
Zheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8148707/publications.pdf Version: 2024-02-01

ZHENC YANC

#	Article	IF	CITATIONS
1	Materials and Systems for Organic Redox Flow Batteries: Status and Challenges. ACS Energy Letters, 2017, 2, 2187-2204.	17.4	359
2	"Wine-Dark Sea―in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability. ACS Energy Letters, 2017, 2, 1156-1161.	17.4	160
3	The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters. Review of Scientific Instruments, 2014, 85, 083106.	1.3	131
4	CdS/ZnO Core/Shell Nanowireâ€Built Films for Enhanced Photodetecting and Optoelectronic Gas‧ensing Applications. Advanced Optical Materials, 2014, 2, 738-745.	7.3	90
5	Artificial Olfactory System for Trace Identification of Explosive Vapors Realized by Optoelectronic Schottky Sensing. Advanced Materials, 2017, 29, 1604528.	21.0	69
6	Rational design of an argon-binding superelectrophilic anion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8167-8172.	7.1	69
7	A Highâ€Performance Nitroâ€Explosives Schottky Sensor Boosted by Interface Modulation. Advanced Functional Materials, 2015, 25, 4039-4048.	14.9	67
8	Emerging and Future Possible Strategies for Enhancing 1D Inorganic Nanomaterialsâ€Based Electrical Sensors towards Explosives Vapors Detection. Advanced Functional Materials, 2016, 26, 2406-2425.	14.9	62
9	Electronic Structure and Stability of [B ₁₂ X ₁₂] ^{2–} (X = F–At): A Combined Photoelectron Spectroscopic and Theoretical Study. Journal of the American Chemical Society, 2017, 139, 14749-14756.	13.7	60
10	A Twoâ€Electron Storage Nonaqueous Organic Redox Flow Battery. Advanced Sustainable Systems, 2018, 2, 1700131.	5.3	60
11	Annulated Dialkoxybenzenes as Catholyte Materials for Nonâ€aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution. Advanced Energy Materials, 2017, 7, 1701272.	19.5	57
12	Spatially Constrained Organic Diquat Anolyte for Stable Aqueous Flow Batteries. ACS Energy Letters, 2018, 3, 2533-2538.	17.4	56
13	Spectroscopic Characterization, Computational Investigation, and Comparisons of ECX [–] (E = As, P, and N; X = S and O) Anions. Journal of the American Chemical Society, 2017, 139, 8922-8930.	13.7	48
14	High resolution photoelectron imaging of Au2â^'. Journal of Chemical Physics, 2013, 138, 184304.	3.0	46
15	Ionization and dissociation of CH3I in intense laser field. Journal of Chemical Physics, 2007, 126, 044316.	3.0	40
16	Communication: Vibrational spectroscopy of Au4 from high resolution photoelectron imaging. Journal of Chemical Physics, 2013, 139, 021106.	3.0	38
17	Electrospray/VUV single-photon ionization mass spectrometry for the analysis of organic compounds. Journal of the American Society for Mass Spectrometry, 2009, 20, 430-434.	2.8	27
18	Photoelectron spectroscopy and density functional calculations of AgSinâ^' (n = 3–12) clusters. Journal of Chemical Physics, 2013, 138, 244312.	3.0	26

ZHENG YANG

#	Article	IF	CITATIONS
19	Probing the electronic structure and Au–C chemical bonding in AuC2â^' and AuC2 using high-resolution photoelectron spectroscopy. Journal of Chemical Physics, 2014, 140, 084303.	3.0	26
20	Properties of perhalogenated { <i>closo</i> -B ₁₀ } and { <i>closo</i> -B ₁₁ } multiply charged anions and a critical comparison with { <i>closo</i> -B ₁₂ } in the gas and the condensed phase. Physical Chemistry Chemical Physics, 2019, 21, 5903-5915.	2.8	24
21	Experimental and theoretical investigation on binary semiconductor clusters of B/Si and Al/Si. Rapid Communications in Mass Spectrometry, 2007, 21, 792-798.	1.5	21
22	Gas Adsorption Thermodynamics Deduced from the Electrical Responses in Gas-Gated Field-Effect Nanosensors. Journal of Physical Chemistry C, 2014, 118, 14703-14710.	3.1	13
23	Properties of gaseous <i>closo</i> -[B ₆ X ₆] ^{2â^'} dianions (X = Cl, Br,) Tj ETQ	9q1 1 0.78	4314 rgBT
24	Resonant photoelectron spectroscopy of Au2â^ via a Feshbach state using high-resolution photoelectron imaging. Journal of Chemical Physics, 2013, 139, 194306.	3.0	11
25	Negative ion photoelectron spectra of ISO3–, IS2O3–, and IS2O4– intermediates formed in interfacial reactions of ozone and iodide/sulfite aqueous microdroplets. Journal of Chemical Physics, 2016, 145, 214310.	3.0	10
26	Probing the electronic and vibrational structure of Au2Al2â^' and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging. Journal of Chemical Physics, 2014, 141, 224309.	3.0	8
27	Negative Ion Photoelectron Spectroscopy Confirms the Prediction of a Singlet Ground State for the 1,8-Naphthoquinone Diradical. Journal of Physical Chemistry A, 2019, 123, 3142-3148.	2.5	6
28	Negative Ion Photoelectron Spectroscopy Confirms the Prediction of the Relative Energies of the Low-Lying Electronic States of 2,7-Naphthoquinone. Journal of Physical Chemistry A, 2018, 122, 4838-4844.	2.5	5
29	Distonic radical anion species in cysteine oxidation processes. Physical Chemistry Chemical Physics, 2020, 22, 17554-17558.	2.8	5
30	A F-ion assisted preparation route to improve the photodegradation performance of a TiO2@rGO system-how to efficiently utilize the photogenerated electrons in the target organic pollutants. RSC Advances, 2016, 6, 358-365.	3.6	4
31	Magnetic-Bottle and velocity-map imaging photoelectron spectroscopy of APSâ^' (A=C14H10 or) Tj ETQq1 1 0.78 Journal of Chemical Physics, 2018, 31, 463-470.	4314 rgB ⁻ 1.3	T /Overlock 3
32	Photoelectron spectroscopy of [Mo6X14]2â^' dianions (X = Cl–I). Journal of Chemical Physics, 2019, 151, 194310.	3.0	3
33	Gas Sensors: CdS/ZnO Core/Shell Nanowire-Built Films for Enhanced Photodetecting and Optoelectronic Gas-Sensing Applications (Advanced Optical Materials 8/2014). Advanced Optical Materials, 2014, 2, 737-737.	7.3	1
34	A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery. Journal of Visualized Experiments, 2017, , .	0.3	1
35	Nanosensors: A High-Performance Nitro-Explosives Schottky Sensor Boosted by Interface Modulation (Adv. Funct. Mater. 26/2015). Advanced Functional Materials, 2015, 25, 4038-4038.	14.9	0
	Redox Flow Batteries: Annulated Dialboxybenzenes as Catholyte Materials for Nonâ€∎queous Redox		

Redox Flow Batteries: Annulated Dialkoxybenzenes as Catholyte Materials for Nonâ€aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution (Adv. Energy Mater.) Tj ETQq0 0 0 rg915/Overlock 10 Tf 5