
Frans J M Rietmeijer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8147500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>GEMS</scp> , hydrated chondritic <scp>IDP</scp> s, <scp>CI</scp> â€matrix material: Sources of water in 81P/comet Wild 2. Meteoritics and Planetary Science, 2019, 54, 259-266.	1.6	2
2	Energy dissipation at the silica glass/compressed aerogel interface: The fate of Wild 2 mineral grains and fragments smaller than ~100Ânm. Meteoritics and Planetary Science, 2016, 51, 1871-1885.	1.6	2
3	At the interface of silica glass and compressed silica aerogel in Stardust track 10: Comet Wild 2 is not a goldmine. Meteoritics and Planetary Science, 2016, 51, 574-583.	1.6	3
4	The smallest comet 81P/Wild 2 dust dances around the <scp>Cl</scp> composition. Meteoritics and Planetary Science, 2015, 50, 1767-1789.	1.6	5
5	PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS. Astrophysical Journal, 2013, 771, 34.	4.5	8
6	The formation of Mg,Feâ€silicates by reactions between amorphous magnesiosilica smoke particles and metallic iron nanograins with implications for comet silicate origins. Meteoritics and Planetary Science, 2013, 48, 1823-1840.	1.6	6
7	An igneous fragment from cluster <scp>IDP</scp> L2011#21: An analog for the source of pyrrhotite and taenite in comet 81P/Wild 2 captured in Stardust aerogel. Meteoritics and Planetary Science, 2013, 48, 1427-1439.	1.6	3
8	A potentially new type of nonchondritic interplanetary dust particle with hematite, organic carbon, amorphous Na,Caâ€aluminosilicate, and FeOâ€spheres. Meteoritics and Planetary Science, 2012, 47, 248-261.	1.6	5
9	Nanoparticles That Are Out of This World. , 2012, , 329-360.		4
10	Understanding the mechanisms of formation of nanophase compounds from Stardust: Combined experimental and observational approach. Meteoritics and Planetary Science, 2011, 46, 1082-1096.	1.6	6
11	Deep metastable eutectic nanometer-scale particles in the MgO–Al2O3–SiO2 system. Journal of Nanoparticle Research, 2011, 13, 3149-3156.	1.9	2
12	THE IRRADIATION-INDUCED OLIVINE TO AMORPHOUS PYROXENE TRANSFORMATION PRESERVED IN AN INTERPLANETARY DUST PARTICLE. Astrophysical Journal, 2009, 705, 791-797.	4.5	20
13	A Metastable Aluminosilica Compound for Aluminum and Water Transport to the Upper Mantle. International Journal of Geophysics, 2009, 2009, 1-4.	1.1	1
14	Dust formation and evolution in a Ca-Fe-SiO-H2-O2vapour phase condensation experiment and astronomical implications. Monthly Notices of the Royal Astronomical Society, 2009, 396, 402-408.	4.4	8
15	Stardust glass: Indigenous and modified comet Wild 2 particles. Meteoritics and Planetary Science, 2009, 44, 1707-1715.	1.6	15
16	Chemical identification of comet 81P/Wild 2 dust after interacting with molten silica aerogel. Meteoritics and Planetary Science, 2009, 44, 1121-1132.	1.6	17
17	A cometary aggregate interplanetary dust particle as an analog for comet Wild 2 grain chemistry preserved in silicaâ€rich Stardust glass. Meteoritics and Planetary Science, 2009, 44, 1589-1609.	1.6	27
18	Natural Variations in Comet-Aggregate Meteoroid Compositions. Earth, Moon and Planets, 2008, 102, 461-471	0.6	3

FRANS J M RIETMEIJER

#	Article	IF	CITATIONS
19	Carbon in Meteoroids: Wild 2 Dust Analyses, IDPs and Cometary Dust Analogues. Earth, Moon and Planets, 2008, 102, 473-483.	0.6	8
20	A TEM study of thermally modified comet 81P/Wild 2 dust particles by interactions with the aerogel matrix during the Stardust capture process. Meteoritics and Planetary Science, 2008, 43, 97-120.	1.6	73
21	Origin and formation of iron silicide phases in the aerogel of the Stardust mission. Meteoritics and Planetary Science, 2008, 43, 121-134.	1.6	45
22	Comparing Wild 2 particles to chondrites and IDPs. Meteoritics and Planetary Science, 2008, 43, 261-272.	1.6	136
23	Understanding the comet Wild 2 mineralogy in samples from the Stardust mission. Powder Diffraction, 2008, 23, 74-80.	0.2	4
24	Carbon in Meteoroids: Wild 2 Dust Analyses, IDPs and Cometary Dust Analogues. , 2008, , 473-483.		0
25	Laboratory simulation of Mg-rich ferromagnesiosilica dust: The first building blocks of comet dust. Advances in Space Research, 2007, 39, 351-357.	2.6	4
26	The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. BioMetals, 2007, 20, 291-302.	4.1	56
27	Natural Variations in Comet-Aggregate Meteoroid Compositions. , 2007, , 461-471.		0
28	Comet 81P/Wild 2 Under a Microscope. Science, 2006, 314, 1711-1716.	12.6	848
29	Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust. Science, 2006, 314, 1731-1735.	12.6	200
30	Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples. Science, 2006, 314, 1735-1739.	12.6	589
31	Fullerenes and Nanodiamonds in Aggregate Interplanetary Dust and Carbonaceous Meteorites. , 2006, , 123-144.		2
32	INTERPLANETARY DUST AND CARBONACEOUS METEORITES: CONSTRAINTS ON POROSITY, MINERALOGY AND CHEMISTRY OF METEORS FROM RUBBLE-PILE PLANETESIMALS. Earth, Moon and Planets, 2006, 95, 321-338.	0.6	10
33	Deep metastable eutectic condensation in Al-Fe-SiO-H2-O2 vapors: Implications for natural Fe-aluminosilicates. American Mineralogist, 2006, 91, 1688-1698.	1.9	17
34	Natural C60 and Large Fullerenes: A Matter of Detection and Astrophysical Implications. , 2006, , 71-94.		2
35	Interplanetary Dust and Carbonaceous Meteorites: Constraints on Porosity, Mineralogy and Chemistry of Meteors from Rubble-Pile Planetesimals. , 2005, , 321-338.		5
36	Natural Carbynes, Including Chaoite, on Earth, in Meteorites, Comets, Circumstellar and Interstellar Dust. , 2005, , 339-370.		1

3

FRANS J M RIETMEIJER

#	Article	IF	CITATIONS
37	C60and Giant Fullerenes in Soot Condensed in Vapors with Variable C/H2Ratio. Fullerenes Nanotubes and Carbon Nanostructures, 2004, 12, 659-680.	2.1	19
38	Dynamic pyrometamorphism during atmospheric entry of large (˜10 micron) pyrrhotite fragments from cluster IDPs. Meteoritics and Planetary Science, 2004, 39, 1869-1887.	1.6	28
39	Laboratory hydration of condensed magnesiosilica smokes with implications for hydrated silicates in IDPs and comets. Meteoritics and Planetary Science, 2004, 39, 723-746.	1.6	37
40	Grain Sizes of Ejected Comet Dust. Condensed Dust Analogs, Interplanetary Dust Particles and Meteors. Astrophysics and Space Science Library, 2004, , 97-110.	2.7	10
41	Gas-to-solid condensation in a Mg–SiO–H2–O2 vapor: metastable eutectics in the MgO–SiO2 phase diagram. Physical Chemistry Chemical Physics, 2002, 4, 546-551.	2.8	40
42	Condensation processes in astrophysical environments: The composition and structure of cometary grains. Meteoritics and Planetary Science, 2002, 37, 1579-1590.	1.6	84
43	And just when you thought that the Leonid meteor storm held no more surprises: The 2001 storm. Meteoritics and Planetary Science, 2002, 37, 899-900.	1.6	1
44	Shower Meteoroids: Constraints From Interplanetary Dust Particles And Leonid Meteors. Earth, Moon and Planets, 2000, 88, 35-58.	0.6	27
45	Interrelationships among meteoric metals, meteors, interplanetary dust, micrometeorites, and meteorites. Meteoritics and Planetary Science, 2000, 35, 1025-1041.	1.6	76
46	Laboratory studies of silicate smokes: Analog studies of circumstellar materials. Journal of Geophysical Research, 2000, 105, 10387-10396.	3.3	53
47	Metastable eutectic equilibrium brought down to Earth. Eos, 2000, 81, 409.	0.1	12
48	Collected Extraterrestrial Materials: Constraints on Meteor and Fireball Compositions. , 2000, , 325-350.		6
49	Recognizing Leonid Meteoroids among the Collected Stratospheric Dust. , 2000, , 505-524.		3
50	Metastable Eutectic Condensation in a Mgâ€Feâ€SiOâ€H2â€O2Vapor: Analogs to Circumstellar Dust. Astrophysical Journal, 1999, 527, 395-404.	4.5	132
51	Metastable eutectic gas to solid condensation in the Al2O3–SiO2 system. Journal of Chemical Physics, 1999, 110, 4554-4558.	3.0	31
52	Leonid MAC Workshop 1999, April 12–15. Meteoritics and Planetary Science, 1999, 34, 495-495.	1.6	4
53	Metastable eutectic, gas to solid, condensation in the FeO–Fe2O3–SiO2 system. Physical Chemistry Chemical Physics, 1999, 1, 1511-1516.	2.8	40
54	Metastable non-stoichiometric diopside and Mg-wollastonite; an occurrence in an interplanetary dust particle. American Mineralogist, 1999, 84, 1883-1894.	1.9	25

FRANS J M RIETMEIJER

#	Article	IF	CITATIONS
55	Interstellar and Interplanetary Grains. Astrophysics and Space Science Library, 1999, , 143-182.	2.7	15
56	Sodium Tails of Comets: N[CLC]a[/CLC]/O and N[CLC]a[/CLC]/S[CLC]i[/CLC] Abundances in Interplanetary Dust Particles. Astrophysical Journal, 1999, 514, L125-L127.	4.5	20
57	Title is missing!. Earth, Moon and Planets, 1998, 80, 73-112.	0.6	20
58	Chapter 2. INTERPLANETARY DUST PARTICLES. , 1998, , 29-124.		64
59	Bismuth oxide nanoparticles in the stratosphere. Journal of Geophysical Research, 1997, 102, 6621-6627.	3.3	20
60	The ultrafine mineralogy of a molten interplanetary dust particle as an example of the quench regime of atmospheric entry heating. Meteoritics and Planetary Science, 1996, 31, 237-242.	1.6	26
61	CMâ€like interplanetary dust particles in lower stratosphere during 1989 October and 1991 June/July. Meteoritics and Planetary Science, 1996, 31, 278-288.	1.6	25
62	Cellular precipitates of iron oxide in olivine in a stratospheric interplanetary dust particle. Mineralogical Magazine, 1996, 60, 877-885.	1.4	12
63	Postâ€entry and volcanic contaminant abundances of zinc, copper, selenium, germanium and gallium in stratospheric micrometeorites. Meteoritics, 1995, 30, 33-41.	1.4	12
64	Nonequilibrium iron oxide formation in some low-mass post-asymptotic giant branch stars. Astrophysical Journal, 1992, 400, L39.	4.5	11
65	Sulfides and oxides in comets. Astrophysical Journal, 1988, 331, L137.	4.5	7
66	Mineralogy of chondritic interplanetary dust particles. Reviews of Geophysics, 1987, 25, 1527-1553.	23.0	128
67	A model for diagenesis in proto-planetary bodies. Nature, 1985, 313, 293-294.	27.8	62
68	Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials. Nature, 1985, 315, 733-736.	27.8	76
69	Layer silicates in a chondritic porous interplanetary dust particle. Journal of Geophysical Research, 1985, 90, 149-155.	3.3	29
70	Melting, ablation, and vapor phase condensation during atmospheric passage of the Bjurbole meteorite. Journal of Geophysical Research, 1984, 89, 8597.	3.3	8