Barbara Ruzicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8148080/publications.pdf

Version: 2024-02-01

69 papers 2,309 citations

293460 24 h-index 232693 48 g-index

70 all docs

70 docs citations

70 times ranked

2720 citing authors

#	Article	IF	CITATIONS
1	The role of polymer structure on water confinement in poly(N-isopropylacrylamide) dispersions. Journal of Molecular Liquids, 2022, 355, 118924.	2.3	4
2	Thermal Behaviour of Microgels Composed of Interpenetrating Polymer Networks of Poly(N-isopropylacrylamide) and Poly(acrylic acid): A Calorimetric Study. Polymers, 2022, 14, 115.	2.0	2
3	Apparatus for simultaneous dynamic light scattering–small angle neutron scattering investigations of dynamics and structure in soft matter. Review of Scientific Instruments, 2021, 92, 023907.	0.6	12
4	Glass and Jamming Rheology in Soft Particles Made of PNIPAM and Polyacrylic Acid. International Journal of Molecular Sciences, 2021, 22, 4032.	1.8	11
5	Chemical-Physical Behaviour of Microgels Made of Interpenetrating Polymer Networks of PNIPAM and Poly(acrylic Acid). Polymers, 2021, 13, 1353.	2.0	15
6	Volume fraction determination of microgel composed of interpenetrating polymer networks of PNIPAM and polyacrylic acid. Journal of Physics Condensed Matter, 2021, 33, 174004.	0.7	11
7	Salt enhanced sedimentation of halloysite nanotubes for precise determination of DNA adsorption isotherm. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125400.	2.3	5
8	Gellan Gum Microgels as Effective Agents for a Rapid Cleaning of Paper. ACS Applied Polymer Materials, 2020, 2, 2791-2801.	2.0	24
9	Relaxation Dynamics, Softness, and Fragility of Microgels with Interpenetrated Polymer Networks. Macromolecules, 2020, 53, 1596-1603.	2.2	24
10	Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels: The role of poly(acrylic acid). Journal of Colloid and Interface Science, 2019, 545, 210-219.	5.0	32
11	Microglia-Derived Microvesicles Affect Microglia Phenotype in Glioma. Frontiers in Cellular Neuroscience, 2019, 13, 41.	1.8	52
12	Molecular mechanisms driving the microgels behaviour: A Raman spectroscopy and dynamic light scattering study. Journal of Molecular Liquids, 2019, 284, 718-724.	2.3	19
13	Isotopic Effect on the Gel and Glass Formation of a Charged Colloidal Clay: Laponite. Journal of Physical Chemistry B, 2017, 121, 4576-4582.	1.2	9
14	Swelling of responsive-microgels: experiments versus models. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 389-396.	2.3	23
15	Dynamical behavior of microgels of interpenetrated polymer networks. Soft Matter, 2017, 13, 5185-5193.	1.2	39
16	Probing bulky ligand entry in engineered archaeal ferritins. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 450-456.	1.1	12
17	Local structure of temperature and pH-sensitive colloidal microgels. Journal of Chemical Physics, 2015, 143, 114904.	1.2	15
18	Non-diffusive dynamics in a colloidal glass: Aging versus rejuvenation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 316-320.	2.3	11

#	Article	IF	CITATIONS
19	Structural and microscopic relaxations in a colloidal glass. Soft Matter, 2015, 11, 466-471.	1.2	39
20	The structure of water near a charged crystalline surface. Journal of Non-Crystalline Solids, 2015, 407, 418-422.	1.5	9
21	Dynamic light scattering study of temperature and pH sensitive colloidal microgels. Journal of Non-Crystalline Solids, 2015, 407, 361-366.	1.5	23
22	Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer. Physical Review E, 2014, 90, 032301.	0.8	7
23	Dual aging behaviour in a clay–polymer dispersion. Soft Matter, 2014, 10, 4513.	1.2	16
24	Aging behavior of the localization length in a colloidal glass. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 118-122.	2.3	16
25	Glass–glass transition during aging of a colloidal clay. Nature Communications, 2014, 5, 4049.	5.8	101
26	Dichotomic aging behaviour in a colloidal glass. Soft Matter, 2013, 9, 10955.	1.2	63
27	Observation of empty liquids and equilibrium gels in a colloidal clay. , 2013, , .		4
28	Isotopic effect on the aging dynamics of a charged colloidal system. RSC Advances, 2012, 2, 11111.	1.7	14
29	A fresh look at the Laponite phase diagram. Soft Matter, 2011, 7, 1268.	1.2	348
30	Observation of empty liquids and equilibrium gels in a colloidal clay. Nature Materials, 2011, 10, 56-60.	13.3	307
31	Competing Interactions in Arrested States of Colloidal Clays. Physical Review Letters, 2010, 104, 085701.	2.9	78
32	Influence of an adsorbing polymer on the aging dynamics of Laponite clay suspensions. Philosophical Magazine, 2008, 88, 4213-4221.	0.7	23
33	Arrested state of clay-water suspensions: Gel or glass?. Physical Review E, 2008, 77, 020402.	0.8	59
34	Ageing of the nonlinear optical susceptibility in soft matter. Journal of Physics Condensed Matter, 2007, 19, 205129.	0.7	1
35	Dynamics of Laponite solutions: An interpretation within the coupling model scheme. Journal of Non-Crystalline Solids, 2007, 353, 3885-3890.	1.5	6
36	Ageing dynamics in Laponite dispersions at various salt concentrations. Philosophical Magazine, 2007, 87, 449-458.	0.7	28

#	Article	IF	CITATIONS
37	About the formation of C60 fine particles with reprecipitation method in ethanol/carbon disulfide mixture. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 402-405.	2.0	2
38	More on the Phase Diagram of Laponite. Langmuir, 2006, 22, 1106-1111.	1.6	131
39	Ergodic to non-ergodic transition in low concentration Laponite. Journal of Physics Condensed Matter, 2004, 16, S4993-S5002.	0.7	35
40	High-frequency transverse-like excitations in glassy glycerol. Philosophical Magazine, 2004, 84, 1453-1461.	0.7	5
41	Evidence of anomalous dispersion of the generalized sound velocity in glasses. Physical Review B, 2004, 69, .	1.1	71
42	Routes to Gelation in a Clay Suspension. Physical Review Letters, 2004, 93, 258301.	2.9	136
43	Inelastic X-ray scattering and high-frequency dynamics of molecular liquids. Pure and Applied Chemistry, 2004, 76, 79-89.	0.9	5
44	Optical properties of the quasi-two-dimensional dichalcogenides 2H-TaSe \$ mathsf {_2}\$ and 2H-NbSe \$ mathsf {_2}\$. European Physical Journal B, 2003, 33, 15-23.	0.6	28
45	High-frequency transverse dynamics in glasses. Journal of Physics Condensed Matter, 2003, 15, S1269-S1278.	0.7	28
46	Charge dynamics in low-dimensional quantum systems. Journal of Physics Condensed Matter, 2003, 15, S2501-S2511.	0.7	0
47	Scaling between magnetization and Drude weight inEuB6. Physical Review B, 2002, 65, .	1.1	42
48	Chemical and physical hydrogels: two casesystems studied by quasi elastic light scattering. Physica A: Statistical Mechanics and Its Applications, 2002, 304, 119-128.	1.2	35
49	Charge Dynamics of 2H-TaSe2along the Less-Conductingc-Axis. Physical Review Letters, 2001, 86, 4136-4139.	2.9	31
50	Optical evidence for dimensionality crossover: The case of ladder systems and organic Bechgaard salts. Physica C: Superconductivity and Its Applications, 2000, 341-348, 359-362.	0.6	1
51	Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films. Physical Review B, 2000, 61, R2468-R2471.	1.1	126
52	Transport and optical conductivity in. European Physical Journal B, 2000, 16, 205-208.	0.6	0
53	Pressure and doping dependence of electronic properties of carbon nanotube ropes. AIP Conference Proceedings, 2000, , .	0.3	0
54	Low-temperature transport, thermal, and optical properties of single-grain quasicrystals of icosahedral phases in the Y-Mg-Zn and Tb-Mg-Zn alloy systems. Physical Review B, 2000, 62, 262-272.	1.1	20

#	Article	IF	CITATIONS
55	Optics in the ladder compounds Sr14â^'xCaxCu24O41. Physica B: Condensed Matter, 1999, 259-261, 1036-1037.	1.3	3
56	Optical properties of Sr14 \hat{a} °xCaxCu24O41 and Sr0.73CuO2. Physica C: Superconductivity and Its Applications, 1999, 317-318, 282-285.	0.6	2
57	<title>Synchrotron IR microspectroscopy of malignant tissue</title> ., 1999, , .		0
58	Temperature dependence of the anisotropic electrodynamics in the ladder compounds. European Physical Journal B, 1998, 6, 301-305.	0.6	25
59	Infrared spectroscopy and microscopy at the Daresbury synchrotron light source. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1998, 20, 439-448.	0.4	7
60	Low-temperature softening of the polaron band in electron-doped cuprates. Physica B: Condensed Matter, 1998, 244, 41-48.	1.3	2
61	Fourier transform infrared microscopy: some advances in techniques for characterisation and structure–property elucidations of industrial materialâ€. Analyst, The, 1998, 123, 579-586.	1.7	39
62	Fano effect in theaâ^'bplane ofNd1.96Ce0.04CuO4+y:Evidence of phonon interaction with a polaronic background. Physical Review B, 1998, 57, 1248-1252.	1.1	43
63	Small and large polarons in nickelates, manganites, and cuprates. Journal of Superconductivity and Novel Magnetism, 1997, 10, 293-297.	0.5	12
64	Weakly and tightly bound polarons in the infrared spectra of perovskites. Physica Scripta, 1996, T66, 215-219.	1.2	6
65	Polaronic optical absorption in semiconducting and superconducting oxides. European Physical Journal D, 1996, 46, 1247-1248.	0.4	2
66	Polarons in the infrared spectra of high-T c materials. Journal of Superconductivity and Novel Magnetism, 1996, 9, 393-396.	0.5	2
67	Vibron and roton bands in the first overtone of solid and liquid parahydrogen. Physical Review B, 1994, 49, 6672-6677.	1.1	1
68	Translational and rotational spectra in the fundamental infrared band of liquid and solid parahydrogen. Physical Review B, 1993, 47, 2590-2595.	1.1	7
69	New Optical Setup for In Situ DLS-SANS Measurements on Soft Matter. Neutron News, 0, , 1-2.	0.1	0