
Jonathan S Fisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/81482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoglobin, a distinct family of non-heme binding globins, defines a potential photosensor in prokaryotic signal transduction systems. Computational and Structural Biotechnology Journal, 2022, 20, 261-273.	4.1	4
2	Intramyofibrillar glycogen drives endurance exercise capacity. Journal of Physiology, 2020, 598, 4145-4146.	2.9	0
3	Reversible Oxidative Modifications in Myoglobin and Functional Implications. Antioxidants, 2020, 9, 549.	5.1	12
4	A peroxidase mimetic protects skeletal muscle cells from peroxide challenge and stimulates insulin signaling. American Journal of Physiology - Cell Physiology, 2020, 318, C1214-C1225.	4.6	2
5	Regulation of Myogenic Activity by Substrate and Electrical Stimulation In Vitro. BioResearch Open Access, 2019, 8, 129-138.	2.6	6
6	Myoglobin as a versatile peroxidase: Implications for a more important role for vertebrate striated muscle in antioxidant defense. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 234, 9-17.	1.6	18
7	Glucose-dependent trans-plasma membrane electron transport and p70S6k phosphorylation in skeletal muscle cells. Redox Biology, 2019, 27, 101075.	9.0	11
8	A Metalloporphyrin that Serves as a Peroxidase and Stimulates Insulin Signaling in Skeletal Muscle. FASEB Journal, 2019, 33, 543.8.	0.5	0
9	Measuring Trans-Plasma Membrane Electron Transport by C2C12 Myotubes. Journal of Visualized Experiments, 2018, , .	0.3	1
10	Ascorbate Rescues Peroxide Induced Insulin Resistance in Skeletal Muscle. FASEB Journal, 2018, 32, .	0.5	0
11	Trans-Plasma Membrane Electron Transport and Ascorbate Efflux by Skeletal Muscle. Antioxidants, 2017, 6, 89.	5.1	11
12	A role for ataxia telangiectasia mutated in insulin-independent stimulation of glucose transport. Trends in Cell & Molecular Biology, 2017, 12, 49-56.	0.5	0
13	Chloroquine increases phosphorylation of AMPK and Akt in myotubes. Heliyon, 2016, 2, e00083.	3.2	10
14	Postprandial Plasma Incretin Hormones in Exercise-Trained versus Untrained Subjects. Medicine and Science in Sports and Exercise, 2014, 46, 1098-1103.	0.4	15
15	Role of GLUT1 in regulation of reactive oxygen species. Redox Biology, 2014, 2, 764-771.	9.0	45
16	Ataxia telangiectasia mutated impacts insulinâ€like growth factor 1 signalling in skeletal muscle. Experimental Physiology, 2013, 98, 526-535.	2.0	17
17	Impaired insulin-stimulated glucose transport in ATM-deficient mouse skeletal muscle. Applied Physiology, Nutrition and Metabolism, 2013, 38, 589-596.	1.9	11
18	ATM and GLUT1-S490 Phosphorylation Regulate GLUT1 Mediated Transport in Skeletal Muscle. PLoS ONE, 2013, 8, e66027.	2.5	33

JONATHAN S FISHER

#	Article	IF	CITATIONS
19	Ataxia telangiectasia mutated (ATM) influences AICARâ€stimulated glucose transport. FASEB Journal, 2012, 26, 1078.24.	0.5	1
20	Ataxia telangiectasia mutated influences cytochrome c oxidase activity. Biochemical and Biophysical Research Communications, 2011, 405, 599-603.	2.1	33
21	Role of ataxia telangiectasia mutated in insulin signalling of muscleâ€derived cell lines and mouse soleus. Acta Physiologica, 2010, 198, 465-475.	3.8	12
22	A role for AMPK in increased insulin action after serum starvation. American Journal of Physiology - Cell Physiology, 2010, 299, C1171-C1179.	4.6	45
23	ATM plays a role in insulinâ€stimulated phosphorylation of AS160 independent of Akt in mouse soleus muscle. FASEB Journal, 2010, 24, 1046.18.	0.5	0
24	Decreased aconitase and cytochrome c oxidase activity in skeletal muscle of ATMâ€deficient mice. FASEB Journal, 2010, 24, 1001.12.	0.5	0
25	The ATM activator chloroquine stimulates phosphorylation of AMP activated protein kinase (AMPK) and acetyl CoA arboxylase (ACC) independent of ATM. FASEB Journal, 2010, 24, lb674.	0.5	1
26	LiCl causes an acute decrease in ataxia telangiectasia mutated (ATM) protein levels in L6 myotubes. FASEB Journal, 2010, 24, lb675.	0.5	0
27	Ataxia telangiectasia mutated (ATM) is required in insulinâ€like growth factorâ€1 (IGFâ€1) signaling through the PI3K/Akt pathway. FASEB Journal, 2009, 23, 782.3.	0.5	1
28	Inhibition of ataxia telangiectasia mutated (ATM) prevents the prolonged increase in phosphorylation of Akt substrate of 160 kDa (AS160) subsequent to activation of the AMPâ€activated protein kinase (AMPK). FASEB Journal, 2009, 23, 782.2.	0.5	0
29	Chloroquine and resveratrol stimulate ATMâ€independent phosphorylation of AMPK and AKT. FASEB Journal, 2009, 23, 782.4.	0.5	0
30	Skeletal Muscle Insulin Resistance: Roles of Fatty Acid Metabolism and Exercise. Physical Therapy, 2008, 88, 1279-1296.	2.4	146
31	Serum starvation increases phosphorylation of the AMPâ€activated protein kinase (AMPK) in myotubes. FASEB Journal, 2008, 22, 959.1.	0.5	2
32	Chloroquine stimulates phosphorylation of the AMPâ€activated protein kinase (AMPK) and Akt. FASEB Journal, 2008, 22, 959.2.	0.5	0
33	Potentiation of insulin-stimulated glucose transport by the AMP-activated protein kinase. American Journal of Physiology - Cell Physiology, 2007, 292, C564-C572.	4.6	41
34	Malonyl coenzyme A affects insulin-stimulated glucose transport in myotubes. Archives of Physiology and Biochemistry, 2007, 113, 13-24.	2.1	7
35	Potential Role of the AMP-activated Protein Kinase in Regulation of Insulin Action. Cellscience, 2006, 2, 68-81.	0.3	16
36	Type I Diabetes Affects Skeletal Muscle Glutamine Uptake in a Fiber-Specific Manner. Experimental Biology and Medicine, 2005, 230, 606-611.	2.4	8

JONATHAN S FISHER

#	Article	IF	CITATIONS
37	Possibility of Autocrine β-Adrenergic Signaling in C2C12 Myotubes. Experimental Biology and Medicine, 2005, 230, 845-852.	2.4	10
38	AICAR and hyperosmotic stress increase insulin-stimulated glucose transport. Journal of Applied Physiology, 2005, 99, 877-883.	2.5	37
39	Muscle contractions, AICAR, and insulin cause phosphorylation of an AMPK-related kinase. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E986-E992.	3.5	24
40	Creatine feeding increases GLUT4 expression in rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E347-E352.	3.5	48
41	Levodopa with carbidopa diminishes glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in rat skeletal muscle. Journal of Applied Physiology, 2004, 97, 2339-2346.	2.5	18
42	Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E18-E23.	3.5	244
43	Glucose transport rate and glycogen synthase activity both limit skeletal muscle glycogen accumulation. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E1214-E1221.	3.5	66
44	Gonadectomy and reduced physical activity: Effects on skeletal muscle. Archives of Physical Medicine and Rehabilitation, 2001, 82, 93-97.	0.9	24
45	Acute exercise effect on postabsorptive serum leptin. Journal of Applied Physiology, 2001, 91, 680-686.	2.5	48
46	The HIV Protease Inhibitor Indinavir Decreases Insulin- and Contraction-Stimulated Glucose Transport in Skeletal Muscle. Diabetes, 2001, 50, 1397-1401.	0.6	98
47	Food restriction suppresses muscle growth and augments osteopenia in ovariectomized rats. Journal of Applied Physiology, 2000, 88, 265-271.	2.5	32
48	Effects of 10 Days of Endurance Exercise Training on the Suppression of Whole Body and Regional Lipolysis by Insulin. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 1498-1504.	3.6	16
49	Stiffness and muscle function with age and reduced muscle use. Journal of Orthopaedic Research, 1999, 17, 409-414.	2.3	41
50	Leptin Response to Insulin in Humans Is Related to the Lipolytic State of Abdominal Subcutaneous Fat. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3726-3731.	3.6	10
51	Suppression of Whole Body and Regional Lipolysis by Insulin: Effects of Obesity and Exercise. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3886-3895.	3.6	32
52	Stiffness and Muscle Function with Age and Reduced Muscle Use. Journal of Bone and Joint Surgery - Series A, 1999, 81, 84.	3.0	2
53	Immobilization effects on contractile properties of aging rat skeletal muscle. Aging Clinical and Experimental Research, 1998, 10, 59-66.	2.9	4
54	Effects of ovariectomy and hindlimb unloading on skeletal muscle. Journal of Applied Physiology, 1998. 85. 1316-1321.	2.5	48

#	Article	IF	CITATIONS
55	Muscle glycogen accumulation after endurance exercise in trained and untrained individuals. Journal of Applied Physiology, 1997, 83, 897-903.	2.5	81
56	Role of nitric oxide in skeletal muscle blood flow at rest and during dynamic exercise in humans. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H405-H410.	3.2	59