SÃ, ren Husted

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8148354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comment on "Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts―by J. Hong, C. Wang, D. C. Wagner, J. L. Gardea-Torresdey, F. He and C. M. Rico, <i>Environ. Sci.: Nano</i> , 2021, 8 , 1196–1210, DOI: 10.1039/D0EN01129K. Environmental Science: Nano, 2022, 9, 1180-1184.	2.2	1
2	Topical delivery of PDâ€1 inhibitors with laserâ€assisted passive diffusion and active intradermal injection: Investigation of cutaneous pharmacokinetics and biodistribution patterns. Lasers in Surgery and Medicine, 2022, 54, 170-181.	1.1	4
3	Efficacy and Safety of Laserâ€Assisted Combination Chemotherapy: An Explorative Imagingâ€Guided Treatment With 5â€Fluorouracil and Cisplatin for Basal Cell Carcinoma. Lasers in Surgery and Medicine, 2021, 53, 119-128.	1.1	10
4	The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 2021, 229, 2446-2469.	3.5	217
5	The role of soil in defining planetary boundaries and the safe operating space for humanity. Environment International, 2021, 146, 106245.	4.8	25
6	Unravelling the interactions between nano-hydroxyapatite and the roots of phosphorus deficient barley plants. Environmental Science: Nano, 2021, 8, 444-459.	2.2	19
7	Topical Delivery of Nivolumab, a Therapeutic Antibody, by Fractional Laser and Pneumatic Injection. Lasers in Surgery and Medicine, 2021, 53, 154-161.	1.1	10
8	Temporal and Spatial Patterns of Zinc and Iron Accumulation during Barley (<i>Hordeum vulgare</i>) Tj ETQq0 0	0 rgBT /O	verlock 10 Th

9	High light intensity aggravates latent manganese deficiency in maize. Journal of Experimental Botany, 2020, 71, 6116-6127.	2.4	7
10	Bioimaging Techniques Reveal Foliar Phosphate Uptake Pathways and Leaf Phosphorus Status. Plant Physiology, 2020, 183, 1472-1483.	2.3	22
11	Towards single-cell ionomics: a novel micro-scaled method for multi-element analysis of nanogram-sized biological samples. Plant Methods, 2020, 16, 31.	1.9	10
12	Methods to Visualize Elements in Plants. Plant Physiology, 2020, 182, 1869-1882.	2.3	40
13	The Biochemical Properties of Manganese in Plants. Plants, 2019, 8, 381.	1.6	112
14	Ancient barley landraces adapted to marginal soils demonstrate exceptional tolerance to manganese limitation. Annals of Botany, 2019, 123, 831-843.	1.4	29
15	Authenticity testing of organically grown vegetables by stable isotope ratio analysis of oxygen in plant-derived sulphate. Food Chemistry, 2019, 291, 59-67.	4.2	22
16	The Intensity of Manganese Deficiency Strongly Affects Root Endodermal Suberization and Ion Homeostasis. Plant Physiology, 2019, 181, 729-742.	2.3	35
17	Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environmental Science: Nano, 2019, 6, 3513-3524.	2.2	99
18	Chlorophyll a fluorescence analysis can detect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (Hordeum vulgare L.). Plant and Soil, 2019, 434, 79-91.	1.8	42

#	Article	IF	CITATIONS
19	Effect of nitrogen and zinc fertilization on zinc and iron bioavailability and chemical speciation in maize silage. Journal of Trace Elements in Medicine and Biology, 2018, 49, 269-275.	1.5	11
20	The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain. Plant Physiology, 2018, 177, 271-284.	2.3	248
21	Laser-assisted delivery enhances topical uptake of the anticancer agent cisplatin. Drug Delivery, 2018, 25, 1877-1885.	2.5	22
22	The Plastid Envelope CHLOROPLAST MANGANESE TRANSPORTER1 Is Essential for Manganese Homeostasis in Arabidopsis. Molecular Plant, 2018, 11, 955-969.	3.9	83
23	Analysis of Metals in Whole Cells, Thylakoids and Photosynthetic Protein Complexes in Synechocystis sp. PCC6803. Bio-protocol, 2018, 8, e2889.	0.2	0
24	Low perinatal zinc status is not associated with the risk of type 1 diabetes in children. Pediatric Diabetes, 2017, 18, 637-642.	1.2	9
25	The transporter Syn <scp>PAM</scp> 71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in <i>Synechocystis </i> <scp>PCC</scp> 6803. New Phytologist, 2017, 215, 256-268.	3.5	47
26	Predicting phosphorus availability to spring barley (Hordeum vulgare) in agricultural soils of Scandinavia. Field Crops Research, 2017, 212, 1-10.	2.3	17
27	Photosystem II Functionality in Barley Responds Dynamically to Changes in Leaf Manganese Status. Frontiers in Plant Science, 2016, 7, 1772.	1.7	34
28	Diffusive Gradients in Thin Films as a Reference Method for Assessing Soil Phosphorus by Visual and Near-Infrared Spectroscopy. Journal of Environmental Quality, 2016, 45, 2060-2066.	1.0	3
29	Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytologist, 2016, 211, 1255-1265.	3.5	77
30	The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis. Plant Cell, 2016, 28, tpc.00812.2015.	3.1	94
31	Manganese Deficiency in Plants: The Impact on Photosystem II. Trends in Plant Science, 2016, 21, 622-632.	4.3	178
32	Targeted expression of <i>HvHMA</i> 2 increases the mineral content of the inner endosperm in barley. Plant Biotechnology Journal, 2016, , .	4.1	1
33	Multi-element bioimaging of Arabidopsis thaliana roots. Plant Physiology, 2016, 172, pp.00770.2016.	2.3	38
34	Mother-plant-mediated pumping of zinc into the developing seed. Nature Plants, 2016, 2, 16036.	4.7	62
35	ldentification of manganese efficiency candidate genes in winter barley (Hordeum vulgare) using genome wide association mapping. BMC Genomics, 2016, 17, 775.	1.2	17
36	A laser ablation <scp>ICP</scp> â€ <scp>MS</scp> based method for multiplexed immunoblot analysis: applications to manganeseâ€dependent protein dynamics of photosystem <scp>II</scp> in barley (<i><scp>H</scp>ordeum vulgare </i> <scp>L</scp> .). Plant Journal, 2015, 83, 555-565.	2.8	16

#	Article	IF	CITATIONS
37	Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator <i><scp>A</scp>rabidopsis halleri</i> . New Phytologist, 2015, 206, 738-750.	3.5	53
38	Metal Binding in Photosystem II Super- and Subcomplexes from Barley Thylakoids. Plant Physiology, 2015, 168, 1490-1502.	2.3	42
39	Lanthanide elements as labels for multiplexed and targeted analysis of proteins, DNA and RNA using inductively-coupled plasma mass spectrometry. TrAC - Trends in Analytical Chemistry, 2015, 72, 45-52.	5.8	38
40	Recent developments in fast spectroscopy for plant mineral analysis. Frontiers in Plant Science, 2015, 6, 169.	1.7	61
41	Sensitive Detection of Phosphorus Deficiency in Plants Using Chlorophyll <i>a</i> Fluorescence. Plant Physiology, 2015, 169, 353-361.	2.3	65
42	Being two is better than one—catalytic reductions with dendrimer encapsulated copper- and copper–cobalt-subnanoparticles. Chemical Communications, 2015, 51, 9957-9960.	2.2	10
43	Compound-Specific δ ¹⁵ N and δ ¹³ C Analyses of Amino Acids for Potential Discrimination between Organically and Conventionally Grown Wheat. Journal of Agricultural and Food Chemistry, 2015, 63, 5841-5850.	2.4	56
44	Late gestation over†and undernutrition predispose for visceral adiposity in response to a postâ€natal obesogenic diet, but with differential impacts on glucose–insulin adaptations during fasting in lambs. Acta Physiologica, 2014, 210, 110-126.	1.8	31
45	Barley metallothioneins differ in ontogenetic pattern and response to metals. Plant, Cell and Environment, 2014, 37, 353-367.	2.8	30
46	Multiplexed microRNA Detection Using Lanthanide-Labeled DNA Probes and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2014, 86, 6823-6826.	3.2	37
47	Discrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics. Analytical and Bioanalytical Chemistry, 2014, 406, 2885-2897.	1.9	39
48	Authentication of organically grown plants – advantages and limitations of atomic spectroscopy for multi-element and stable isotope analysis. TrAC - Trends in Analytical Chemistry, 2014, 59, 73-82.	5.8	74
49	Golgi Localized Barley MTP8 Proteins Facilitate Mn Transport. PLoS ONE, 2014, 9, e113759.	1.1	60
50	Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant and Soil, 2013, 372, 417-429.	1.8	60
51	Model of how plants sense zinc deficiency. Metallomics, 2013, 5, 1110.	1.0	50
52	Multiplexed Quantification of Plant Thylakoid Proteins on Western Blots Using Lanthanide-Labeled Antibodies and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Analytical Chemistry, 2013, 85, 5047-5054.	3.2	26
53	Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytologist, 2013, 198, 1096-1107.	3.5	185
54	ls it really organic? – Multi-isotopic analysis as a tool to discriminate between organic and conventional plants. Food Chemistry, 2013, 141, 2812-2820.	4.2	75

SÃ, ren Husted

#	Article	IF	CITATIONS
55	Diagnosing Latent Copper Deficiency in Intact Barley Leaves (<i>Hordeum vulgare</i> , L.) Using Near Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 2013, 61, 10901-10910.	2.4	47
56	Consumption of organic diets does not affect intake and absorption of zinc and copper in men – evidence from two cross-over trials. Food and Function, 2013, 4, 409-419.	2.1	9
57	Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics, 2013, 9, 57-77.	1.4	74
58	A proteomics approach to investigate the process of <scp>Z</scp> n hyperaccumulation in <i><scp>N</scp>occaea caerulescens</i> (<scp>J</scp> & <scp>C</scp> . <scp>P</scp> resl) <scp>F</scp> . <scp>K</scp> . <scp>M</scp> eyer. Plant Journal, 2013, 73, 131-142.	2.8	59
59	Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnology Advances, 2013, 31, 1292-1307.	6.0	52
60	Multielement Plant Tissue Analysis Using ICP Spectrometry. Methods in Molecular Biology, 2013, 953, 121-141.	0.4	42
61	An Optimized Calibration Procedure for Determining Elemental Ratios Using Laser-Induced Breakdown Spectroscopy. Analytical Chemistry, 2013, 85, 1492-1500.	3.2	18
62	Elevated Nicotianamine Levels in <i>Arabidopsis halleri</i> Roots Play a Key Role in Zinc Hyperaccumulation. Plant Cell, 2012, 24, 708-723.	3.1	209
63	Barley Metallothioneins: MT3 and MT4 Are Localized in the Grain Aleurone Layer and Show Differential Zinc Binding Â. Plant Physiology, 2012, 159, 1125-1137.	2.3	49
64	A new method for determination of potassium in soils using diffusive gradients in thin films (DGT). Environmental Chemistry, 2012, 9, 14.	0.7	15
65	Assessing the plant availability of manganese in soils using Diffusive Gradients in Thin films (DGT). Geoderma, 2012, 183-184, 92-99.	2.3	30
66	Losses of essential mineral nutrients by polishing of rice differ among genotypes due to contrasting grain hardness and mineral distribution. Journal of Cereal Science, 2012, 56, 307-315.	1.8	59
67	Higher Mass-Independent Isotope Fractionation of Methylmercury in the Pelagic Food Web of Lake Baikal (Russia). Environmental Science & Technology, 2012, 46, 5902-5911.	4.6	87
68	Zinc fluxes into developing barley grains: use of stable Zn isotopes to separate root uptake from remobilization in plants with contrasting Zn status. Plant and Soil, 2012, 361, 241-250.	1.8	40
69	Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se. Food Chemistry, 2012, 133, 650-657.	4.2	57
70	Megapixel imaging of (micro)nutrients in mature barley grains. Journal of Experimental Botany, 2011, 62, 273-282.	2.4	134
71	Review: The role of atomic spectrometry in plant science. Journal of Analytical Atomic Spectrometry, 2011, 26, 52-79.	1.6	65
72	Multielemental Fingerprinting as a Tool for Authentication of Organic Wheat, Barley, Faba Bean, and Potato. Journal of Agricultural and Food Chemistry, 2011, 59, 4385-4396.	2.4	106

SÃ, ren Husted

#	Article	IF	CITATIONS
73	Applicability of Diffusive Gradients in Thin Films for Measuring Mn in Soils and Freshwater Sediments. Analytical Chemistry, 2011, 83, 8984-8991.	3.2	9
74	Elevated Phosphorus Impedes Manganese Acquisition by Barley Plants. Frontiers in Plant Science, 2011, 2, 37.	1.7	59
75	Bioâ€evailable zinc in rice seeds is increased by activation tagging of <i>nicotianamine synthase</i> . Plant Biotechnology Journal, 2011, 9, 865-873.	4.1	168
76	Extensive metabolic crossâ€ŧalk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 2011, 190, 683-696.	3.5	111
77	The use of DCT for prediction of plant available copper, zinc and phosphorus in agricultural soils. Plant and Soil, 2011, 346, 167-180.	1.8	128
78	ICP-MS and LC-ICP-MS for Analysis of Trace Element Content and Speciation in Cereal Grains. Methods in Molecular Biology, 2011, 860, 193-211.	0.4	4
79	Chemical composition of marama bean (Tylosema esculentum)—A wild African bean with unexploited potential. Journal of Food Composition and Analysis, 2010, 23, 648-657.	1.9	51
80	A Combined Zinc/Cadmium Sensor and Zinc/Cadmium Export Regulator in a Heavy Metal Pump. Journal of Biological Chemistry, 2010, 285, 31243-31252.	1.6	73
81	Comparison of Polyacetylene Content in Organically and Conventionally Grown Carrots Using a Fast Ultrasonic Liquid Extraction Method. Journal of Agricultural and Food Chemistry, 2010, 58, 7673-7679.	2.4	40
82	Effects of Organic and Conventional Growth Systems on the Content of Flavonoids in Onions and Phenolic Acids in Carrots and Potatoes. Journal of Agricultural and Food Chemistry, 2010, 58, 10323-10329.	2.4	84
83	Tracing Sources and Bioaccumulation of Mercury in Fish of Lake Baikalâ^ Angara River Using Hg Isotopic Composition. Environmental Science & Technology, 2010, 44, 8030-8037.	4.6	113
84	Iron fortification of rice seeds through activation of the <i>nicotianamine synthase</i> gene. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22014-22019.	3.3	341
85	Zinc transport mediated by barley ZIP proteins are induced by low pH. Plant Signaling and Behavior, 2009, 4, 842-845.	1.2	37
86	Manganese Deficiency Leads to Genotype-Specific Changes in Fluorescence Induction Kinetics and State Transitions. Plant Physiology, 2009, 150, 825-833.	2.3	79
87	Latent manganese deficiency increases transpiration in barley (<i>Hordeum vulgare</i>). Physiologia Plantarum, 2009, 135, 307-316.	2.6	82
88	Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiology and Biochemistry, 2009, 47, 377-383.	2.8	73
89	Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chemistry, 2009, 115, 1357-1363.	4.2	129
90	Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis. Plant Methods, 2009, 5, 12.	1.9	114

#	Article	IF	CITATIONS
91	Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS. Metallomics, 2009, 1, 418.	1.0	151
92	Multi-elemental fingerprinting of plant tissue by semi-quantitative ICP-MS and chemometrics. Journal of Analytical Atomic Spectrometry, 2009, 24, 1198.	1.6	35
93	Manganese Efficiency in Barley: Identification and Characterization of the Metal Ion Transporter HvIRT1. Plant Physiology, 2008, 148, 455-466.	2.3	182
94	A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8532-8537.	3.3	250
95	Multi-elemental speciation analysis of barley genotypes differing in tolerance to cadmium toxicity using SEC-ICP-MS and ESI-TOF-MS. Journal of Analytical Atomic Spectrometry, 2006, 21, 996.	1.6	38
96	Antisense reduction of serine hydroxymethyltransferase results in diurnal displacement of NH4+assimilation in leaves ofSolanum tuberosum. Plant Journal, 2006, 45, 71-82.	2.8	25
97	Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology, 2006, 20, 181-189.	1.5	137
98	Influence of nitrogen and sulphur form on manganese acquisition by barley (shape Hordeum vulgare). Plant and Soil, 2005, 268, 309-317.	1.8	37
99	Genotypic differences in manganese efficiency: field experiments withâ \pounds winter barley (Hordeum vulgare) Tj ETQ α	1 1 0.784 1.8	-314 rgBT /O
100	Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding a Type V P-type ATPase. Genes and Development, 2005, 19, 2757-2769.	2.7	86
101	Differential Capacity for High-Affinity Manganese Uptake Contributes to Differences between Barley Genotypes in Tolerance to Low Manganese Availability. Plant Physiology, 2005, 139, 1411-1420.	2.3	73
102	Elemental fingerprint analysis of barley (Hordeum vulgare) using inductively coupled plasma mass spectrometry, isotope-ratio mass spectrometry, and multivariate statistics. Analytical and Bioanalytical Chemistry, 2004, 378, 171-182.	1.9	51
103	Photorespiratory NH4 Â+ Production in Leaves of Wild-Type and Clutamine Synthetase 2 Antisense Oilseed Rape. Plant Physiology, 2002, 130, 989-998.	2.3	67
104	The regulation of ammonium translocation in plants. Journal of Experimental Botany, 2002, 53, 883-890.	2.4	153
105	Title is missing!. Plant and Soil, 2001, 228, 131-145.	1.8	79
106	A critical experimental evaluation of methods for determination of NH4 + in plant tissue, xylem sap and apoplastic fluid. Physiologia Plantarum, 2000, 109, 167-179.	2.6	140
107	Physiological regulation of plant-atmosphere ammonia exchange. Plant and Soil, 2000, 221, 95-102.	1.8	69
108	Fluxes of ammonia over oilseed rape. Agricultural and Forest Meteorology, 2000, 105, 327-349.	1.9	32

#	Article	IF	CITATIONS
109	Micrometeorological measurements of net ammonia fluxes over oilseed rape during two vegetation periods. Agricultural and Forest Meteorology, 2000, 105, 351-369.	1.9	49
110	Stomatal compensation points for ammonia in oilseed rape plants under field conditions. Agricultural and Forest Meteorology, 2000, 105, 371-383.	1.9	68
111	Sources and sinks of ammonia within an oilseed rape canopy. Agricultural and Forest Meteorology, 2000, 105, 385-404.	1.9	99
112	Resistance modelling of ammonia exchange over oilseed rape. Agricultural and Forest Meteorology, 2000, 105, 405-425.	1.9	131
113	Influence of nitrogen nutrition and metabolism on ammonia volatilization in plants. Nutrient Cycling in Agroecosystems, 1998, 51, 35-40.	1.1	72
114	Physiological parameters controlling plant–atmosphere ammonia exchange. Atmospheric Environment, 1998, 32, 491-498.	1.9	120
115	Soil–plant–atmosphere ammonia exchange associated with calluna vulgaris and deschampsia flexuosa. Atmospheric Environment, 1998, 32, 507-512.	1.9	29
116	Accumulation of Shikimic Acid:Â A Technique for Screening Glyphosate Efficacy. Journal of Agricultural and Food Chemistry, 1998, 46, 4406-4412.	2.4	71
117	Ammonia compensation points in two cultivars of Hordeum vulgare L. during vegetative and generative growth. Plant, Cell and Environment, 1996, 19, 1299-1306.	2.8	67
118	Ammonia Flux between Oilseed Rape Plants and the Atmosphere in Response to Changes in Leaf Temperature, Light Intensity, and Air Humidity (Interactions with Leaf Conductance and Apoplastic) Tj ETQq0 0 0	rgBT /Ove	erl ock 10 Tf 5
119	Apoplastic pH and Ammonium Concentration in Leaves of Brassica napus L. Plant Physiology, 1995, 109, 1453-1460.	2.3	207
120	A computer-controlled system for studying ammonia exchange, photosynthesis and transpiration of plant canopies growing under controlled environmental conditions. Plant, Cell and Environment, 1995, 18, 1070-1077.	2.8	25
121	Seasonal Variation in Methane Emission from Stored Slurry and Solid Manures. Journal of Environmental Quality, 1994, 23, 585-592.	1.0	211
122	An open chamber technique for determination of methane emission from stored livestock manure. Atmospheric Environment Part A General Topics, 1993, 27, 1635-1642.	1.3	39
123	Reducing ammonia loss from cattle slurry by the use of acidifying additives: The role of the buffer system. Journal of the Science of Food and Agriculture, 1991, 57, 335-349.	1.7	96