P K Giri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8148475/publications.pdf

Version: 2024-02-01

61945 85498 6,055 166 43 71 citations h-index g-index papers 168 168 168 8562 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Emerging doping strategies in two-dimensional hybrid perovskite semiconductors for cutting edge optoelectronics applications. Nanoscale Advances, 2022, 4, 995-1025.	2.2	14
2	Experimental and theoretical study of europium-doped organometal halide perovskite nanoplatelets for UV photodetection with high responsivity and fast response. Nanoscale, 2022, 14, 6402-6416.	2.8	8
3	Plasma-Treated Graphene Surfaces for Trace Dye Detection Using Surface-Enhanced Raman Spectroscopy. ACS Applied Nano Materials, 2022, 5, 6352-6364.	2.4	5
4	Stable deep blue emission with unity quantum yield in organic–inorganic halide perovskite 2D nanosheets doped with cerium and terbium at high concentrations. Journal of Materials Chemistry C, 2021, 9, 2437-2454.	2.7	15
5	3D/2D Bi ₂ S ₃ /SnS ₂ heterostructures: superior charge separation and enhanced solar light-driven photocatalytic performance. CrystEngComm, 2021, 23, 2276-2288.	1.3	7
6	Exciton-plasmon coupling and giant photoluminescence enhancement in monolayer MoS ₂ through hierarchically designed TiO ₂ /Au/MoS ₂ ternary coreâ~shell heterostructure. Nanotechnology, 2021, 32, 215201.	1.3	8
7	Temperature-dependent Raman studies and thermal conductivity of direct CVD grown non-van der Waals layered Bi2O2Se. Journal of Applied Physics, 2021, 129, .	1.1	21
8	Recent advances in perovskite/2D materials based hybrid photodetectors. JPhys Materials, 2021, 4, 032008.	1.8	31
9	Vacuum deposited PbI2 film grown at elevated temperatures for improved efficiency of CH3NH3PbI3 based planar perovskite solar cells. Materials Research Bulletin, 2021, 139, 111255.	2.7	16
10	Understanding the interfacial charge transfer in the CVD grown Bi ₂ O ₂ Se/CsPbBr ₃ nanocrystal heterostructure and its exploitation in superior photodetection: experiment <i>vs.</i> theory. Nanoscale, 2021, 13, 14945-14959.	2.8	28
11	Facile synthetic route to exfoliate high quality and super-large lateral size graphene-based sheets and their applications in SERS and CO2 gas sensing. RSC Advances, 2021, 11, 9488-9504.	1.7	11
12	Temperature-dependent Raman study and determination of anisotropy ratio and in-plane thermal conductivity of low-temperature CVD-grown PdSe ₂ using unpolarized laser excitation. Journal of Materials Chemistry C, 2021, 9, 16693-16708.	2.7	14
13	Low-Temperature Chemical Vapor Deposition Growth of MoS2 Nanodots and Their Raman and Photoluminescence Profiles. Frontiers in Nanotechnology, 2021, 3, .	2.4	3
14	Highly Suppressed Dark Current and Fast Photoresponse from Au Nanoparticle-Embedded, Si/Au/WS ₂ Quantum-Dot-Based, Self-Biased Schottky Photodetectors. ACS Applied Electronic Materials, 2021, 3, 4891-4904.	2.0	6
15	Ultrabroadband Absorption and High-Performance Photodetection in Europium-Doped 2D Topological Insulator Bi ₂ Se ₃ Nanosheets. ACS Applied Nano Materials, 2021, 4, 12527-12540.	2.4	6
16	Quantitative Understanding of Charge-Transfer-Mediated Fe ³⁺ Sensing and Fast Photoresponse by N-Doped Graphene Quantum Dots Decorated on Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated on Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied Materials & Decorated On Plasmonic Au Nanoparticles. ACS Applied On Plasmonic Au Nanoparticles & Decorated On Plasmonic Au	4.0	47
17	Precise Tuning of the Thickness and Optical Properties of Highly Stable 2D Organometal Halide Perovskite Nanosheets through a Solvothermal Process and Their Applications as a White LED and a Fast Photodetector. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6283-6297.	4.0	46
18	Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dots. Carbon, 2020, 160, 273-286.	5 . 4	82

#	Article	IF	Citations
19	Origin and tunability of dual color emission in highly stable Mn doped CsPbCl3 nanocrystals grown by a solid-state process. Journal of Colloid and Interface Science, 2020, 564, 357-370.	5.0	34
20	Understanding the excitation wavelength dependent spectral shift and large exciton binding energy of tungsten disulfide quantum dots and its interaction with single-walled carbon nanotubes. Journal of Colloid and Interface Science, 2020, 561, 519-532.	5.0	25
21	Growth kinetics of hybrid perovskite thin films on different substrates at elevated temperature and its direct correlation with the microstructure and optical properties. Applied Surface Science, 2020, 530, 147224.	3.1	13
22	Quantitative understanding of the ultra-sensitive and selective detection of dopamine using a graphene oxide/WS ₂ quantum dot hybrid. Journal of Materials Chemistry C, 2020, 8, 7935-7946.	2.7	10
23	Solid-state synthesis of stable and color tunable cesium lead halide perovskite nanocrystals and the mechanism of high-performance photodetection in a monolayer MoS ₂ /CsPbBr ₃ vertical heterojunction. Journal of Materials Chemistry C, 2020. 8, 8917-8934.	2.7	51
24	Evidence for plasmonic hot electron injection induced superior visible light photocatalysis by g-C3N4 nanosheets decorated with Ag–TiO2(B) and Au–TiO2(B) nanorods. Solar Energy Materials and Solar Cells, 2019, 201, 110053.	3.0	38
25	Solvent dependent synthesis of edge-controlled graphene quantum dots with high photoluminescence quantum yield and their application in confocal imaging of cancer cells. Journal of Colloid and Interface Science, 2019, 541, 387-398.	5.0	50
26	Simultaneous photoluminescence enhancement in CVD grown single layer MoS2 and TiO2 NRs in the MoS2@TiO2 heterojunction. AIP Conference Proceedings, 2019, , .	0.3	2
27	Highly sensitive and selective label-free detection of dopamine in human serum based on nitrogen-doped graphene quantum dots decorated on Au nanoparticles: Mechanistic insights through microscopic and spectroscopic studies. Applied Surface Science, 2019, 490, 318-330.	3.1	34
28	Enhanced visible light photocatalysis by fluorine doped faceted TiO2 nanoflowers hierarchically designed with vacancy-rich TiO2 nanocrystals grown by vacuum annealing. AIP Conference Proceedings, $2019, , .$	0.3	3
29	Plasmonic hole-transport-layer enabled self-powered hybrid perovskite photodetector using a modified perovskite deposition method in ambient air. Organic Electronics, 2019, 71, 175-184.	1.4	58
30	Fluorescence based comparative study of interaction of perylene with nitrogen doped graphene quantum dots and graphene oxide sheets. AIP Conference Proceedings, $2019, , .$	0.3	1
31	Effect of plasmonic metal nanoparticles on the performance of air processed inverted perovskite solar cells. AIP Conference Proceedings, 2019, , .	0.3	8
32	High photoluminescence yield from organometal halide perovskite quantum dots confined in a mesoporous TiO2 template grown by rapid thermal annealing. AIP Conference Proceedings, 2019, , .	0.3	0
33	Strong Cathodoluminescence and Fast Photoresponse from Embedded CH3NH3PbBr3 Nanoparticles Exhibiting High Ambient Stability. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14917-14931.	4.0	31
34	Coupled Charge Transfer Dynamics and Photoluminescence Quenching in Monolayer MoS2 Decorated with WS2 Quantum Dots. Scientific Reports, 2019, 9, 19414.	1.6	45
35	Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. Journal of Colloid and Interface Science, 2019, 539, 619-633.	5.0	43
36	Shape Tailored TiO ₂ Nanostructures and Their Hybrids for Advanced Energy and Environmental Applications: A Review. Journal of Nanoscience and Nanotechnology, 2019, 19, 307-331.	0.9	21

#	Article	IF	CITATIONS
37	Mesoporous Si Nanowire Templated Controlled Fabrication of Organometal Halide Perovskite Nanoparticles with High Photoluminescence Quantum Yield for Light-Emitting Applications. ACS Applied Nano Materials, 2018, 1, 1551-1562.	2.4	38
38	Evolution of Nitrogen-Related Defects in Graphitic Carbon Nitride Nanosheets Probed by Positron Annihilation and Photoluminescence Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 9209-9219.	1.5	66
39	Adsorption of Small Molecules on Niobium Doped Graphene: A Study Based on Density Functional Theory. IEEE Electron Device Letters, 2018, 39, 296-299.	2.2	25
40	Anomalous fluorescence enhancement and fluorescence quenching of graphene quantum dots by single walled carbon nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 4527-4537.	1.3	41
41	Label-free glucose detection over a wide dynamic range by mesoporous Si nanowires based on anomalous photoluminescence enhancement. Sensors and Actuators B: Chemical, 2018, 260, 693-704.	4.0	7
42	Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sensors and Actuators B: Chemical, 2018, 254, 681-689.	4.0	96
43	Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis. Applied Catalysis B: Environmental, 2018, 224, 960-972.	10.8	198
44	Ambient condition bias stress stability of vanadium (IV) oxide phthalocyanine based p-channel organic field-effect transistors. Journal Physics D: Applied Physics, 2018, 51, 015110.	1.3	5
45	Trion-Inhibited Strong Excitonic Emission and Broadband Giant Photoresponsivity from Chemical Vapor-Deposited Monolayer MoS ₂ Grown in Situ on TiO ₂ Nanostructure. ACS Applied Materials & Interfaces, 2018, 10, 42812-42825.	4.0	36
46	Strongly enhanced visible light photoelectrocatalytic hydrogen evolution reaction in an n-doped MoS ₂ /TiO ₂ (B) heterojunction by selective decoration of platinum nanoparticles at the MoS ₂ edge sites. Journal of Materials Chemistry A, 2018, 6, 22681-22696.	5.2	49
47	Plasmonic Metal and Semiconductor Nanoparticle Decorated TiO2-Based Photocatalysts for Solar Light Driven Photocatalysis., 2018,, 786-794.		20
48	Solar light driven photoelectrocatalytic hydrogen evolution and dye degradation by metal-free few-layer MoS2 nanoflower/TiO2(B) nanobelts heterostructure. Solar Energy Materials and Solar Cells, 2018, 185, 364-374.	3.0	138
49	Multifunctional Ag nanoparticle decorated Si nanowires for sensing, photocatalysis and light emission applications. Journal of Colloid and Interface Science, 2018, 532, 464-473.	5.0	35
50	Tunable and High Photoluminescence Quantum Yield from Selfâ€Decorated TiO ₂ Quantum Dots on Fluorine Doped Mesoporous TiO ₂ Flowers by Rapid Thermal Annealing. Particle and Particle Systems Characterization, 2018, 35, 1800198.	1.2	17
51	Direct Chemical Vapor Deposition Growth of Monolayer MoS ₂ on TiO ₂ Nanorods and Evidence for Doping-Induced Strong Photoluminescence Enhancement. Journal of Physical Chemistry C, 2018, 122, 15017-15025.	1.5	38
52	Stacking sequence dependent photo-electrocatalytic performance of CVD grown MoS ₂ /graphene van der Waals solids. Nanotechnology, 2017, 28, 085101.	1.3	36
53	Hydrogen Evolution Reaction Activity of Graphene–MoS ₂ van der Waals Heterostructures. ACS Energy Letters, 2017, 2, 1355-1361.	8.8	141
54	Silicon nanowire heterostructures for advanced energy and environmental applications: a review. Nanotechnology, 2017, 28, 012001.	1.3	51

#	Article	IF	CITATIONS
55	Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons. Physical Chemistry Chemical Physics, 2017, 19, 29685-29692.	1.3	18
56	Role of Surface Plasmons and Hot Electrons on the Multi-Step Photocatalytic Decay by Defect Enriched Ag@TiO ₂ Nanorods under Visible Light. Journal of Physical Chemistry C, 2017, 121, 20016-20030.	1.5	85
57	<i>In situ</i> decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance. Nanotechnology, 2017, 28, 395703.	1.3	53
58	Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation. Journal of Applied Physics, 2017, 122, .	1.1	63
59	Efficient visible light photocatalysis and tunable photoluminescence from orientation controlled mesoporous Si nanowires. RSC Advances, 2016, 6, 35365-35377.	1.7	13
60	Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling. Journal of Alloys and Compounds, 2016, 676, 591-600.	2.8	121
61	Plasmon-enhanced strong visible light photocatalysis by defect engineered CVD graphene and graphene oxide physically functionalized with Au nanoparticles. Catalysis Science and Technology, 2016, 6, 7101-7112.	2.1	24
62	Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy. Journal of Materials Chemistry C, 2016, 4, 10852-10865.	2.7	157
63	Mechanism of strong visible light photocatalysis by Ag ₂ O-nanoparticle-decorated monoclinic TiO ₂ (B) porous nanorods. Nanotechnology, 2016, 27, 315703.	1.3	79
64	Effect of Ag/Au bilayer assisted etching on the strongly enhanced photoluminescence and visible light photocatalysis by Si nanowire arrays. Physical Chemistry Chemical Physics, 2016, 18, 7715-7727.	1.3	32
65	Isotype heterostructure of bulk and nanosheets of graphitic carbon nitride for efficient visible light photodegradation of methylene blue. RSC Advances, 2016, 6, 24976-24984.	1.7	60
66	Mechanism of defect induced ferromagnetism in undoped and Cr doped TiO 2 nanorods/nanoribbons. Journal of Alloys and Compounds, 2016, 661, 331-344.	2.8	32
67	UV Photodetector Based on Graphene-ZnO Nanowire Hybrid: Fabrication, Photoresponse and Photoluminescence Studies. Advanced Science Letters, 2016, 22, 99-104.	0.2	3
68	Effect of Rapid Thermal Annealing on the Photoluminescence from Si Nanocrystal Decorated Si Nanowires Array Grown by a Metal Assisted Chemical Etching Method. Advanced Science Letters, 2016, 22, 71-76.	0.2	0
69	Surface roughening and scaling behavior of vacuum-deposited SnCl2Pc organic thin films on different substrates. Applied Physics Letters, 2015, 107, .	1.5	23
70	Early stages of growth of Si nanowires by metal assisted chemical etching: A scaling study. Applied Physics Letters, 2015, 107, .	1.5	15
71	Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse. Nanotechnology, 2015, 26, 145601.	1.3	49
72	On the origin and tunability of blue and green photoluminescence from chemically derived graphene: Hydrogenation and oxygenation studies. Carbon, 2015, 95, 228-238.	5.4	37

#	Article	lF	CITATIONS
73	Evolution of room temperature ferromagnetism with increasing 1D growth in Ni-doped ZnO nanostructures. Journal of Alloys and Compounds, 2015, 647, 558-565.	2.8	34
74	Low operating voltage and low bias stress in top-contact SnCl ₂ Pc/CuPc heterostructure-based bilayer ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2015, 3, 7118-7127.	2.7	9
75	Photoluminescence signature of resonant energy transfer in ZnO coated Si nanocrystals decorated on vertical Si nanowires array. Journal of Alloys and Compounds, 2015, 638, 419-428.	2.8	23
76	Quantitative analysis of the phonon confinement effect in arbitrarily shaped Si nanocrystals decorated on Si nanowires and its correlation with the photoluminescence spectrum. Journal of Raman Spectroscopy, 2015, 46, 624-631.	1.2	25
77	Structural, optical, and magnetic properties of Ni doped ZnO nanoparticles: Correlation of magnetic moment with defect density. Applied Surface Science, 2015, 356, 804-811.	3.1	133
78	Microscopic origin of lattice contraction and expansion in undoped rutile TiO ₂ nanostructures. Journal Physics D: Applied Physics, 2014, 47, 215302.	1.3	110
79	High temperature ferromagnetism in Ni doped ZnO nanoparticles: Milling time dependence. , 2014, , .		O
80	Low bias stress and reduced operating voltage in SnCl2Pc based n-type organic field-effect transistors. Applied Physics Letters, 2014, 104, .	1.5	14
81	Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals. Nanotechnology, 2014, 25, 045703.	1.3	54
82	Defect Enhanced Efficient Physical Functionalization of Graphene with Gold Nanoparticles Probed by Resonance Raman Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 13833-13843.	1.5	50
83	Graphene-Assisted Controlled Growth of Highly Aligned ZnO Nanorods and Nanoribbons: Growth Mechanism and Photoluminescence Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 377-387.	4.0	68
84	Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO ₂ nanoribbons. Journal Physics D: Applied Physics, 2014, 47, 235304.	1.3	115
85	Room temperature ferromagnetism with high magnetic moment and optical properties of Co doped ZnO nanorods synthesized by a solvothermal route. Journal of Alloys and Compounds, 2014, 615, 378-385.	2.8	73
86	Strain dependence of the nonlinear optical properties of strained Si nanoparticles. Optics Letters, 2014, 39, 3833.	1.7	9
87	Evidence for Ti Interstitial Induced Extended Visible Absorption and Near Infrared Photoluminescence from Undoped TiO ₂ Nanoribbons: An In Situ Photoluminescence Study. Journal of Physical Chemistry C, 2013, 117, 23402-23411.	1.5	122
88	Aluminum doped core-shell ZnO/ZnS nanowires: Doping and shell layer induced modification on structural and photoluminescence properties. Journal of Applied Physics, 2013, 114, 134307.	1.1	23
89	Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale, 2013, 5, 5476.	2.8	258
90	Impact of reaction temperature, stirring and cosolvent on the solvothermal synthesis of anatase TiO2 and TiO2/titanate hybrid nanostructures: Elucidating theÂgrowth mechanism. Materials Chemistry and Physics, 2013, 137, 928-936.	2.0	38

#	Article	IF	CITATIONS
91	Ti nanoparticles decorated ZnO nanowires heterostructure: photocurrent and photoluminescence properties. Journal of Experimental Nanoscience, 2013, 8, 332-340.	1.3	15
92	ZnO Nanowire Heterostructures: Intriguing Photophysics and Emerging Applications. Reviews in Nanoscience and Nanotechnology, 2013, 2, 147-170.	0.4	40
93	Freestanding Core-Shell Nanocrystals with Varying Sizes and Shell Thicknesses: Microstructure and Photoluminescence Studies. Journal of Nanomaterials, 2012, 2012, 1-5.	1.5	25
94	Co -DOPED ZnO NANOWIRES GROWN BY VAPOR–LIQUID–SOLID METHOD: STRUCTURAL, OPTICAL AND MAGNETIC STUDIES. Nano, 2012, 07, 1250028.	0.5	7
95	ZnO/anthracene based inorganic/organic nanowire heterostructure: Photoresponse and photoluminescence studies. Journal of Applied Physics, 2012, 111, .	1.1	29
96	ORGANIC CuPc COATING INDUCED IMPROVED PHOTOLUMINESCENCE AND PHOTOCONDUCTIVITY OF ZnO NANOWIRES ARRAY. Functional Materials Letters, 2012, 05, 1250021.	0.7	3
97	High-Yield Chemical Synthesis of Hexagonal ZnO Nanoparticles and Nanorods with Excellent Optical Properties. Journal of Nanoscience and Nanotechnology, 2012, 12, 201-206.	0.9	15
98	Improved fast photoresponse from Al doped ZnO nanowires network decorated with Au nanoparticles. Chemical Physics Letters, 2012, 541, 39-43.	1.2	32
99	Study of the Suitability of Selected Extractants for Determination of Plant-Available Arsenic in Some Inceptisols of West Bengal, India. Communications in Soil Science and Plant Analysis, 2012, 43, 2449-2466.	0.6	13
100	Distinguishing defect induced intermediate frequency modes from combination modes in the Raman spectrum of single walled carbon nanotubes. Journal of Applied Physics, 2012, 111, .	1.1	11
101	Role of molecular interactions and structural defects in the efficient fluorescence quenching by carbon nanotubes. Carbon, 2012, 50, 4495-4505.	5.4	67
102	Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film. Thin Solid Films, 2012, 520, 5000-5006.	0.8	82
103	Evidence for Defect-Enhanced Photoluminescence Quenching of Fluorescein by Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 24067-24072.	1.5	22
104	Enhancing the Photostability of Poly(3-hexylthiophene) by Preparing Composites with Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2011, 115, 919-924.	1.2	39
105	EFFECT OF ZnO NANOPOWDER SOURCE AND GROWTH TEMPERATURE ON SHAPE EVOLUTION OF ZnO NANOSTRUCTURES. International Journal of Nanoscience, 2011, 10, 833-837.	0.4	1
106	DEFECT EVOLUTION AND STRUCTURAL IMPROVEMENT IN LOW ENERGY ION IRRADIATED CARBON NANOTUBES: MICROSCOPIC AND SPECTROSCOPIC STUDIES. International Journal of Nanoscience, 2011, 10, 49-53.	0.4	1
107	Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. Journal of Applied Physics, $2011,110,.$	1.1	152
108	Size Dependent Anisotropic Strain and Optical Properties of Strained Si Nanocrystals. Journal of Nanoscience and Nanotechnology, 2011, 11, 9215-9221.	0.9	20

#	Article	IF	CITATIONS
109	Defect Mediated Magnetic Interaction and High <l>T</l> _c Ferromagnetism in Co Doped ZnO Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 9167-9174.	0.9	69
110	Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires. Nanoscale Research Letters, 2011, 6, 504.	3.1	128
111	Quick single-step mechanosynthesis of ZnO nanorods and their optical characterization: milling time dependence. Applied Nanoscience (Switzerland), 2011, 1, 165-171.	1.6	22
112	Size-dependent visible absorption and fast photoluminescence decay dynamics from freestanding strained silicon nanocrystals. Nanoscale Research Letters, 2011, 6, 320.	3.1	33
113	RAPID THERMAL ANNEALING INDUCED ENHANCED BAND-EDGE EMISSION FROM ZnO NANOWIRES, NANORODS AND NANORIBBONS. Functional Materials Letters, 2011, 04, 25-29.	0.7	25
114	EFFECT OF GROWTH TEMPERATURE ON THE CATALYST-FREE GROWTH OF LONG SILICON NANOWIRES USING RADIO FREQUENCY MAGNETRON SPUTTERING. International Journal of Nanoscience, 2011, 10, 13-17.	0.4	7
115	ROOM TEMPERATURE FERROMAGNETISM IN Co-DOPED ZnO NANOPARTICLES: MILLING TIME DEPENDENCE AND ANNEALING EFFECT. International Journal of Nanoscience, 2011, 10, 307-311.	0.4	4
116	EFFECT OF RAPID THERMAL ANNEALING ON MICROSTRUCTURE AND OPTICAL PROPERTIES OF ZnO NANORODS. International Journal of Nanoscience, 2011, 10, 65-68.	0.4	13
117	SHAPE EVOLUTION IN ONE-DIMENSIONAL ZnO NANOSTRUCTURES GROWN FROM ZnO NANOPOWDER SOURCE: VAPOR–LIQUID–SOLID VERSUS VAPOR–SOLID GROWTH MECHANISMS. International Journal of Nanoscience, 2011, 10, 75-79.	0.4	3
118	On the origin of enhanced photoconduction and photoluminescence from Au and Ti nanoparticles decorated aligned ZnO nanowire heterostructures. Journal of Applied Physics, 2011, 110, 124317.	1.1	60
119	IMPROVED CHEMICAL SYNTHESIS OF GRAPHENE USING A SAFER SOLVOTHERMAL ROUTE. International Journal of Nanoscience, 2011, 10, 39-42.	0.4	16
120	Effect of ZnO seed layer on the catalytic growth of vertically aligned ZnO nanorod arrays. Materials Chemistry and Physics, 2010, 122, 18-22.	2.0	58
121	Self-catalytic growth of horizontal and straight Si nanowires on Si substrates using a sputter deposition technique. Solid State Communications, 2010, 150, 1923-1927.	0.9	6
122	Diameter dependence of oxidative stability in multiwalled carbon nanotubes: Role of defects and effect of vacuum annealing. Journal of Applied Physics, 2010, 108, .	1.1	66
123	Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diamond and Related Materials, 2010, 19, 1281-1288.	1.8	168
124	High temperature ferromagnetism and optical properties of Co doped ZnO nanoparticles. Journal of Applied Physics, 2010, 108, .	1.1	158
125	Intense Ultraviolet-Blue Photoluminescence from SiO ₂ Embedded Ge Nanocrystals Prepared by Different Techniques. Journal of Nanoscience and Nanotechnology, 2009, 9, 5389-5395.	0.9	11
126	Strain Anisotropy in Freestanding Germanium Nanoparticles Synthesized by Ball Milling. Journal of Nanoscience and Nanotechnology, 2009, 9, 5231-5236.	0.9	20

#	Article	IF	CITATIONS
127	Strain analysis on freestanding germanium nanocrystals. Journal Physics D: Applied Physics, 2009, 42, 245402.	1.3	18
128	Optical Signature of Structural Defects in Single Walled and Multiwalled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 5396-5401.	0.9	16
129	Low energy oxygen implantation induced improved crystallinity and optical properties of surface modified ZnO single crystals. Applied Surface Science, 2009, 256, 384-388.	3.1	8
130	Quantitative Analysis of Diameter Dependent Properties of Multi-walled Carbon Nanotubes., 2009,,.		1
131	Ultraviolet and blue photoluminescence from sputter deposited Ge nanocrystals embedded in SiO2 matrix. Journal of Applied Physics, 2008, 103, .	1.1	22
132	Novel Low Temperature Chemical Synthesis and Characterization of Zinc Oxide Nanostructures. Journal of Nanoscience and Nanotechnology, 2008, 8, 4290-4294.	0.9	0
133	A comparative study of the vibrational and luminescence properties of embedded Ge nanocrystals prepared by ion implantation and sputter deposition methods: role of strain and defects. Semiconductor Science and Technology, 2007, 22, 1332-1338.	1.0	4
134	Correlating the microstructural and photoluminescence properties of ZnO nanoparticles prepared by ball milling. , 2007, , .		3
135	Defect Contribution to the Photoluminescence from Embedded Germanium Nanocrystals Prepared by Ion Implantation and Sputter Deposition Methods. Materials Research Society Symposia Proceedings, 2007, 994, 1.	0.1	2
136	Studies on Zinc Oxide Nanorods Grown by Electron Beam Evaporation Technique. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2007, 37, 437-441.	0.6	9
137	Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. Journal of Applied Physics, 2007, 102, .	1.1	228
138	Studies on the formation of Si nanocrystals in SiO2 by Ge ion implantation. Nuclear Instruments & Methods in Physics Research B, 2006, 244, 56-59.	0.6	5
139	Simultaneous formation of Si and Ge nanocrystals in SiO2 by one step ion implantation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 128, 201-204.	1.7	10
140	Studies on the surface swelling of ion-irradiated silicon: Role of defects. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 121, 238-243.	1.7	11
141	Surface acoustic phonon modes of Ge nanocrystals embedded in SiO2. Solid State Communications, 2005, 136, 36-40.	0.9	9
142	Evidence for fast decay dynamics of the photoluminescence from Ge nanocrystals embedded in SiO2. Solid State Communications, 2005, 133, 229-234.	0.9	33
143	Radiative Versus Nonradiative Decay Processes in Germanium Nanocrystals Probed by Time-resolved Photoluminescence Spectroscopy. Materials Research Society Symposia Proceedings, 2005, 864, 4361.	0.1	0
144	Photoluminescence signature of silicon interstitial cluster evolution from compact to extended structures in ion-implanted silicon. Semiconductor Science and Technology, 2005, 20, 638-644.	1.0	62

#	Article	IF	Citations
145	Photoluminescence study of self-interstitial clusters and extended defects in ion-implanted silicon. Physica B: Condensed Matter, 2003, 340-342, 734-737.	1.3	7
146	Electrical signature for configurational bistability of self-interstitial clusters in ion-damaged silicon. Physica B: Condensed Matter, 2003, 340-342, 729-733.	1.3	3
147	Metastablility of Interstitial Clusters in Ion-Damaged Silicon Studied by Isothermal Capacitance Transient Spectroscopy. Defect and Diffusion Forum, 2002, 210-212, 1-14.	0.4	3
148	Photoluminescence and structural studies on extended defect evolution during high-temperature processing of ion-implanted epitaxial silicon. Journal of Applied Physics, 2001, 89, 4310-4317.	1.1	9
149	Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted silicon. Applied Physics Letters, 2001, 78, 291-293.	1.5	48
150	Mechanism of swelling in low-energy ion-irradiated silicon. Physical Review B, 2001, 65, .	1.1	42
151	Crystalline to amorphous transition and band structure evolution in ion-damaged silicon studied by spectroscopic ellipsometry. Journal of Applied Physics, 2001, 90, 659-669.	1.1	36
152	Formation and annealing of defects during high-temperature processing of ion-implanted epitaxial silicon: the role of dopant implants. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 71, 186-191.	1.7	13
153	Thermal stability of defect complexes due to high dose MeV implantation in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 71, 327-332.	1.7	16
154	Unusual features in trap emission characteristics of heavily damaged silicon induced by MeV ion implantation. Semiconductor Science and Technology, 2000, 15, 985-991.	1.0	8
155	Capacitance transient spectroscopy models of coupled trapping kinetics among multiple defect states: Application to the study of trapping kinetics of defects in heavy-ion-damaged silicon. Physical Review B, 2000, 62, 2496-2504.	1.1	8
156	Oxidation induced precipitation in Al implanted epitaxial silicon. Journal of Applied Physics, 2000, 88, 3988.	1.1	1
157	Evidence of metastability with athermal ionization from defect clusters in ion-damaged silicon. Physical Review B, 2000, 62, 16561-16565.	1.1	4
158	Sensitivity of Electrically Active Defect Spectra to Processing Conditions in Mev Heavy Ion Implanted Silicon. Materials Research Society Symposia Proceedings, 1999, 568, 115.	0.1	1
159	Charge redistribution among defects in heavily damaged silicon. Physical Review B, 1998, 57, 14603-14606.	1.1	3
160	Electrical characterization of MeV heavy-ion-induced damage in silicon: Evidence for defect migration and clustering. Journal of Applied Physics, 1998, 84, 1901-1912.	1.1	35
161	Charge Redistribution and Defect Relaxation in Heavily Damaged Silicon Studied Using Time Analyzed Transient Spectroscopy. Materials Research Society Symposia Proceedings, 1998, 510, 349.	0.1	0
162	Compensating defect in deep buried layers produced by MeV heavy ions in n-silicon. Applied Physics Letters, 1997, 71, 1682-1684.	1.5	17

#	Article	IF	CITATIONS
163	Electrically active defects in as-implanted, deep buried layers inp-type silicon. Journal of Applied Physics, 1997, 81, 260-263.	1.1	9
164	Characterization of deep level defects in Si irradiated with MeV Ar+ ions using constant capacitance time analyzed transient spectroscopy. Bulletin of Materials Science, 1997, 20, 417-421.	0.8	0
165	Electrically active defects due to end-of-ion-range damage in silicon irradiated with MeV Ar+ ions. Nuclear Instruments & Methods in Physics Research B, 1996, 111, 285-289.	0.6	5
166	Nonexponentiality in photoinduced current transients in undoped semiâ€insulating gallium arsenide. Journal of Applied Physics, 1995, 78, 262-268.	1.1	11