
Maha Ayyoub

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8149282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combining Nivolumab and Ipilimumab with Infliximab or Certolizumab in Patients with Advanced Melanoma: First Results of a Phase Ib Clinical Trial. Clinical Cancer Research, 2021, 27, 1037-1047.	3.2	55
2	Phased differentiation of γδT and T CD8 tumor-infiltrating lymphocytes revealed by single-cell transcriptomics of human cancers. Oncolmmunology, 2021, 10, 1939518.	2.1	11
3	Radiotherapy in the Era of ImmunotherapyÂWith a Focus on Non-Small-Cell Lung Cancer: Time to Revisit Ancient Dogmas?. Frontiers in Oncology, 2021, 11, 662236.	1.3	19
4	PD-1 blockade restores helper activity of tumor-infiltrating, exhausted PD-1hiCD39+ CD4 T cells. JCI Insight, 2021, 6, .	2.3	64
5	Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity, 2020, 53, 824-839.e10.	6.6	85
6	Colon-specific immune microenvironment regulates cancer progression versus rejection. Oncolmmunology, 2020, 9, 1790125.	2.1	17
7	Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage. Science, 2020, 369, 936-942.	6.0	217
8	Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets. NAR Genomics and Bioinformatics, 2020, 2, Iqaa025.	1.5	13
9	Circulating CD14 ^{high} CD16 ^{low} intermediate blood monocytes as a biomarker of ascites immune status and ovarian cancer progression. , 2020, 8, e000472.		17
10	Preclinical and Clinical Immunotherapeutic Strategies in Epithelial Ovarian Cancer. Cancers, 2020, 12, 1761.	1.7	8
11	Dual Relief of T-lymphocyte Proliferation and Effector Function Underlies Response to PD-1 Blockade in Epithelial Malignancies. Cancer Immunology Research, 2020, 8, 869-882.	1.6	16
12	Anti-TNF, a magic bullet in cancer immunotherapy?. , 2019, 7, 303.		21
13	Microtubule-Driven Stress Granule Dynamics Regulate Inhibitory Immune Checkpoint Expression in T Cells. Cell Reports, 2019, 26, 94-107.e7.	2.9	42
14	Predictors of responses to immune checkpoint blockade in advanced melanoma. Nature Communications, 2017, 8, 592.	5.8	166
15	Immunological off-target effects of imatinib. Nature Reviews Clinical Oncology, 2016, 13, 431-446.	12.5	120
16	Microbiome and Anticancer Immunosurveillance. Cell, 2016, 165, 276-287.	13.5	366
17	Prospective strategies to combine conventional, targeted and immunotherapies in non-small cell lung cancer. Oncolmmunology, 2016, 5, e947175.	2.1	1
18	Immunophenotyping of Stage III Melanoma Reveals Parameters Associated with Patient Prognosis. Journal of Investigative Dermatology, 2016, 136, 994-1001.	0.3	27

#	Article	IF	CITATIONS
19	Liens entre génétique et immunologie : mutations et antigènes. Bulletin De L'Academie Nationale De Medecine, 2016, 200, 67-79.	0.0	0
20	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	2.1	119
21	CD4+T helper cell responses to NY-ESO-1 tumor antigen in ovarian cancer resist perversion into immunosuppressive Tregs. Oncolmmunology, 2015, 4, e946370.	2.1	3
22	Differential expression of the immunosuppressive enzyme IL4I1 in human induced Aiolos ⁺ , but not natural Helios ⁺ , FOXP3 ⁺ Treg cells. European Journal of Immunology, 2015, 45, 474-479.	1.6	29
23	Modulation of Cytokine Secretion Allows CD4 T Cells Secreting IL-10 and IL-17 to Simultaneously Participate in Maintaining Tolerance and Immunity. PLoS ONE, 2015, 10, e0145788.	1.1	11
24	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
25	Regulation of CD4+NKG2D+ Th1 Cells in Patients with Metastatic Melanoma Treated with Sorafenib: Role of IL-15Rα and NKG2D Triggering. Cancer Research, 2014, 74, 68-80.	0.4	43
26	Assessment of MAGE-A Expression in Resected Non–Small Cell Lung Cancer in Relation to Clinicopathologic Features and Mutational Status of <i>EGFR</i> and <i>KRAS</i> . Cancer Immunology Research, 2014, 2, 943-948.	1.6	20
27	Comment on "Differentiation of IL-17–Producing Effector and Regulatory Human T Cells from Lineage-Committed Naive Precursors― Journal of Immunology, 2014, 193, 3181-3181.	0.4	1
28	Expression of MAGE-A3/6 in Primary Breast Cancer is Associated With Hormone Receptor Negative Status, High Histologic Grade, and Poor Survival. Journal of Immunotherapy, 2014, 37, 73-76.	1.2	35
29	Comment on "Helios+ and Heliosâ~' Cells Coexist within the Natural FOXP3+ T Regulatory Cell Subset in Humans― Journal of Immunology, 2013, 190, 4439-4440.	0.4	12
30	Human Memory Heliosâ´´ FOXP3+ Regulatory T Cells (Tregs) Encompass Induced Tregs That Express Aiolos and Respond to IL-1β by Downregulating Their Suppressor Functions. Journal of Immunology, 2013, 191, 4619-4627.	0.4	58
31	CD4+ T Effectors Specific for the Tumor Antigen NY-ESO-1 Are Highly Enriched at Ovarian Cancer Sites and Coexist with, but Are Distinct from, Tumor-Associated Treg. Cancer Immunology Research, 2013, 1, 303-308.	1.6	21
32	MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer. Haematologica, 2013, 98, 316-322.	1.7	7
33	CXCR3+ T Regulatory Cells Selectively Accumulate in Human Ovarian Carcinomas to Limit Type I Immunity. Cancer Research, 2012, 72, 4351-4360.	0.4	125
34	Human TH17 Immune Cells Specific for the Tumor Antigen MAGE-A3 Convert to IFN-γ–Secreting Cells as They Differentiate into Effector T Cells <i>In Vivo</i> . Cancer Research, 2012, 72, 1059-1063.	0.4	33
35	Generation of Th17 from human naive CD4+ T cells preferentially occurs from FOXP3+ Tregs upon costimulation via CD28 or CD5. Blood, 2012, 119, 4810-4812.	0.6	10
36	Ex Vivo IL-1 Receptor Type I Expression in Human CD4+ T Cells Identifies an Early Intermediate in the Differentiation of Th17 from FOXP3+ Naive Regulatory T Cells. Journal of Immunology, 2011, 187, 5196-5202.	0.4	31

#	Article	IF	CITATIONS
37	Antibody Responses to NY-ESO-1 in Primary Breast Cancer Identify a Subtype Target for Immunotherapy. PLoS ONE, 2011, 6, e21129.	1.1	20
38	NY-ESO-1-Specific Circulating CD4+ T Cells in Ovarian Cancer Patients Are Prevalently TH1 Type Cells Undetectable in the CD25+FOXP3+Treg Compartment. PLoS ONE, 2011, 6, e22845.	1.1	12
39	Expression of MAGE-A antigens is frequent in triple-negative breast cancers but does not correlate with that of basal-like markers. Annals of Oncology, 2011, 22, 986-987.	0.6	6
40	Human RORÎ ³ t ⁺ T _H 17 cells preferentially differentiate from naive FOXP3 ⁺ Treg in the presence of lineage-specific polarizing factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19402-19407.	3.3	135
41	Assessment of Vaccine-Induced CD4 T Cell Responses to the 119-143 Immunodominant Region of the Tumor-Specific Antigen NY-ESO-1 Using DRB1*0101 Tetramers. Clinical Cancer Research, 2010, 16, 4607-4615.	3.2	10
42	Monitoring of NY-ESO-1 specific CD4+ T cells using molecularly defined MHC class II/His-tag-peptide tetramers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7437-7442.	3.3	35
43	HLA Class l–Associated Immunodominance Affects CTL Responsiveness to an ESO Recombinant Protein Tumor Antigen Vaccine. Clinical Cancer Research, 2009, 15, 299-306.	3.2	18
44	Vaccination with Recombinant NY-ESO-1 Protein Elicits Immunodominant HLA-DR52b-restricted CD4+ T Cell Responses with a Conserved T Cell Receptor Repertoire. Clinical Cancer Research, 2009, 15, 4467-4474.	3.2	19
45	Human memory FOXP3 ⁺ Tregs secrete IL-17 ex vivo and constitutively express the T _H 17 lineage-specific transcription factor RORγt. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8635-8640.	3.3	282
46	IL-1β and IL-2 convert human Treg into TH17 cells. Clinical Immunology, 2009, 131, 298-307.	1.4	151
47	Efficacy of Levo-1-Methyl Tryptophan and Dextro-1-Methyl Tryptophan in Reversing Indoleamine-2,3-Dioxygenase–Mediated Arrest of T-Cell Proliferation in Human Epithelial Ovarian Cancer. Cancer Research, 2009, 69, 5498-5504.	0.4	140
48	Interleukin 2-mediated Conversion of Ovarian Cancer-associated CD4+ Regulatory T Cells Into Proinflammatory Interleukin 17-producing Helper T Cells. Journal of Immunotherapy, 2009, 32, 101-108.	1.2	58
49	Vaccination With a Recombinant Protein Encoding the Tumor-specific Antigen NY-ESO-1 Elicits an A2/157-165-specific CTL Repertoire Structurally Distinct and of Reduced Tumor Reactivity Than That Elicited by Spontaneous Immune Responses to NY-ESO-1-expressing Tumors. Journal of Immunotherapy, 2009. 32. 161-168.	1.2	20
50	Lentivector immunization induces tumor antigenâ€specific B and T cell responses <i>in vivo</i> . European Journal of Immunology, 2008, 38, 1867-1876.	1.6	22
51	Differential expression of CCR7 defines two distinct subsets of human memory CD4+CD25+ Tregs. Clinical Immunology, 2008, 126, 291-302.	1.4	46
52	Identification of tumor-associated antigens by large-scale analysis of genes expressed in human colorectal cancer. Cancer Immunity, 2008, 8, 11.	3.2	24
53	Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8947-8952.	3.3	275
54	Epitope clustering in regions undergoing efficient proteasomal processing defines immunodominant CTL regions of a tumor antigen. Clinical Immunology, 2007, 122, 163-172.	1.4	16

#	Article	IF	CITATIONS
55	Molecular and immunological evaluation of the expression of cancer/testis gene products in human colorectal cancer. Cancer Immunology, Immunotherapy, 2007, 56, 839-847.	2.0	28
56	Assessment of CD4+Â T cells specific for the tumor antigen SSX-1 in cancer-free individuals. Cancer Immunology, Immunotherapy, 2007, 56, 1183-1192.	2.0	8
57	Rapamycin-Mediated Enrichment of T Cells with Regulatory Activity in Stimulated CD4+ T Cell Cultures Is Not Due to the Selective Expansion of Naturally Occurring Regulatory T Cells but to the Induction of Regulatory Functions in Conventional CD4+ T Cells. Journal of Immunology, 2006, 177, 944-949.	0.4	175
58	A phenotype based approach for the immune monitoring of NY-ESO-1-specific CD4+ T cell responses in cancer patients. Clinical Immunology, 2006, 118, 188-194.	1.4	10
59	Processing of Tumor-Associated Antigen by the Proteasomes of Dendritic Cells Controls In vivo T-Cell Responses. Cancer Research, 2006, 66, 5461-5468.	0.4	60
60	Ex-Vivo Analysis of CD8+ T Cells Infiltrating Colorectal Tumors Identifies a Major Effector-Memory Subset with Low Perforin Content. Journal of Clinical Immunology, 2006, 26, 447-456.	2.0	31
61	Identification of two Melan-A CD4+ T cell epitopes presented by frequently expressed MHC class II alleles. Clinical Immunology, 2006, 121, 54-62.	1.4	19
62	Expression of Synovial Sarcoma X (SSX) Antigens in Epithelial Ovarian Cancer and Identification of SSX-4 Epitopes Recognized by CD4+ T Cells. Clinical Cancer Research, 2006, 12, 398-404.	3.2	32
63	Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14453-14458.	3.3	202
64	Distinct Structural TCR Repertoires in Naturally Occurring Versus Vaccine-Induced CD8+ T-Cell Responses to the Tumor-Specific Antigen NY-ESO-1. Journal of Immunotherapy, 2005, 28, 252-257.	1.2	56
65	CD4+ T Cell Responses to SSX-4 in Melanoma Patients. Journal of Immunology, 2005, 174, 5092-5099.	0.4	20
66	Distinct but overlapping T helper epitopes in the 37–58 region of SSX-2. Clinical Immunology, 2005, 114, 70-78.	1.4	17
67	Identification of B cell epitopes recognized by antibodies specific for the tumor antigen NY-ESO-1 in cancer patients with spontaneous immune responses. Clinical Immunology, 2005, 117, 24-30.	1.4	15
68	Quantitative and qualitative assessment of circulating NY-ESO-1 specific CD4+ T cells in cancer-free individuals. Clinical Immunology, 2005, 117, 161-167.	1.4	17
69	Tinkering with Nature: The Tale of Optimizing Peptide Based Cancer Vaccines. , 2005, 123, 267-291.		5
70	A peripheral circulating compartment of natural naive CD4+ Tregs. Journal of Clinical Investigation, 2005, 115, 1953-1962.	3.9	261
71	Identification of an SSX-2 Epitope Presented by Dendritic Cells to Circulating Autologous CD4+ T Cells. Journal of Immunology, 2004, 172, 7206-7211.	0.4	17
72	CpG-A and CpG-B oligonucleotides differentially enhance human peptide–specific primary and memory CD8+ T-cell responses in vitro. Blood, 2004, 103, 2162-2169.	0.6	94

#	Article	IF	CITATIONS
73	Using Modified Antigenic Sequences to Develop Cancer Vaccines: Are We Losing the Focus?. PLoS Medicine, 2004, 1, e26.	3.9	10
74	An immunodominant SSX-2–derived epitope recognized by CD4+ T cells in association with HLA-DR. Journal of Clinical Investigation, 2004, 113, 1225-1233.	3.9	27
75	An immunodominant SSX-2–derived epitope recognized by CD4+ T cells in association with HLA-DR. Journal of Clinical Investigation, 2004, 113, 1225-1233.	3.9	15
76	Ex vivo detectable activation of Melan-A-specific T cells correlating with inflammatory skin reactions in melanoma patients vaccinated with peptides in IFA. Cancer Immunity, 2004, 4, 4.	3.2	36
77	The frequent expression of cancer/testis antigens provides opportunities for immunotherapeutic targeting of sarcoma. Cancer Immunity, 2004, 4, 7.	3.2	50
78	Decreased Binding of Peptides-MHC Class I (pMHC) Multimeric Complexes to CD8 Affects Their Binding Avidity for the TCR But Does Not Significantly Impact on pMHC/TCR Dissociation Rate. Journal of Immunology, 2003, 170, 5110-5117.	0.4	24
79	A monoclonal melanoma-specific T-cell population phenotypically indistinguishable from CD3+ LGL-leukemia. Blood, 2003, 101, 4643-4644.	0.6	6
80	Activation of human melanoma reactive CD8+ T cells by vaccination with an immunogenic peptide analog derived from Melan-A/melanoma antigen recognized by T cells-1. Clinical Cancer Research, 2003, 9, 669-77.	3.2	37
81	Tumor-reactive, SSX-2-specific CD8+ T cells are selectively expanded during immune responses to antigen-expressing tumors in melanoma patients. Cancer Research, 2003, 63, 5601-6.	0.4	40
82	SSX antigens as tumor vaccine targets in human sarcoma. Cancer Immunity, 2003, 3, 13.	3.2	13
83	Simultaneous CD8+ T cell responses to multiple tumor antigen epitopes in a multipeptide melanoma vaccine. Cancer Immunity, 2003, 3, 15.	3.2	29
84	Proteasome-Assisted Identification of a SSX-2-Derived Epitope Recognized by Tumor-Reactive CTL Infiltrating Metastatic Melanoma. Journal of Immunology, 2002, 168, 1717-1722.	0.4	106
85	Combinatorial peptide library-based identification of peptide ligands for tumor-reactive cytolytic T lymphocytes of unknown specificity. European Journal of Immunology, 2002, 32, 2292.	1.6	37
86	Antigenicity and immunogenicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma. Immunological Reviews, 2002, 188, 81-96.	2.8	146
87	Lack of tumor recognition by hTERT peptide 540-548-specific CD8+ T cells from melanoma patients reveals inefficient antigen processing. European Journal of Immunology, 2001, 31, 2642-2651.	1.6	76
88	The Activatory Receptor 2B4 Is Expressed In Vivo by Human CD8+ Effector αβ T Cells. Journal of Immunology, 2001, 167, 6165-6170.	0.4	82
89	A New Generation of Melan-A/MART-1 Peptides That Fulfill Both Increased Immunogenicity and High Resistance to Biodegradation: Implication for Molecular Anti-Melanoma Immunotherapy. Journal of Immunology, 2001, 167, 5852-5861.	0.4	44
90	Lack of tumor recognition by hTERT peptide 540–548-specific CD8+ T cells from melanoma patients reveals inefficient antigen processing. , 2001, 31, 2642.		1

#	Article	IF	CITATIONS
91	A Structure-based Approach to Designing Non-natural Peptides That Can Activate Anti-melanoma Cytotoxic T Cells. Journal of Biological Chemistry, 1999, 274, 10227-10234.	1.6	13
92	Analysis of the degradation mechanisms of MHC class I-presented tumor antigenic peptides by high performance liquid chromatography/electrospray ionization mass spectrometry: application to the design of peptidase-resistant analogs. , 1998, 12, 557-564.		12