
Andy A Meharg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8147790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 2002, 154, 29-43.	3.5	1,087
2	Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation Strategies. Annual Review of Plant Biology, 2010, 61, 535-559.	8.6	1,023
3	Arsenic uptake and metabolism in plants. New Phytologist, 2009, 181, 777-794.	3.5	973
4	Arsenic Contamination of Bangladesh Paddy Field Soils:Â Implications for Rice Contribution to Arsenic Consumption. Environmental Science & Technology, 2003, 37, 229-234.	4.6	872
5	Variation in Arsenic Speciation and Concentration in Paddy Rice Related to Dietary Exposure. Environmental Science & Technology, 2005, 39, 5531-5540.	4.6	706
6	Geographical Variation in Total and Inorganic Arsenic Content of Polished (White) Rice. Environmental Science & Technology, 2009, 43, 1612-1617.	4.6	673
7	Greatly Enhanced Arsenic Shoot Assimilation in Rice Leads to Elevated Grain Levels Compared to Wheat and Barley. Environmental Science & Technology, 2007, 41, 6854-6859.	4.6	653
8	Uptake Kinetics of Arsenic Species in Rice Plants. Plant Physiology, 2002, 128, 1120-1128.	2.3	593
9	Growing Rice Aerobically Markedly Decreases Arsenic Accumulation. Environmental Science & Technology, 2008, 42, 5574-5579.	4.6	567
10	Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation. Plant Physiology, 2002, 130, 1552-1561.	2.3	548
11	Arsenic Accumulation and Metabolism in Rice (Oryza sativaL.). Environmental Science & Technology, 2002, 36, 962-968.	4.6	516
12	Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science, 2009, 14, 436-442.	4.3	486
13	Suppression of the High Affinity Phosphate Uptake System: A Mechanism of Arsenate Tolerance inHolcus lanatusL Journal of Experimental Botany, 1992, 43, 519-524.	2.4	482
14	Increase in Rice Grain Arsenic for Regions of Bangladesh Irrigating Paddies with Elevated Arsenic in Groundwaters. Environmental Science & Technology, 2006, 40, 4903-4908.	4.6	473
15	Occurrence and Partitioning of Cadmium, Arsenic and Lead in Mine Impacted Paddy Rice: Hunan, China. Environmental Science & Technology, 2009, 43, 637-642.	4.6	451
16	High Percentage Inorganic Arsenic Content of Mining Impacted and Nonimpacted Chinese Rice. Environmental Science & Technology, 2008, 42, 5008-5013.	4.6	390
17	Arsenic Sequestration in Iron Plaque, Its Accumulation and Speciation in Mature Rice Plants (Oryza) Tj ETQq1 1	0.784314 4.6	rgBT /Overlo
18	Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity.	2.8	382

Plant, Cell and Environment, 2001, 24, 713-722.

382 2.8

#	Article	IF	CITATIONS
19	Arsenic in rice – understanding a new disaster for South-East Asia. Trends in Plant Science, 2004, 9, 415-417.	4.3	375
20	Variation in Rice Cadmium Related to Human Exposure. Environmental Science & Technology, 2013, 47, 5613-5618.	4.6	365
21	Exposure to inorganic arsenic from rice: A global health issue?. Environmental Pollution, 2008, 154, 169-171.	3.7	344
22	Speciation and Localization of Arsenic in White and Brown Rice Grains. Environmental Science & Technology, 2008, 42, 1051-1057.	4.6	321
23	Methylated arsenic species in plants originate from soil microorganisms. New Phytologist, 2012, 193, 665-672.	3.5	312
24	Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant and Soil, 2002, 240, 311-319.	1.8	311
25	Phytochelatins Are Involved in Differential Arsenate Tolerance inHolcus lanatus. Plant Physiology, 2001, 126, 299-306.	2.3	305
26	Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus) Tj ETQq0 0 New Phytologist, 2005, 168, 551-558.	0 rgBT /C 3.5	verlock 10 Tf 282
27	Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytologist, 2005, 165, 91-97.	3.5	279
28	Inorganic Arsenic in Rice Bran and Its Products Are an Order of Magnitude Higher than in Bulk Grain. Environmental Science & Technology, 2008, 42, 7542-7546.	4.6	278
29	Methylated Arsenic Species in Rice: Geographical Variation, Origin, and Uptake Mechanisms. Environmental Science & Technology, 2013, 47, 3957-3966.	4.6	276
30	The Nature of Arsenic-Phytochelatin Complexes in Holcus lanatus and Pteris cretica. Plant Physiology, 2004, 134, 1113-1122.	2.3	275
31	Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant and Soil, 2010, 329, 139-153.	1.8	275
32	Grain Unloading of Arsenic Species in Rice Â. Plant Physiology, 2009, 152, 309-319.	2.3	268
33	Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant, Cell and Environment, 1994, 17, 989-993.	2.8	266
34	Arsenite transport into paddy rice (Oryza sativa) roots. New Phytologist, 2003, 157, 39-44.	3.5	262
35	Uptake and translocation of inorganic and methylated arsenic species by plants. Environmental Chemistry, 2007, 4, 197.	0.7	257
36	An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L New Phytologist, 1990, 116, 29-35.	3.5	255

#	Article	IF	CITATIONS
37	Market Basket Survey Shows Elevated Levels of As in South Central U.S. Processed Rice Compared to California:Â Consequences for Human Dietary Exposure. Environmental Science & Technology, 2007, 41, 2178-2183.	4.6	253
38	Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - A review. Water Research, 2018, 140, 403-414.	5.3	244
39	Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza) Tj ETQq1 1	0.784314 1.1	$rgBT_{228}^{\prime}Overloc$
40	Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytologist, 2009, 184, 193-201.	3.5	226
41	Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Applied Geochemistry, 2003, 18, 195-220.	1.4	225
42	Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. Environmental Science & Technology, 2017, 51, 7326-7339.	4.6	223
43	Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice?. Environmental and Experimental Botany, 2015, 120, 8-17.	2.0	218
44	Toxicity of diclofenac to Gyps vultures. Biology Letters, 2006, 2, 279-282.	1.0	210
45	Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. Journal of Experimental Botany, 2008, 59, 2267-2276.	2.4	210
46	Co-evolution of Mycorrhizal Symbionts and their Hosts to Metal-contaminated Environments. Advances in Ecological Research, 1999, 30, 69-112.	1.4	193
47	Selenium Characterization in the Global Rice Supply Chain. Environmental Science & Technology, 2009, 43, 6024-6030.	4.6	191
48	The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research, 2003, 107, 1253-1265.	2.5	187
49	Antimony bioavailability in mine soils. Environmental Pollution, 2003, 124, 93-100.	3.7	186
50	Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Science of the Total Environment, 2017, 581-582, 209-220.	3.9	185
51	Organic Matter—Solid Phase Interactions Are Critical for Predicting Arsenic Release and Plant Uptake in Bangladesh Paddy Soils. Environmental Science & Technology, 2011, 45, 6080-6087.	4.6	181
52	Ectomycorrhizas — extending the capabilities of rhizosphere remediation?. Soil Biology and Biochemistry, 2000, 32, 1475-1484.	4.2	180
53	Title is missing!. Plant and Soil, 2002, 243, 57-66.	1.8	175
54	Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytologist, 2011, 192, 87-98.	3.5	170

#	Article	IF	CITATIONS
55	A review of rhizosphere carbon flow modelling. Plant and Soil, 2000, 222, 263-281.	1.8	168
56	Inorganic arsenic levels in baby rice are of concern. Environmental Pollution, 2008, 152, 746-749.	3.7	168
57	Removing the Threat of Diclofenac to Critically Endangered Asian Vultures. PLoS Biology, 2006, 4, e66.	2.6	167
58	Variation in arsenic accumulation – hyperaccumulation in ferns and their allies. New Phytologist, 2003, 157, 25-31.	3.5	165
59	Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. European Journal of Soil Science, 2003, 54, 735-740.	1.8	161
60	Title is missing!. Plant and Soil, 1997, 189, 303-319.	1.8	155
61	Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environmental Microbiology, 2005, 7, 828-838.	1.8	153
62	Phosphorus Nutrition of Arsenateâ€Tolerant and Nontolerant Phenotypes of Velvetgrass. Journal of Environmental Quality, 1994, 23, 234-238.	1.0	152
63	Identification of Low Inorganic and Total Grain Arsenic Rice Cultivars from Bangladesh. Environmental Science & Technology, 2009, 43, 6070-6075.	4.6	151
64	Environmental and Genetic Control of Arsenic Accumulation and Speciation in Rice Grain: Comparing a Range of Common Cultivars Grown in Contaminated Sites Across Bangladesh, China, and India. Environmental Science & Technology, 2009, 43, 8381-8386.	4.6	146
65	Cooking rice in a high water to rice ratio reduces inorganic arsenic content. Journal of Environmental Monitoring, 2009, 11, 41-44.	2.1	143
66	Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environment International, 2009, 35, 473-475.	4.8	138
67	Field Fluxes and Speciation of Arsines Emanating from Soils. Environmental Science & Technology, 2011, 45, 1798-1804.	4.6	138
68	Inorganic arsenic in rice-based products for infants and young children. Food Chemistry, 2016, 191, 128-134.	4.2	137
69	A critical review of labelling techniques used to quantify rhizosphere carbon-flow. Plant and Soil, 1994, 166, 55-62.	1.8	129
70	Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant and Soil, 1995, 170, 345-349.	1.8	129
71	Mechanism of Arsenate Resistance in the Ericoid Mycorrhizal Fungus Hymenoscyphus ericae. Plant Physiology, 2000, 124, 1327-1334.	2.3	129
72	The role of the plasmalemma in metal tolerance in angiosperms. Physiologia Plantarum, 1993, 88, 191-198.	2.6	128

#	Article	IF	CITATIONS
73	A review on completing arsenic biogeochemical cycle: Microbial volatilization of arsines in environment. Journal of Environmental Sciences, 2014, 26, 371-381.	3.2	128
74	Variation in grain arsenic assessed in a diverse panel of rice (<i>Oryza sativa</i>) grown in multiple sites. New Phytologist, 2012, 193, 650-664.	3.5	126
75	Interactions between earthworms and arsenic in the soil environment: a review. Environmental Pollution, 2003, 124, 361-373.	3.7	124
76	Quantitative and Qualitative Trapping of Arsines Deployed to Assess Loss of Volatile Arsenic from Paddy Soil. Environmental Science & Technology, 2009, 43, 8270-8275.	4.6	122
77	Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA. Environmental Pollution, 2012, 163, 77-83.	3.7	121
78	Toxicity of non-steroidal anti-inflammatory drugs to <i>Gyps</i> vultures: a new threat from ketoprofen. Biology Letters, 2010, 6, 339-341.	1.0	118
79	The mechanisms of arsenate tolerance in Deschampsia cespitosa (L.) Beauv. and Agrostis capillaris L New Phytologist, 1991, 119, 291-297.	3.5	112
80	Arsenic–glutathione complexes—their stability in solution and during separation by different HPLC modes. Journal of Analytical Atomic Spectrometry, 2004, 19, 183-190.	1.6	110
81	Survival and behaviour of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from arsenate-contaminated and non-contaminated sites. Soil Biology and Biochemistry, 2001, 33, 1239-1244.	4.2	101
82	An arsenicâ€accumulating, hypertolerant brassica, <i>Isatis capadocica</i> . New Phytologist, 2009, 184, 41-47.	3.5	101
83	Codeposition of Organic Carbon and Arsenic in Bengal Delta Aquifers. Environmental Science & Technology, 2006, 40, 4928-4935.	4.6	100
84	Investigation into mercury bound to biothiols: structural identification using ESI–ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS. Analytical and Bioanalytical Chemistry, 2008, 390, 1753-1764.	1.9	99
85	The molecular form of mercury in biota: identification of novel mercury peptide complexes in plants. Chemical Communications, 2009, , 4257.	2.2	99
86	Arsenic Limits Trace Mineral Nutrition (Selenium, Zinc, and Nickel) in Bangladesh Rice Grain. Environmental Science & Technology, 2009, 43, 8430-8436.	4.6	99
87	Uptake, accumulation and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatus L New Phytologist, 1991, 117, 225-231.	3.5	98
88	Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Science of the Total Environment, 2018, 642, 485-496.	3.9	98
89	Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus?. Journal of Experimental Botany, 2007, 58, 1333-1338.	2.4	97
90	Potential Hazard to Human Health from Exposure to Fragments of Lead Bullets and Shot in the Tissues of Game Animals. PLoS ONE, 2010, 5, e10315.	1.1	97

#	Article	IF	CITATIONS
91	The dynamics of arsenic in four paddy fields in the Bengal delta. Environmental Pollution, 2011, 159, 947-953.	3.7	95
92	Arsenate, arsenite and dimethyl arsinic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant and Soil, 2008, 304, 277-289.	1.8	92
93	Influence of Phosphate on the Arsenic Uptake by Wheat (Triticum durum L.) Irrigated with Arsenic Solutions at Three Different Concentrations. Water, Air, and Soil Pollution, 2009, 197, 371-380.	1.1	92
94	Arsenic & Rice. , 2012, , .		92
95	Total arsenic, inorganic arsenic, and other elements concentrations in Italian rice grain varies with origin and type. Environmental Pollution, 2013, 181, 38-43.	3.7	91
96	Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. Journal of Experimental Botany, 2018, 69, 1735-1748.	2.4	86
97	An arsenate tolerance gene on chromosome 6 of rice. New Phytologist, 2004, 163, 45-49.	3.5	85
98	Highâ€ a ffinity phosphate/arsenate transport in white lupin (Lupinus albus) is relatively insensitive to phosphate status. New Phytologist, 2003, 158, 165-173.	3.5	84
99	The impact of a rice based diet on urinary arsenic. Journal of Environmental Monitoring, 2011, 13, 257-265.	2.1	83
100	Diclofenac residues in carcasses of domestic ungulates available to vultures in India. Environment International, 2007, 33, 759-765.	4.8	82
101	Inorganic arsenic and trace elements in Ghanaian grain staples. Environmental Pollution, 2011, 159, 2435-2442.	3.7	82
102	Grain Accumulation of Selenium Species in Rice (Oryza sativa L.). Environmental Science & Technology, 2012, 46, 5557-5564.	4.6	82
103	Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Environmental Pollution, 2013, 177, 38-47.	3.7	82
104	The role of the plasmalemma in metal tolerance in angiosperms. Physiologia Plantarum, 1993, 88, 191-198.	2.6	82
105	Downstream changes in the transport and storage of sediment-associated contaminants (P, Cr and) Tj ETQq1 1 177-186.	0.784314 3.9	rgBT /Overlo 81
106	Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Science of the Total Environment, 2014, 485-486, 468-473.	3.9	81
107	Lead concentrations in bones and feathers of the globally threatened Spanish imperial eagle. Biological Conservation, 2005, 121, 603-610.	1.9	80
108	Arsenic Behaviour from Groundwater and Soil to Crops: Impacts on Agriculture and Food Safety. Reviews of Environmental Contamination and Toxicology, 2007, 189, 43-87.	0.7	80

#	Article	IF	CITATIONS
109	Optimizing Peri-URban Ecosystems (PURE) to re-couple urban-rural symbiosis. Science of the Total Environment, 2017, 586, 1085-1090.	3.9	80
110	A review of recent developments in the speciation and location of arsenic and selenium in rice grain. Analytical and Bioanalytical Chemistry, 2012, 402, 3275-3286.	1.9	79
111	Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC–ICP–MS and LC–ES-MS/ICP–MS with XANES/EXAFS in analysis of Thunbergia alata. Analytical and Bioanalytical Chemistry, 2008, 390, 1739-1751.	1.9	78
112	Lead in rice: Analysis of baseline lead levels in market and field collected rice grains. Science of the Total Environment, 2014, 485-486, 428-434.	3.9	78
113	Mechanisms of Plant Resistance to Metal and Metalloid Ions and Potential Biotechnological Applications. Plant and Soil, 2005, 274, 163-174.	1.8	77
114	Pentavalent Arsenic Can Bind to Biomolecules. Angewandte Chemie - International Edition, 2007, 46, 2594-2597.	7.2	77
115	Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation. Environmental Pollution, 2013, 173, 238-244.	3.7	77
116	Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus L Heredity, 1992, 69, 336-341.	1.2	75
117	Assessing the Labile Arsenic Pool in Contaminated Paddy Soils by Isotopic Dilution Techniques and Simple Extractions. Environmental Science & amp; Technology, 2011, 45, 4262-4269.	4.6	75
118	Assessment of bioavailable arsenic and copper in soils and sediments from the Antofagasta region of northern Chile. Science of the Total Environment, 2002, 286, 51-59.	3.9	74
119	After the Aznalcóllar mine spill: Arsenic, zinc, selenium, lead and copper levels in the livers and bones of five waterfowl species. Environmental Research, 2006, 100, 349-361.	3.7	74
120	Baseline Soil Variation Is a Major Factor in Arsenic Accumulation in Bengal Delta Paddy Rice. Environmental Science & Technology, 2009, 43, 1724-1729.	4.6	74
121	Alternate wetting and drying irrigation for rice in Bangladesh: Is it sustainable and has plant breeding something to offer?. Food and Energy Security, 2013, 2, 120-129.	2.0	74
122	Biotransformation and Accumulation of Arsenic in Soil Amended with Seaweed. Environmental Science & Technology, 2003, 37, 951-957.	4.6	73
123	Dioxins released from chemical accidents. Nature, 1995, 375, 353-354.	13.7	71
124	Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environmental Pollution, 2010, 158, 1536-1541.	3.7	71
125	Arsenic-speciation in arsenate-resistant and non-resistant populations of the earthworm, Lumbricus rubellus. Journal of Environmental Monitoring, 2002, 4, 603-608.	2.1	70
126	Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire. Applied Soil Ecology, 1996, 3, 99-107.	2.1	69

#	Article	IF	CITATIONS
127	Inorganic arsenic levels in rice milk exceed EU and US drinking water standards. Journal of Environmental Monitoring, 2008, 10, 428.	2.1	68
128	Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizosphere. Canadian Journal of Botany, 2002, 80, 803-809.	1.2	67
129	The fungal microbiota of de-novo paediatric inflammatory bowel disease. Microbes and Infection, 2015, 17, 304-310.	1.0	67
130	Carbon distribution within the plant and rhizosphere in laboratory and field-grown Lolium perenne at different stages of development. Soil Biology and Biochemistry, 1990, 22, 471-477.	4.2	65
131	Getting to the bottom of arsenic standards and guidelines. Environmental Science & Technology, 2010, 44, 4395-4399.	4.6	65
132	Enhanced transfer of arsenic to grain for Bangladesh grown rice compared to US and EU. Environment International, 2009, 35, 476-479.	4.8	64
133	Apparent tolerance of turkey vultures (<i>Cathartes aura</i>) to the nonâ€steroidal antiâ€inflammatory drug diclofenac. Environmental Toxicology and Chemistry, 2008, 27, 2341-2345.	2.2	63
134	Rice Grain Cadmium Concentrations in the Global Supply-Chain. Exposure and Health, 2020, 12, 869-876.	2.8	63
135	Lux-biosensor assessment of pH effects on microbial sorption and toxicity of chlorophenols. FEMS Microbiology Letters, 1999, 174, 273-278.	0.7	62
136	Resistance to copper toxicity in populations of the earthworms <i>Lumbricus rubellus</i> and <i>Dendrodrilus rubidus</i> from contaminated mine wastes. Environmental Toxicology and Chemistry, 2001, 20, 2336-2341.	2.2	61
137	Geographical variation in inorganic arsenic in paddy field samples and commercial rice from the Iberian Peninsula. Food Chemistry, 2016, 202, 356-363.	4.2	61
138	Relationship between plant phosphorus status and the kinetics of arsenate influx in clones ofdeschampsia cespitosa (L.) beauv. that differ in their tolerance to arsenate. Plant and Soil, 1994, 162, 99-106.	1.8	60
139	Age-Associated Changes of Brain Copper, Iron, and Zinc in Alzheimer's Disease and Dementia with Lewy Bodies. Journal of Alzheimer's Disease, 2014, 42, 1407-1413.	1.2	59
140	In utero exposure to cigarette chemicals induces sex-specific disruption of one-carbon metabolism and DNA methylation in the human fetal liver. BMC Medicine, 2015, 13, 18.	2.3	58
141	Assessment of toxicological interactions of benzene and its primary degradation products (catechol) Tj ETQq1 1 1997, 16, 849-856.	0.784314 2.2	f rgBT /Overlo 57
142	Lead contamination and associated disease in captive and reintroduced red kites Milvus milvus in England. Science of the Total Environment, 2007, 376, 116-127.	3.9	57
143	Analysis of Nine NSAIDs in Ungulate Tissues Available to Critically Endangered Vultures in India. Environmental Science & Technology, 2009, 43, 4561-4566.	4.6	57
144	Mucosal Microbiome in Patients with Recurrent Aphthous Stomatitis. Journal of Dental Research, 2015, 94, 87S-94S.	2.5	57

#	Article	IF	CITATIONS
145	Diclofenac disposition in Indian cow and goat with reference to Gyps vulture population declines. Environmental Pollution, 2007, 147, 60-65.	3.7	56
146	Identification of tetramethylarsonium in rice grains with elevated arsenic content. Journal of Environmental Monitoring, 2011, 13, 32-34.	2.1	56
147	Mitigation of arsenic accumulation in rice: An agronomical, physico-chemical, and biological approach – A critical review. Critical Reviews in Environmental Science and Technology, 2020, 50, 31-71.	6.6	56
148	Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK. Science of the Total Environment, 2015, 533, 520-527.	3.9	55
149	Toxicity assessment of xenobiotic contaminated groundwater using lux modified Pseudomonas fluorescens. Chemosphere, 1997, 35, 1967-1985.	4.2	54
150	Toxic interactions of metal ions (Cd 2+ , Pb 2+ , Zn 2+ and Sb 3â^') on in vitro biomass production of ectomycorrhizal fungi. New Phytologist, 1997, 137, 551-562.	3.5	54
151	Arsenic Shoot-Grain Relationships in Field Grown Rice Cultivars. Environmental Science & Technology, 2010, 44, 1471-1477.	4.6	54
152	The genetics of arsenate tolerance in Yorkshire fog, Holcus lanatus L Heredity, 1992, 69, 325-335.	1.2	53
153	Mineralization of 2,4- dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere, 1997, 34, 2495-2504.	4.2	52
154	Toxicity of mono-, di- and tri-chlorophenols to lux marked terrestrial bacteria, Burkholderia species Rasc c2 and Pseudomonas fluorescens. Chemosphere, 2001, 43, 157-166.	4.2	52
155	Accumulation or production of arsenobetaine in humans?. Journal of Environmental Monitoring, 2010, 12, 832.	2.1	51
156	Arsenic and old plants. New Phytologist, 2002, 156, 1-4.	3.5	50
157	A pre-industrial source of dioxins and furans. Nature, 2003, 421, 909-910.	13.7	49
158	Arsenate Causes Differential Acute Toxicity to Two P-deprived Genotypes of Rice Seedlings (Oryza) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
159	Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: Influence of flowering time on genetic loci. Annals of Applied Biology, 2012, 161, 46-56.	1.3	49
160	Distribution of soil selenium in China is potentially controlled by deposition and volatilization?. Scientific Reports, 2016, 6, 20953.	1.6	49
161	Risk assessment of potentially toxic elements in agricultural soils and maize tissues from selected districts in Tanzania. Science of the Total Environment, 2012, 416, 180-186.	3.9	48

#	Article	IF	CITATIONS
163	The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling. Science of the Total Environment, 2018, 613-614, 398-408.	3.9	47
164	ALTERED PORPHYRIN EXCRETION AND HISTOPATHOLOGY OF GREYLAG GEESE (ANSER ANSER) EXPOSED TO SOIL CONTAMINATED WITH LEAD AND ARSENIC IN THE GUADALQUIVIR MARSHES, SOUTHWESTERN SPAIN. Environmental Toxicology and Chemistry, 2006, 25, 203.	2.2	45
165	Inorganic arsenic exposure and neuropsychological development of children of 4–5 years of age living in Spain. Environmental Research, 2019, 174, 135-142.	3.7	45
166	Degradation of the polycyclic aromatic hydrocarbon (PAH) fluorene is retarded in a Scots pine ectomycorrhizosphere. New Phytologist, 2004, 163, 641-649.	3.5	44
167	Ligand Arsenic Complexation and Immunoperoxidase Detection of Metallothionein in the EarthwormLumbricus rubellusInhabiting Arsenic-Rich Soil. Environmental Science & Technology, 2005, 39, 2042-2048.	4.6	44
168	Rethinking Rice Preparation for Highly Efficient Removal of Inorganic Arsenic Using Percolating Cooking Water. PLoS ONE, 2015, 10, e0131608.	1.1	44
169	Calluna vulgaris root cells show increased capacity for amino acid uptake when colonized with the mycorrhizal fungus Hymenoscyphus ericae. New Phytologist, 2002, 155, 525-530.	3.5	43
170	Carbon flow in an upland grassland: effect of liming on the flux of recently photosynthesized carbon to rhizosphere soil. Global Change Biology, 2004, 10, 2100-2108.	4.2	43
171	Global Sourcing of Low-Inorganic Arsenic Rice Grain. Exposure and Health, 2020, 12, 711-719.	2.8	43
172	Edaphic factors affecting the toxicity and accumulation of arsenate in the earthworm <i>Lumbricus terrestris</i> . Environmental Toxicology and Chemistry, 1998, 17, 1124-1131.	2.2	41
173	Isotopic identification of the sources of lead contamination for white storks (Ciconia ciconia) in a marshland ecosystem (Doñana, S.W. Spain). Science of the Total Environment, 2002, 300, 81-86.	3.9	41
174	An Ecotoxicological Approach to Assessing the Impact of Tanning Industry Effluent on River Health. Archives of Environmental Contamination and Toxicology, 2006, 50, 316-324.	2.1	40
175	INHERITED RESISTANCE TO ARSENATE TOXICITY IN TWO POPULATIONS OF LUMBRICUS RUBELLUS. Environmental Toxicology and Chemistry, 2003, 22, 2344.	2.2	39
176	Essential and toxic elements in infant foods from Spain, UK, China and USA. Journal of Environmental Monitoring, 2012, 14, 2447.	2.1	39
177	Urinary excretion of arsenic following rice consumption. Environmental Pollution, 2014, 194, 181-187.	3.7	38
178	Characterization and dissolution properties of phytolith occluded phosphorus in rice straw. Soil and Tillage Research, 2017, 171, 19-24.	2.6	38
179	Dissolved organic matter differentially influences arsenic methylation and volatilization in paddy soils. Journal of Hazardous Materials, 2020, 388, 121795.	6.5	38
180	Arsenic speciation in the earthworms <i>Lumbricus rubellus</i> and <i>Dendrodrilus rubidus</i> . Environmental Toxicology and Chemistry, 2003, 22, 1302-1308.	2.2	37

#	Article	IF	CITATIONS
181	The distribution of arsenic in soils affected by the Aznalcóllar mine spill, SW Spain. Science of the Total Environment, 2004, 323, 137-152.	3.9	37
182	Metal levels in the bones and livers of globally threatened marbled teal and white-headed duck from El Hondo, Spain. Ecotoxicology and Environmental Safety, 2009, 72, 1-9.	2.9	37
183	Assessing the Legacy of Red Mud Pollution in a Shallow Freshwater Lake: Arsenic Accumulation and Speciation in Macrophytes. Environmental Science & Technology, 2016, 50, 9044-9052.	4.6	37
184	Small genetic differences between ericoid mycorrhizal fungi affect nitrogen uptake by <i>Vaccinium</i> . New Phytologist, 2009, 181, 708-718.	3.5	36
185	Arsenic speciation in Japanese rice drinks and condiments. Journal of Environmental Monitoring, 2009, 11, 1930.	2.1	36
186	Bioavailability of 2,4-Dichlorophenol Associated with Soil Water-Soluble Humic Material. Environmental Science & Technology, 2000, 34, 4721-4726.	4.6	35
187	Effects of phosphate on arsenate and arsenite sensitivity in two rice (Oryza sativa L.) cultivars of different sensitivity. Environmental and Experimental Botany, 2011, 72, 47-52.	2.0	35
188	Concentrations of urinary arsenic species in relation to rice and seafood consumption among children living in Spain. Environmental Research, 2017, 159, 69-75.	3.7	35
189	Polymorphism and physiology of arsenate tolerance in Holcus lanatus L. from an uncontaminated site. Plant and Soil, 1992, 146, 219-225.	1.8	34
190	Cable correction of membrane currents recorded from root hairs ofArabidopsis thalianaL Journal of Experimental Botany, 1994, 45, 1-6.	2.4	34
191	Bioavailability of atrazine to soil microbes in the presence of the earthworm Lumbricus terrestrius (L.). Soil Biology and Biochemistry, 1996, 28, 555-559.	4.2	34
192	Rice–arsenate interactions in hydroponics: a three-gene model for tolerance. Journal of Experimental Botany, 2008, 59, 2277-2284.	2.4	34
193	Inorganic arsenic removal in rice bran by percolating cooking water. Food Chemistry, 2017, 234, 76-80.	4.2	34
194	Levels of infants' urinary arsenic metabolites related to formula feeding and weaning with rice products exceeding the EU inorganic arsenic standard. PLoS ONE, 2017, 12, e0176923.	1.1	34
195	Phytolith content in Vietnamese paddy soils in relation to soil properties. Geoderma, 2019, 333, 200-213.	2.3	34
196	Title is missing!. Plant and Soil, 2000, 218/2, 31-42.	1.8	33
197	Infants' dietary arsenic exposure during transition to solid food. Scientific Reports, 2018, 8, 7114.	1.6	33
198	Assessment oflux-markedPseudomonas fluorescensfor reporting on organic carbon compounds. FEMS Microbiology Letters, 1999, 176, 79-83.	0.7	32

#	Article	IF	CITATIONS
199	Quantitative and Qualitative Trapping of Volatile Methylated Selenium Species Entrained through Nitric Acid. Environmental Science & Technology, 2010, 44, 382-387.	4.6	32
200	Characterizing Pb Mobilization from Upland Soils to Streams Using ²⁰⁶ Pb/ ²⁰⁷ Pb Isotopic Ratios. Environmental Science & Technology, 2010, 44, 243-249.	4.6	32
201	First comprehensive peat depositional records for tin, lead and copper associated with the antiquity of Europe's largest cassiterite deposits. Journal of Archaeological Science, 2012, 39, 717-727.	1.2	32
202	Perspective: City farming needs monitoring. Nature, 2016, 531, S60-S60.	13.7	32
203	Opportunities and Challenges for Dietary Arsenic Intervention. Environmental Health Perspectives, 2018, 126, 84503.	2.8	32
204	Inhibition of Microbial Methylation via <i>arsM</i> in the Rhizosphere: Arsenic Speciation in the Soil to Plant Continuum. Environmental Science & amp; Technology, 2019, 53, 3451-3463.	4.6	32
205	Flux and turnover of fixed carbon in soil microbial biomass of limed and unlimed plots of an upland grassland ecosystem. Environmental Microbiology, 2005, 7, 544-552.	1.8	31
206	Ancient manuring practices pollute arable soils at the St Kilda World Heritage Site, Scottish North Atlantic. Chemosphere, 2006, 64, 1818-1828.	4.2	31
207	Lead isotopes and lead shot ingestion in the globally threatened marbled teal (Marmaronetta) Tj ETQq1 1 0.78431 2006, 370, 416-424.	4 rgBT /O 3.9	Overlock 10 31
208	Spatial Heterogeneity and Kinetic Regulation of Arsenic Dynamics in Mangrove Sediments: The Sundarbans, Bangladesh. Environmental Science & Technology, 2012, 46, 8645-8652.	4.6	31
209	Arsenic mobilization from iron oxyhydroxides is regulated by organic matter carbon to nitrogen (C:N) ratio. Environment International, 2009, 35, 480-484.	4.8	30
210	Arsenic rich iron plaque on macrophyte roots – an ecotoxicological risk?. Environmental Pollution, 2009, 157, 946-954.	3.7	30
211	Poisoning from lead gunshot: still a threat to wild waterbirds in Britain. European Journal of Wildlife Research, 2013, 59, 195-204.	0.7	30
212	Urinary Arsenic Speciation in Children and Pregnant Women from Spain. Exposure and Health, 2017, 9, 105-111.	2.8	30
213	PRE-ADAPTATION OF YORKSHIRE FOG, <i>HOLCUS LANATUS</i> L. (POACEAE) TO ARSENATE TOLERANCE. Evolution; International Journal of Organic Evolution, 1993, 47, 313-316.	1.1	29
214	Arsenic geochemistry, transport mechanism in the soil–plant system, human and animal health issues. Environment International, 2009, 35, 453-454.	4.8	29
215	Arsenic Influence on Genetic Variation in Grain Trace-Element Nutrient Content in Bengal Delta Grown Rice. Environmental Science & Technology, 2010, 44, 8284-8288.	4.6	29
216	Arsenic Speciation and Localization in Horticultural Produce Grown in a Historically Impacted Mining Region. Environmental Science & amp; Technology, 2013, 47, 6164-6172.	4.6	29

#	Article	IF	CITATIONS
217	Conserved histidine of metal transporter At <scp>NRAMP</scp> 1 is crucial for optimal plant growth under manganese deficiency at chilling temperatures. New Phytologist, 2014, 202, 1173-1183.	3.5	29
218	Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing. Microbiome, 2018, 6, 48.	4.9	29
219	RESISTANCE TO COPPER TOXICITY IN POPULATIONS OF THE EARTHWORMS LUMBRICUS RUBELLUS AND DENDRODRILUS RUBIDUS FROM CONTAMINATED MINE WASTES. Environmental Toxicology and Chemistry, 2001, 20, 2336.	2.2	28
220	The legacy of past manuring practices on soil contamination in remote rural areas. Environment International, 2007, 33, 78-83.	4.8	27
221	Identification of an arsenic tolerant double mutant with a thiol-mediated component and increased arsenic tolerance in phyA mutants. Plant Journal, 2007, 49, 1064-1075.	2.8	26
222	Arsenic in Bangladeshi soils related to physiographic region, paddy management, and mirco- and maco- and macro-elemental status. Science of the Total Environment, 2017, 590-591, 406-415.	3.9	26
223	Toxicity of chlorobenzenes to a <i>lux</i> â€marked terrestrial bacterium, <i>Pseudomonas fluorescens</i> . Environmental Toxicology and Chemistry, 1998, 17, 2134-2140.	2.2	25
224	Biosensing 2,4-Dichlorophenol Toxicity during Biodegradation byBurkholderiasp. RASC c2 in Soil. Environmental Science & Technology, 1999, 33, 4086-4091.	4.6	25
225	Arsenic levels in the soils and macrophytes of the †Entremuros' after the Aznalcóllar mine spill. Environmental Pollution, 2005, 133, 129-138.	3.7	25
226	A tripartite microbial reporter gene system for real-time assays of soil nutrient status. FEMS Microbiology Letters, 2003, 220, 35-39.	0.7	24
227	Effects of Arsenic ontaminated Irrigation Water on Growth, Yield, and Nutrient Concentration in Rice. Communications in Soil Science and Plant Analysis, 2007, 39, 302-313.	0.6	23
228	Biovolatilization of Arsenic as Arsines from Seawater. Environmental Science & Technology, 2018, 52, 3968-3974.	4.6	23
229	The Distribution of Arsenic in the Body Tissues of Wood Mice and Bank Voles. Archives of Environmental Contamination and Toxicology, 2005, 49, 569-576.	2.1	22
230	PCB congener dynamics in a heavily industrialized river catchment. Science of the Total Environment, 2003, 314-316, 439-450.	3.9	21
231	Consistency of arsenic speciation in global tobacco products with implications for health and regulation. Tobacco Induced Diseases, 2014, 12, 24.	0.3	21
232	Heavy metals as markers for assessing environmental pollution from chemical warehouse and plastics fires. Chemosphere, 1995, 30, 1987-1994.	4.2	20
233	The effect of heating temperature on the properties of vermiculites from Tanzania with respect to potential agronomic applications. Applied Clay Science, 2009, 43, 376-382.	2.6	20
234	Low inorganic arsenic in hydrolysed rice formula used for cow's milk protein allergy. Pediatric Allergy and Immunology, 2018, 29, 561-563.	1.1	20

#	Article	IF	CITATIONS
235	Modifying the Parboiling of Rice to Remove Inorganic Arsenic, While Fortifying with Calcium. Environmental Science & Technology, 2019, 53, 5249-5255.	4.6	20
236	Fern, <i>Dicranopteris linearis,</i> derived phytoliths in soil: Morphotypes, solubility and content in relation to soil properties. European Journal of Soil Science, 2019, 70, 507-517.	1.8	20
237	Dilution of rice with other gluten free grains to lower inorganic arsenic in foods for young children in response to European Union regulations provides impetus to setting stricter standards. PLoS ONE, 2018, 13, e0194700.	1.1	20
238	Elemental distribution in developing rice grains and the effect of flag-leaf arsenate exposure. Environmental and Experimental Botany, 2018, 149, 51-58.	2.0	19
239	Source Identification of Trace Elements in Peri-urban Soils in Eastern China. Exposure and Health, 2019, 11, 195-207.	2.8	19
240	EDAPHIC FACTORS AFFECTING THE TOXICITY AND ACCUMULATION OF ARSENATE IN THE EARTHWORM LUMBRICUS TERRESTRIS. Environmental Toxicology and Chemistry, 1998, 17, 1124.	2.2	19
241	Physiographical variability in arsenic dynamics in Bangladeshi soils. Science of the Total Environment, 2018, 612, 1365-1372.	3.9	18
242	Arsenate sensitivity in ericoid and ectomycorrhizal fungi. Environmental Toxicology and Chemistry, 1999, 18, 1848-1855.	2.2	17
243	Carbon availability affects nitrogen source utilisation by Hymenoscyphus ericae. Mycological Research, 2005, 109, 469-477.	2.5	17
244	Temporal and Spatial Patterns in α- and γ-Hexachlorocyclohexane Concentrations in Industrially Contaminated Rivers. Environmental Science & Technology, 1999, 33, 2001-2006.	4.6	16
245	Quantitative Measurement of [Na+] and [K+] in Postmortem Human Brain Tissue Indicates Disturbances in Subjects with Alzheimer's Disease and Dementia with Lewy Bodies. Journal of Alzheimer's Disease, 2015, 44, 851-857.	1.2	16
246	lodine status of teenage girls on the island of Ireland. European Journal of Nutrition, 2020, 59, 1859-1867.	1.8	16
247	Concentration effects of 1,2â€dichlorobenzene on soil microbiology. Environmental Toxicology and Chemistry, 1999, 18, 1891-1898.	2.2	15
248	Phytolithâ€associated potassium in fern: characterization, dissolution properties and implications for slashâ€andâ€burn agriculture. Soil Use and Management, 2018, 34, 28-36.	2.6	15
249	The Pedosphere as a Sink, Source, and Record of Anthropogenic and Natural Arsenic Atmospheric Deposition. Environmental Science & Technology, 2021, 55, 7757-7769.	4.6	15
250	Regulation of Arsenic Mobility on Basaltic Glass Surfaces by Speciation and pH. Environmental Science & Technology, 2008, 42, 8816-8821.	4.6	14
251	Elevated Trimethylarsine Oxide and Inorganic Arsenic in Northern Hemisphere Summer Monsoonal Wet Deposition. Environmental Science & Technology, 2017, 51, 12210-12218.	4.6	14
252	Cross-colonization of Scots pine (Pinus sylvestris) seedlings by the ectomycorrhizal fungusPaxillus involutusin the presence of inhibitory levels of Cd and Zn. New Phytologist, 1999, 142, 141-149.	3.5	13

#	Article	IF	CITATIONS
253	Toxic effects of cadmium and zinc on ectomycorrhizal colonization of scots pine (<i>Pinus sylvestris) Tj ETQq1</i>	1 0. <u>78</u> 4314 2.2	rggT /Overic
254	A field and reactive transport model study of arsenic in a basaltic rock aquifer. Applied Geochemistry, 2011, 26, 553-564.	1.4	13
255	Biogeochemistry of Arsenic in Paddy Environments. , 2012, , 71-101.		13
256	Arsenic in Rice Grown in Low-Arsenic Environments in Bangladesh. Water Quality, Exposure, and Health, 2012, 4, 197-208.	1.5	13
257	Hydrogeochemistry and Arsenic Contamination of Groundwater in the Haor Basins of Bangladesh. Water Quality, Exposure, and Health, 2012, 4, 67-78.	1.5	13
258	Reducing the cadmium, inorganic arsenic and dimethylarsinic acid content of rice through food-safe chemical cooking pre-treatment. Food Chemistry, 2021, 338, 127842.	4.2	13
259	Land use history of Village Bay, Hirta, St Kilda World Heritage Site: A palynological investigation of plaggen soils. Review of Palaeobotany and Palynology, 2009, 153, 46-61.	0.8	12
260	Fine-mapping of genes determining extrafusal fiber properties in murine soleus muscle. Physiological Genomics, 2017, 49, 141-150.	1.0	12
261	Maritime Deposition of Organic and Inorganic Arsenic. Environmental Science & Technology, 2019, 53, 7288-7295.	4.6	12
262	Arsenic dynamics in paddy soil under traditional manuring practices in Bangladesh. Environmental Pollution, 2021, 268, 115821.	3.7	12
263	Identification of arsenic species in sheep-wool extracts by different chromatographic methods. Applied Organometallic Chemistry, 2003, 17, 684-692.	1.7	11
264	Degradation of tetracyclines in manure-amended soil and their uptake by litchi (Litchi chinensis) Tj ETQq0 0 0 rg	;BT <u>/O</u> verloo	ck 10 Tf 50 3
265	Arsenic is not stored as arsenite - phytochelatin complexes in the seaweeds Fucus spiralis and Hizikia fusiforme. Environmental Chemistry, 2011, 8, 30.	0.7	11
266	Dioxin and furan residues in wood mice (Apodemus sylvaticus) following a large scale polyvinyl chloride (PVC) fire. Environmental Pollution, 1997, 97, 213-220.	3.7	10
267	The potential for kelp manufacture to lead to arsenic pollution of remote Scottish islands. Chemosphere, 2006, 65, 332-342.	4.2	10
268	TOXICITY OF CHLOROBENZENES TO A LUX-MARKED TERRESTRIAL BACTERIUM, PSEUDOMONAS FLUORESCENS. Environmental Toxicology and Chemistry, 1998, 17, 2134.	2.2	10
269	TOXIC EFFECTS OF CADMIUM AND ZINC ON ECTOMYCORRHIZAL COLONIZATION OF SCOTS PINE (PINUS) TJ E	TQq1 1 0.7 2.2	84314 rgBT
270	Embedded Health Risk from Arsenic in Globally Traded Rice. Environmental Science & Technology, 2022, 56, 6415-6425.	4.6	10

#	Article	IF	CITATIONS
271	Pre-Adaptation of Yorkshire Fog, Holcus lanatus L. (Poaceae) to Arsenate Tolerance. Evolution; International Journal of Organic Evolution, 1993, 47, 313.	1.1	9
272	Levels of Arsenic and Other Trace Elements in Southern Libyan Agricultural Irrigated Soil and Non-irrigated Soil Projects. Water Quality, Exposure, and Health, 2011, 3, 79-90.	1.5	9
273	Effect of phosphorus on arsenic uptake and metabolism in rice cultivars differing in phosphorus use efficiency and response. Anais Da Academia Brasileira De Ciencias, 2017, 89, 163-174.	0.3	9
274	Soil attribute regulates assimilation of roxarsone metabolites by rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 2019, 184, 109660.	2.9	9
275	Quantitative Structure-Toxicity Relationships for Halobenzenes in Two Species of Bioluminescent Bacteria, <i>Pseudomonas fluorescens</i> and <i>Vibrio fischeri</i> , Using an Atom-Centered Semi-Empirical Molecular-Orbital Based Model. SAR and QSAR in Environmental Research, 1999, 10, 17-38.	1.0	8
276	Interactions between soil, toxicant, and a <i>lux</i> â€marked bacterium during solid phase–contact toxicity testing. Environmental Toxicology and Chemistry, 2000, 19, 1247-1252.	2.2	8
277	Ecotoxicological screening of Kenyan tannery dust using a luminescent-based bacterial biosensor. International Journal of Environmental Health Research, 2006, 16, 47-58.	1.3	8
278	Variations in Concentrations of Arsenic and Other Potentially Toxic Elements in Mine and Paddy Soils and Irrigation Waters from Southern Ghana. Water Quality, Exposure, and Health, 2010, 2, 115-124.	1.5	8
279	Protecting global soil resources for ecosystem services. Ecosystem Health and Sustainability, 2015, 1, 1-4.	1.5	8
280	ASSESSMENT OF TOXICOLOGICAL INTERACTIONS OF BENZENE AND ITS PRIMARY DEGRADATION PRODUCTS (CATECHOL AND PHENOL) USING A lux-MODIFIED BACTERIAL BIOASSAY. Environmental Toxicology and Chemistry, 1997, 16, 849.	2.2	8
281	The potential for utilizing mycorrhizal associations in soil bioremediation. , 2001, , 445-455.		7
282	Feed-derived iodine overrides environmental contribution to cow milk. Journal of Dairy Science, 2020, 103, 6930-6939.	1.4	7
283	INTERACTIONS BETWEEN SOIL, TOXICANT, AND A lux-MARKED BACTERIUM DURING SOLID PHASE–CONTACT TOXICITY TESTING. Environmental Toxicology and Chemistry, 2000, 19, 1247.	2.2	7
284	Milling plant and soil material in plastic tubes over-estimates carbon and under-estimates nitrogen concentrations. Plant and Soil, 2013, 369, 509-513.	1.8	6
285	Traitâ€directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorus nutrition/arsenate tolerance in a wild grass, H olcus lanatus. New Phytologist, 2014, 201, 144-154.	3.5	6
286	Risk from Arsenic in Rice Grain. , 2012, , 31-50.		6
287	Industrial accidents involving release of chemicals into the environment: Ecotoxicology. Environmental Technology (United Kingdom), 1994, 15, 1041-1050.	1.2	5
288	Response of soil microbial biomass to 1,2â€dichlorobenzene addition in the presence of plant residues. Environmental Toxicology and Chemistry, 1998, 17, 1462-1468.	2.2	5

#	Article	IF	CITATIONS
289	Assessing the occupational risk of dust particles in the Kenyan tanning industry using rapid image processing and microscopy techniques. International Journal of Environmental Health Research, 2005, 15, 53-62.	1.3	5
290	Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. Plant Ecophysiology, 2005, , 163-174.	1.5	5
291	Mineralogical and chemical characterization of some vermiculites from the Mozambique Belt of Tanzania for agricultural use. Clay Minerals, 2009, 44, 1-17.	0.2	5
292	Validating the use of intrinsic markers in body feathers to identify inter-individual differences in non-breeding areas of northern fulmars. Marine Biology, 2016, 163, 64.	0.7	5
293	Water Dilutes and Alcohol Concentrates Urinary Arsenic Species When Food is the Dominant Source of Exposure. Exposure and Health, 2020, 12, 699-710.	2.8	5
294	Trace Elements and Arsenic Speciation of Field and Market Rice Samples in contrasting Agro-climatic Zones in Sri Lanka. Exposure and Health, 2023, 15, 133-144.	2.8	5
295	Comment on "Effects of Arsenite during Fetal Development on Energy Metabolism and Susceptibility to Diet-Induced Fatty Liver Diseases in Male Mice―and "Mechanisms Underlying Latent Disease Risk Associated with Early-Life Arsenic Exposure: Current Trends and Scientific Gaps― Environmental Health Perspectives, 2016, 124, A99.	2.8	4
296	Avoiding Rice-Based Cadmium and Inorganic Arsenic in Infant Diets Through Selection of Products Low in Concentration of These Contaminants. Exposure and Health, 2021, 13, 229-235.	2.8	4
297	The Physiology of Arsenic in Rice. , 2012, , 103-138.		4
298	The fate of 14C-naphthalene in soil microcosms containing Scots pine seedlings and enchytraeids. Soil Biology and Biochemistry, 2007, 39, 560-566.	4.2	3
299	Response to the Comment by Van Geen and Duxbury. Environmental Science & Technology, 2009, 43, 3972-3973.	4.6	3
300	A balanced polymorphism in biomass resource allocation controlled by phosphate in grasses screened through arsenate tolerance. Environmental and Experimental Botany, 2013, 96, 43-51.	2.0	3
301	Exposure & Health. Exposure and Health, 2016, 8, 1-1.	2.8	3
302	Geochemical variability in the soils of Bangladesh as affected by sources of irrigation water and inundation land types. SN Applied Sciences, 2021, 3, 1.	1.5	3
303	Strategies for Producing Low Arsenic Rice. , 2012, , 139-151.		3
304	Quantitative Structure-Toxicity Relationships for Chlorophenols to Bioluminescent <i>Lux</i> -Marked Bacteria Using Atom-Based Semi-Empirical Molecular-Orbital Descriptors. SAR and QSAR in Environmental Research, 1999, 10, 473-495.	1.0	2
305	Enchytraeid worms retard polycyclic aromatic hydrocarbon degradation in a coniferous forest soil. Soil Biology and Biochemistry, 2005, 37, 27-34.	4.2	2
306	Cobalamin Concentrations in Fetal Liver Show Gender Differences: A Result from Using a High-Pressure Liquid Chromatography–Inductively Coupled Plasma Mass Spectrometry as an Ultratrace Cobalt Speciation Method. Analytical Chemistry, 2016, 88, 12419-12426.	3.2	2

#	Article	IF	CITATIONS
307	Accessory Minerals and Potentially Toxic Elements in Tanzanian Vermiculites with Respect to Agricultural Applications. Communications in Soil Science and Plant Analysis, 2011, 42, 1123-1142.	0.6	1
308	CONCENTRATION EFFECTS OF 1,2-DICHLOROBENZENE ON SOIL MICROBIOLOGY. Environmental Toxicology and Chemistry, 1999, 18, 1891.	2.2	1
309	Impacts of Gold Mining on Rice Production in the Anum Valley of Ghana. Agricultural Sciences, 2014, 05, 793-804.	0.2	1
310	Iodine status on the Island of Ireland. Endocrine Abstracts, 0, , .	0.0	1
311	Ectomycorrhizas and Copper Toxicity. Mycological Research, 2005, 109, 2.	2.5	0
312	Elevated copper in urine of Bangladeshi ethnic group living in the United Kingdom. Biomedical Spectroscopy and Imaging, 2012, 1, 355-364.	1.2	0
313	Effect of heating vermiculites on extractability of phosphorus and some essential plant micronutrients. Clay Minerals, 2012, 47, 365-371.	0.2	0
314	Arsenic in Other Crops. , 2012, , 153-166.		0
315	Polymorphism and physiology of arsenate tolerance in Holcus lanatus L. from an uncontaminated site. , 1993, , 271-277.		0