Jing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/814943/publications.pdf

Version: 2024-02-01

361045 253896 1,935 48 20 43 h-index citations g-index papers 48 48 48 3055 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12080-12087.	5.2	210
2	Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700414.	10.2	190
3	Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. ChemSusChem, 2016, 9, 3288-3297.	3.6	178
4	Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy, 2017, 35, 223-232.	8.2	162
5	Water Vapor Treatment of Low-Temperature Deposited SnO ₂ Electron Selective Layers for Efficient Flexible Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2118-2124.	8.8	161
6	Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs. ACS Photonics, 2016, 3, 215-222.	3.2	159
7	Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment. Nanoscale, 2018, 10, 592-602.	2.8	66
8	PIN Diodes Array Made of Perovskite Single Crystal for Xâ€Ray Imaging. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800380.	1.2	63
9	A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport. RSC Advances, 2017, 7, 43366-43372.	1.7	59
10	Solution-Processed Halide Perovskite Single Crystals with Intrinsic Compositional Gradients for X-ray Detection. Chemistry of Materials, 2020, 32, 4973-4983.	3.2	59
11	Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles. Optics Express, 2016, 24, A33.	1.7	55
12	A highly efficient white quantum dot light-emitting diode employing magnesium doped zinc oxide as the electron transport layer based on bilayered quantum dot layers. Journal of Materials Chemistry C, 2018, 6, 8099-8104.	2.7	47
13	Interfacial Energy-Level Alignment for High-Performance All-Inorganic Perovskite CsPbBr ₃ Quantum Dot-Based Inverted Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13236-13243.	4.0	44
14	Flexible quantum dot light emitting diodes based on ZnO nanoparticles. RSC Advances, 2015, 5, 82192-82198.	1.7	41
15	High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering. Optics Express, 2016, 24, 25955.	1.7	37
16	Multiple Cations Enhanced Defect Passivation of Blue Perovskite Quantum Dots Enabling Efficient Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2001494.	3.6	30
17	Ultrafast Ionizing Radiation Detection by p–n Junctions Made with Single Crystals of Solutionâ€Processed Perovskite. Advanced Electronic Materials, 2018, 4, 1800237.	2.6	29
18	A highly sensitive and fast graphene nanoribbon/CsPbBr ₃ quantum dot phototransistor with enhanced vertical metal oxide heterostructures. Nanoscale, 2018, 10, 10182-10189.	2.8	28

#	Article	IF	Citations
19	High-Performance Photodetector Based on a Graphene Quantum Dot/CH ₃ NH ₃ Pbl ₃ Perovskite Hybrid. ACS Applied Electronic Materials, 2020, 2, 230-237.	2.0	28
20	Enhanced Photoluminescence Property for Quantum Dot-Gold Nanoparticle Hybrid. Nanoscale Research Letters, 2015, 10, 400.	3.1	21
21	Synergistic effects of charge transport engineering and passivation enabling efficient inverted perovskite quantum-dot light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 5572-5579.	2.7	21
22	Graphene nanomesh photodetector with effective charge tunnelling from quantum dots. Nanoscale, 2015, 7, 4242-4249.	2.8	18
23	Electrically Modulated Near-Infrared/Visible Light Dual-Mode Perovskite Photodetectors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 25824-25833.	4.0	18
24	Low-noise X-ray PIN photodiodes made of perovskite single crystals by solution-processed dopant incorporated epitaxial growth. Nano Energy, 2021, 89, 106311.	8.2	17
25	High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays. AIP Advances, 2017, 7, .	0.6	16
26	Theoretical Study of Fluorescence Spectroscopy of Quantum Emitters Coupled with Plasmonic Dimers and Trimers. Journal of Physical Chemistry C, 2019, 123, 17483-17490.	1.5	13
27	High sensitive solar blind phototransistor based on ZnO nanorods/IGZO heterostructure annealed by laser. Materials Letters, 2018, 228, 451-455.	1.3	12
28	Tailoring Nanostructures of Quantum Dots toward Efficient and Stable All-Solution Processed Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Emp; Interfaces, 2021, 13, 17861-17868.	4.0	12
29	Enhanced Performance of Perovskite Single-Crystal Photodiodes by Epitaxial Hole Blocking Layer. Frontiers in Chemistry, 2020, 8, 791.	1.8	11
30	Solution-Processed Epitaxial Growth of MAPbI3 Single-Crystal Films for Highly Stable Photodetectors. Frontiers in Materials, 2021, 8, .	1.2	11
31	Surface passivation by congeneric quantum dots for high-performance and stable CsPbBr3-based photodetectors. Journal of Materials Chemistry C, 2021, 9, 10089-10100.	2.7	11
32	A Synergetic Codoping Strategy Enabling Performance Improvement of Pureâ€Blue Perovskite Quantum Dots Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	11
33	Photodiodes based on a MAPbBr ₃ /Bi ³⁺ -doped MAPbCl ₃ single crystals heterojunction for the X-ray detection. CrystEngComm, 2021, 23, 4954-4962.	1.3	10
34	Stable field emission lamps based on well-aligned BaO nanowires. RSC Advances, 2014, 4, 22246.	1.7	9
35	Stable electron field emission from carbon nanotubes emitter transferred on graphene films. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 72, 84-88.	1.3	9
36	Flexible Field Emission Devices Based on Barium Oxide Nanowires. Journal of Display Technology, 2016, 12, 466-471.	1.3	9

#	Article	IF	CITATIONS
37	Performance Enhancement of All-Inorganic Quantum Dot Light-Emitting Diodes via Surface Modification of Nickel Oxide Nanoparticles Hole Transport Layer. ACS Applied Electronic Materials, 2019, 1, 2096-2102.	2.0	9
38	High Spectralâ€Rejectionâ€Ratio Narrowband Photodetectors Based on Perovskite Heterojunctions. Advanced Electronic Materials, 2022, 8, .	2.6	9
39	lon Migrations in Lead Halide Perovskite Single Crystals with Different Halide Components. Physica Status Solidi (B): Basic Research, 2020, 257, 1900784.	0.7	8
40	Energy Down-Conversion Cs3Cu2Cl5 Nanocrystals for Boosting the Efficiency of UV Photodetector. Frontiers in Materials, 2021, 8 , .	1.2	8
41	Enhanced Electrical Efficiency of Quantum Dot Based LEDs with TiO2 as the Electron Transport Layer Fabricated Under the Optimized Annealing-Time Conditions. Journal of Nanoscience and Nanotechnology, 2012, 12, 7879-7884.	0.9	6
42	Organometallic perovskite single crystals grown on lattice-matched substrate for photodetection. Nano Materials Science, 2020, 2, 292-296.	3.9	5
43	Double-type-I charge-injection heterostructure for quantum-dot light-emitting diodes. Materials Horizons, 2022, 9, 2147-2159.	6.4	5
44	Highly Stable Inverted CdSe/ZnS-Based Light-Emitting Diodes by Nonvacuum Technique ZTO as the Electron-Transport Layer. Electronics (Switzerland), 2021, 10, 2290.	1.8	4
45	Solution-Processed Vertical Field-Effect Transistor with Separated Charge Generation and Charge Transport Layers for High-Performance Near-Infrared Photodetection. ACS Applied Electronic Materials, 2020, 2, 3871-3879.	2.0	3
46	Dual-Facets Emissive Quantum-Dot Light-Emitting Diode Based on AZO Electrode. Materials, 2022, 15, 740.	1.3	2
47	Solution-processed MAPbl ₃ /Cs ₂ AgBiBr ₆ heterostructure through epitaxial growth for broadband photo-detection. APL Materials, 2022, 10, 041101.	2.2	1
48	Pumped Stimulated Vertical Cavity Surface Emitting Laser by Solution-processed Method., 2019,,.		0