of Li(Ni1/3Co1/3Mn1/3)O2 by spherical Ni1/3Mn1/3Co1/3OOH at a low temperature. Journal of Power Sources, 2008, 185, 1408-1414.	7.8	14
42	Sodium tungstate as electrolyte additive to improve high-temperature performance of nickel–metal hydride batteries. International Journal of Hydrogen Energy, 2013, 38, 5133-5138.	7.1	14
43	Effects of different electrolytes containing Na2WO4 on the electrochemical performance of nickel hydroxide electrodes for nickel–metal hydride batteries. International Journal of Hydrogen Energy, 2014, 39, 3412-3422.	7.1	14
44	Synthesis and properties of LiMn2O4 from hydrazine hydrate reduced electrolytic manganese dioxide. Solid State Ionics, 2013, 237, 34-39.	2.7	13
45	<i>In situ</i> synthesis of open hollow tubular MnO/C with high performance anode materials for lithium ion batteries using kapok fiber as carbon matrix. Nanotechnology, 2019, 30, 015403.	2.6	12
46	Highly [010]-oriented self-assembled LiCoPO4/C nanoflakes as high-performance cathode for lithium ion batteries. Nano Research, 2018, 11, 2424-2435.	10.4	11
47	Tin-based materials supported on nitrogen-doped reduced graphene oxide towards their application in lithium-ion batteries. RSC Advances, 2017, 7, 53126-53134.	3.6	10
48	Environmentally compatible synthesis of LiMnPO4/RGO using pure water system. Solid State Ionics, 2019, 337, 115-121.	2.7	10
49	Novel application of CoAl-layered double hydroxide/reduced graphene oxide nanocomposite as a highly efficient cathode additive for nickel-based secondary batteries. Electrochimica Acta, 2020, 330, 135242.	5.2	10
50	A facile and scalable self-assembly strategy to prepare two-dimensional nanoplates: a precursor for a Li-rich layered cathode material Li1.2Mn0.54Ni0.13Co0.13O2 with high capacity and rate performance. Electrochimica Acta, 2017, 235, 632-639.	5.2	7
51	Optimization of Synthesis Conditions for LiFePO ₄ /C Nanocomposites by Dimethyl Sulfoxide Assisted Solution-Phase Method. Journal of the Electrochemical Society, 2012, 159, A331-A335.	2.9	6
52	Enhancing the High-Temperature and High-Rate Properties of Nickel Hydroxide Electrode for Nickel-Based Secondary Batteries by Using Nanoscale Ca(OH)2 and γ-CoOOH. Journal of the Electrochemical Society, 2019, 166, A1836-A1843.	2.9	6
53	Uniform carbon coating drastically enhances the electrochemical performance of a Fe3O4 electrode for alkaline nickel–iron rechargeable batteries. International Journal of Hydrogen Energy, 2019, 44, 24895-24904.	7.1	5
54	Study on the in situ sulfidation and electrochemical performance of spherical nickel hydroxide. International Journal of Hydrogen Energy, 2021, 46, 30079-30089.	7.1	5

#	Article	IF	CITATIONS
55	High Rate Performance of Surface Metalized Spherical Nickel Hydroxide via in situ Chemical Reduction. Electrochimica Acta, 2016, 207, 28-36.	5.2	3