William L Luyben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/814743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of Hammerstein models in identification of nonlinear systems. AICHE Journal, 1991, 37, 255-268.	1.8	423
2	Tuning PI controllers for integrator/dead time processes. Industrial & Engineering Chemistry Research, 1992, 31, 2625-2628.	1.8	355
3	Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers and Chemical Engineering, 2013, 50, 1-7.	2.0	195
4	Comparison of Extractive Distillation and Pressure-Swing Distillation for Acetoneâ^'Methanol Separation. Industrial & Engineering Chemistry Research, 2008, 47, 2696-2707.	1.8	192
5	Plantwide control design procedure. AICHE Journal, 1997, 43, 3161-3174.	1.8	173
6	Snowball effects in reactor/separator processes with recycle. Industrial & Engineering Chemistry Research, 1994, 33, 299-305.	1.8	167
7	New Control Structure for Divided-Wall Columns. Industrial & Engineering Chemistry Research, 2009, 48, 6034-6049.	1.8	156
8	Evaluation of criteria for selecting temperature control trays in distillation columns. Journal of Process Control, 2006, 16, 115-134.	1.7	142
9	Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column. Industrial & amp; Engineering Chemistry Research, 2000, 39, 3298-3307.	1.8	131
10	Temperature Control of the BTX Divided-Wall Column. Industrial & Engineering Chemistry Research, 2010, 49, 189-203.	1.8	121
11	Tuning Proportionalâ^'Integralâ^'Derivative Controllers for Integrator/Deadtime Processes. Industrial & Engineering Chemistry Research, 1996, 35, 3480-3483.	1.8	116
12	Design and Control of a Methanol Reactor/Column Process. Industrial & Engineering Chemistry Research, 2010, 49, 6150-6163.	1.8	116
13	Control of the Heterogeneous Azeotropic <i>n</i> -Butanol/Water Distillation System. Energy & Fuels, 2008, 22, 4249-4258.	2.5	114
14	Design and Control of a Fully Heat-Integrated Pressure-Swing Azeotropic Distillation System. Industrial & Engineering Chemistry Research, 2008, 47, 2681-2695.	1.8	99
15	Getting More Information from Relay-Feedback Tests. Industrial & Engineering Chemistry Research, 2001, 40, 4391-4402.	1.8	94
16	Comparative control study of ideal and methyl acetate reactive distillation. Chemical Engineering Science, 2002, 57, 5039-5050.	1.9	92
17	Control of a multiunit heterogeneous azeotropic distillation process. AICHE Journal, 2006, 52, 623-637.	1.8	87
18	Methane Conversion to Syngas for Gas-to-Liquids (GTL): Is Sustainable CO ₂ Reuse via Dry Methane Reforming (DMR) Cost Competitive with SMR and ATR Processes?. ACS Sustainable Chemistry and Engineering, 2015, 3, 2100-2111.	3.2	80

#	Article	IF	CITATIONS
19	Design and control of a two-column azeotropic distillation system. Industrial & Engineering Chemistry Process Design and Development, 1985, 24, 132-140.	0.6	74
20	Nonlinear dynamic matrix control for high-purity distillation columns. AICHE Journal, 1988, 34, 1287-1298.	1.8	72
21	Effect of Solvent on Controllability in Extractive Distillation. Industrial & Engineering Chemistry Research, 2008, 47, 4425-4439.	1.8	71
22	Simple Dynamic Gasifier Model That Runs in Aspen Dynamics. Industrial & Engineering Chemistry Research, 2008, 47, 7784-7792.	1.8	70
23	Control comparison of conventional and thermally coupled ternary extractive distillation processes. Chemical Engineering Research and Design, 2016, 106, 253-262.	2.7	67
24	Plantwide control for TAME production using reactive distillation. AICHE Journal, 2004, 50, 1462-1473.	1.8	66
25	Design and Control of the Dry Methane Reforming Process. Industrial & Engineering Chemistry Research, 2014, 53, 14423-14439.	1.8	65
26	Distillation column pressure selection. Separation and Purification Technology, 2016, 168, 62-67.	3.9	64
27	Plantwide control of an isopropyl alcohol dehydration process. AICHE Journal, 2006, 52, 2290-2296.	1.8	60
28	Control of a Column/Pervaporation Process for Separating the Ethanol/Water Azeotrope. Industrial & Engineering Chemistry Research, 2009, 48, 3484-3495.	1.8	60
29	Design and Control of a Complex Process Involving Two Reaction Steps, Three Distillation Columns, and Two Recycle Streams. Industrial & Engineering Chemistry Research, 1995, 34, 3885-3898.	1.8	58
30	Quantitative Comparison of Reactive Distillation with Conventional Multiunit Reactor/Column/Recycle Systems for Different Chemical Equilibrium Constants. Industrial & Engineering Chemistry Research, 2004, 43, 2493-2507.	1.8	58
31	Design and Control of the Cumene Process. Industrial & Engineering Chemistry Research, 2010, 49, 719-734.	1.8	58
32	Methanol/Trimethoxysilane Azeotrope Separation Using Pressure-Swing Distillation. Industrial & Engineering Chemistry Research, 2014, 53, 5590-5597.	1.8	58
33	Tuning Proportionalâ^'Integral Controllers for Processes with Both Inverse Response and Deadtime. Industrial & Engineering Chemistry Research, 2000, 39, 973-976.	1.8	57
34	Comparison of Two Types of Two-Temperature Control Structures for Reactive Distillation Columns. Industrial & Engineering Chemistry Research, 2005, 44, 4625-4640.	1.8	57
35	Economic and Dynamic Impact of the Use of Excess Reactant in Reactive Distillation Systems. Industrial & amp; Engineering Chemistry Research, 2000, 39, 2935-2946.	1.8	57
36	Steady-State Energy Conservation Aspects of Distillation Column Control System Design. Industrial & Engineering Chemistry Fundamentals, 1975, 14, 321-325.	0.7	56

#	Article	IF	CITATIONS
37	Comparison of Pressure-Swing and Extractive-Distillation Methods for Methanol-Recovery Systems in the TAME Reactive-Distillation Process. Industrial & Engineering Chemistry Research, 2005, 44, 5715-5725.	1.8	56
38	Design and Control of Conventional and Reactive Distillation Processes for the Production of Butyl Acetate. Industrial & Engineering Chemistry Research, 2004, 43, 8014-8025.	1.8	53
39	Effect of Derivative Algorithm and Tuning Selection on the PID Control of Dead-Time Processes. Industrial & Engineering Chemistry Research, 2001, 40, 3605-3611.	1.8	52
40	Control Study of Ethyl tert-Butyl Ether Reactive Distillation. Industrial & Engineering Chemistry Research, 2002, 41, 3784-3796.	1.8	52
41	Design and control of an olefin metathesis reactive distillation column. Chemical Engineering Science, 2002, 57, 715-733.	1.9	52
42	Integrated Gasification Combined Cycle Dynamic Model: H ₂ S Absorption/Stripping, Waterâ^`Gas Shift Reactors, and CO ₂ Absorption/Stripping. Industrial & Engineering Chemistry Research, 2010, 49, 4766-4781.	1.8	52
43	Control of a Heat-Integrated Pressure-Swing Distillation Process for the Separation of a Maximum-Boiling Azeotrope. Industrial & Engineering Chemistry Research, 2014, 53, 18042-18053.	1.8	49
44	Control of ethylene glycol reactive distillation column. AICHE Journal, 2002, 48, 905-908.	1.8	45
45	Design and control of the ethyl benzene process. AICHE Journal, 2011, 57, 655-670.	1.8	43
46	Design and control of a pressure-swing distillation process with vapor recompression. Chemical Engineering and Processing: Process Intensification, 2018, 123, 174-184.	1.8	43
47	Evaluation of a two-temperature control structure for a two-reactant/two-product type of reactive distillation column. Chemical Engineering Science, 2006, 61, 4432-4450.	1.9	42
48	Control of the Maximum-Boiling Acetone/Chloroform Azeotropic Distillation System. Industrial & Engineering Chemistry Research, 2008, 47, 6140-6149.	1.8	42
49	Control of parallel dry methane and steam methane reforming processes for Fischer–Tropsch syngas. Journal of Process Control, 2016, 39, 77-87.	1.7	42
50	Control of a triple-column pressure-swing distillation process. Separation and Purification Technology, 2017, 174, 232-244.	3.9	42
51	Evaluation of Plant-Wide Control Structures by Steady-State Disturbance Sensitivity Analysis. Industrial & Engineering Chemistry Research, 1995, 34, 2393-2405.	1.8	39
52	Design and Control Degrees of Freedom. Industrial & Engineering Chemistry Research, 1996, 35, 2204-2214.	1.8	39
53	Economic Optimum Design of the Heterogeneous Azeotropic Dehydration of Ethanol. Industrial & Engineering Chemistry Research, 2012, 51, 16427-16432.	1.8	39
54	Dynamic Disadvantages of Intensification in Inherently Safer Process Design. Industrial & Engineering Chemistry Research, 2004, 43, 384-396.	1.8	38

William L Luyben

#	Article	IF	CITATIONS
55	Control of an azeotropic DWC with vapor recompression. Chemical Engineering and Processing: Process Intensification, 2016, 109, 114-124.	1.8	38
56	Aspen Dynamics simulation of a middle-vessel batch distillation process. Journal of Process Control, 2015, 33, 49-59.	1.7	37
57	Control of heat-integrated extractive distillation processes. Computers and Chemical Engineering, 2018, 111, 267-277.	2.0	37
58	Economic Incentive for Intermittent Operation of Air Separation Plants with Variable Power Costs. Industrial & Engineering Chemistry Research, 2008, 47, 1132-1139.	1.8	35
59	Estimating refrigeration costs at cryogenic temperatures. Computers and Chemical Engineering, 2017, 103, 144-150.	2.0	35
60	Effect of Relative Volatility on the Quantitative Comparison of Reactive Distillation and Conventional Multi-unit Systems. Industrial & Engineering Chemistry Research, 2004, 43, 3151-3162.	1.8	34
61	Use of dynamic simulation for reactor safety analysis. Computers and Chemical Engineering, 2012, 40, 97-109.	2.0	34
62	Comparison of flowsheets for THF/water separation using pressure-swing distillation. Computers and Chemical Engineering, 2018, 115, 407-411.	2.0	34
63	Control of vapor recompression distillation columns. Industrial & Engineering Chemistry Research, 1990, 29, 59-71.	1.8	31
64	Capacity-Based Economic Approach for the Quantitative Assessment of Process Controllability during the Conceptual Design Stage. Industrial & Engineering Chemistry Research, 1995, 34, 3907-3915.	1.8	31
65	Steady-State and Dynamic Effects of Design Alternatives in Heat-Exchanger/Furnace/Reactor Processes. Industrial & Engineering Chemistry Research, 2000, 39, 3335-3346.	1.8	31
66	Design and Control of the Styrene Process. Industrial & Engineering Chemistry Research, 2011, 50, 1231-1246.	1.8	31
67	Design and control of coupled reactor/column systems—Part 1. A binary coupled reactor/rectifier system. Computers and Chemical Engineering, 1997, 21, 25-46.	2.0	30
68	Design and Control of Gas-Phase Reactor/Recycle Processes with Reversible Exothermic Reactions. Industrial & Engineering Chemistry Research, 2000, 39, 1529-1538.	1.8	29
69	Extensions of the Simultaneous Design of Gas-Phase Adiabatic Tubular Reactor Systems with Gas Recycle. Industrial & Engineering Chemistry Research, 2001, 40, 635-647.	1.8	29
70	Optimum Economic Design and Control of a Gas Permeation Membrane Coupled with the Hydrodealkylation (HDA) Process. Industrial & Engineering Chemistry Research, 2008, 47, 1221-1237.	1.8	29
71	Improved plantwide control structure for extractive divided-wall columns with vapor recompression. Chemical Engineering Research and Design, 2017, 123, 152-164.	2.7	29
72	Vapor split manipulation in extractive divided-wall distillation columns. Chemical Engineering and Processing: Process Intensification, 2018, 126, 132-140.	1.8	29

#	Article	IF	CITATIONS
73	Simple Regulatory Control of the Eastman Process. Industrial & Engineering Chemistry Research, 1996, 35, 3280-3289.	1.8	28
74	Analysis of Control Structures for Reaction/Separation/Recycle Processes with Second-Order Reactions. Industrial & amp; Engineering Chemistry Research, 1996, 35, 758-771.	1.8	28
75	Control of an Extractive Distillation System for the Separation of CO ₂ and Ethane in Enhanced Oil Recovery Processes. Industrial & Engineering Chemistry Research, 2013, 52, 10780-10787.	1.8	28
76	Design and control of a cryogenic multi-stage compression refrigeration process. Chemical Engineering Research and Design, 2017, 121, 360-367.	2.7	27
77	Sensitivity of distillation relative gain arrays to steady-state gains. Industrial & Engineering Chemistry Research, 1987, 26, 2076-2078.	1.8	26
78	Quantitative Assessment of Controllability during the Design of a Ternary System with Two Recycle Streams. Industrial & Engineering Chemistry Research, 1996, 35, 3470-3479.	1.8	26
79	Plantwide Control of a Hybrid Integrated Gasification Combined Cycle/Methanol Plant. Industrial & Engineering Chemistry Research, 2011, 50, 4579-4594.	1.8	25
80	External versus Internal Open-Loop Unstable Processes. Industrial & Engineering Chemistry Research, 1998, 37, 2713-2720.	1.8	24
81	Two-Stripper/Decanter Flowsheet for Methanol Recovery in the TAME Reactive-Distillation Process. Industrial & Engineering Chemistry Research, 2009, 48, 10532-10540.	1.8	24
82	Heat exchanger simulations involving phase changes. Computers and Chemical Engineering, 2014, 67, 133-136.	2.0	24
83	NGL Demethanizer Control. Industrial & amp; Engineering Chemistry Research, 2013, 52, 11626-11638.	1.8	23
84	Design and Control Comparison of Alternative Separation Methods for <i>n</i> â€Heptane/Isobutanol. Chemical Engineering and Technology, 2017, 40, 1895-1906.	0.9	23
85	Importance of pressure-selection in pressure-swing distillation. Computers and Chemical Engineering, 2021, 149, 107279.	2.0	23
86	Tuning Temperature Controllers on Openloop Unstable Reactors. Industrial & Engineering Chemistry Research, 1998, 37, 4322-4331.	1.8	22
87	Design and Control of a Methyl Acetate Process Using Carbonylation of Dimethyl Ether. Industrial & Engineering Chemistry Research, 2010, 49, 12224-12241.	1.8	21
88	Design and Control of the Butyl Acetate Process. Industrial & Engineering Chemistry Research, 2011, 50, 1247-1263.	1.8	21
89	Effect of Feed Composition on the Selection of Control Structures for High-Purity Binary Distillation. Industrial & Engineering Chemistry Research, 2005, 44, 7800-7813.	1.8	20
90	Optimum Design of a Column/Side Reactor Process. Industrial & Engineering Chemistry Research, 2007, 46, 5175-5185.	1.8	20

#	Article	IF	CITATIONS
91	Design and Control of the Acetone Process via Dehydrogenation of 2-Propanol. Industrial & Engineering Chemistry Research, 2011, 50, 1206-1218.	1.8	20
92	Control of a Train of Distillation Columns for the Separation of Natural Gas Liquid. Industrial & Engineering Chemistry Research, 2013, 52, 10741-10753.	1.8	20
93	Quantitative comparison of dynamic controllability between a reactive distillation column and a conventional multi-unit process. Computers and Chemical Engineering, 2008, 32, 1456-1470.	2.0	19
94	Series versus parallel reboilers in distillation columns. Chemical Engineering Research and Design, 2018, 133, 294-302.	2.7	18
95	Effect of number of fractionating trays on reactive distillation performance. AICHE Journal, 2000, 46, 2417-2425.	1.8	17
96	Compressor Heuristics for Conceptual Process Design. Industrial & Engineering Chemistry Research, 2011, 50, 13984-13989.	1.8	17
97	Design and Control of a Gas-Phase Adiabatic Tubular Reactor Process with Liquid Recycle. Industrial & Engineering Chemistry Research, 2001, 40, 3762-3774.	1.8	16
98	Effect of Design and Kinetic Parameters on the Control of Cooled Tubular Reactor Systems. Industrial & Engineering Chemistry Research, 2001, 40, 3623-3633.	1.8	16
99	Effect of the Chemical Equilibrium Constant on the Design of Reactive Distillation Columns. Industrial & Engineering Chemistry Research, 2004, 43, 3666-3671.	1.8	16
100	Design and control of coupled reactor/column systems—Part 2. More complex coupled reactor/column systems. Computers and Chemical Engineering, 1997, 21, 47-67.	2.0	15
101	Effect of Kinetic, Design, and Operating Parameters on Reactor Gain. Industrial & Engineering Chemistry Research, 2000, 39, 2384-2391.	1.8	15
102	Design and Control of Distillation Columns with Intermediate Reboilers. Industrial & Engineering Chemistry Research, 2004, 43, 8244-8250.	1.8	15
103	New Control Structure for Feed-Effluent Heat Exchanger/Reactor Systems. Industrial & Engineering Chemistry Research, 2012, 51, 8566-8574.	1.8	15
104	Design of Low-Frequency Compensators for Improvement of Plantwide Regulatory Performance. Industrial & Engineering Chemistry Research, 1997, 36, 5339-5347.	1.8	14
105	Design and control of coupled reactor/column systems—Part 3. A reactor/stripper with two columns and recycle. Computers and Chemical Engineering, 1997, 21, 69-86.	2.0	14
106	Control of Ternary Reactive Distillation Columns with and without Chemically Inert Components. Industrial & Engineering Chemistry Research, 2007, 46, 5576-5590.	1.8	14
107	Dynamic simulation of multi-effect evaporators. Chemical Engineering and Processing: Process Intensification, 2018, 131, 106-115.	1.8	14
108	Inherent Dynamic Problems with On-Demand Control Structures. Industrial & Engineering Chemistry Research, 1999, 38, 2315-2329.	1.8	13

#	Article	IF	CITATIONS
109	Inventory Control in Processes with Recycle. Industrial & Engineering Chemistry Research, 1997, 36, 706-716.	1.8	12
110	Design and Control of the Monoisopropylamine Process. Industrial & Engineering Chemistry Research, 2009, 48, 10551-10563.	1.8	12
111	Design and Control of an Autorefrigerated Alkylation Process. Industrial & Engineering Chemistry Research, 2009, 48, 11081-11093.	1.8	11
112	Economic trade-offs in acrylic acid reactor design. Computers and Chemical Engineering, 2016, 93, 118-127.	2.0	11
113	Energy management in distillation preheat systems. Chemical Engineering and Processing: Process Intensification, 2020, 156, 108074.	1.8	11
114	Atmospheric Pressure DBD Plasma Ammonia Synthesis and Separation Process Design and Environmental Impact Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 13233-13244.	3.2	11
115	Design of Cooled Tubular Reactor Systems. Industrial & Engineering Chemistry Research, 2001, 40, 5775-5783.	1.8	10
116	Guides for the Selection of Control Structures for Ternary Distillation Columns. Industrial & Engineering Chemistry Research, 2005, 44, 7113-7119.	1.8	10
117	Design and Control of a Modified Vinyl Acetate Monomer Process. Industrial & Engineering Chemistry Research, 2011, 50, 10136-10147.	1.8	10
118	Method for Assessing the Effect of Design Parameters on Controllability. Industrial & Engineering Chemistry Research, 1996, 35, 3484-3497.	1.8	9
119	Dynamic Model and Control Structures for a Hot-Gas Desulfurization Fluidized Process. Industrial & amp; Engineering Chemistry Research, 1999, 38, 4290-4298.	1.8	9
120	Dynamic Modeling and Control of a Hot-Gas Desulfurization Process with a Transport Desulfurizer. Industrial & Engineering Chemistry Research, 2001, 40, 1157-1167.	1.8	9
121	Alternative Control Structures for Distillation Columns with Partial Condensers. Industrial & Engineering Chemistry Research, 2004, 43, 6416-6429.	1.8	9
122	Design of a Petroleum Preflash Column. Energy & Fuels, 2012, 26, 1268-1274.	2.5	9
123	Impact of Reaction Activation Energy on Plantwide Control Structures in Adiabatic Tubular Reactor Systems. Industrial & Engineering Chemistry Research, 2000, 39, 2345-2354.	1.8	8
124	Unusual Control Structure for High Reflux Ratio Distillation Columns. Industrial & Engineering Chemistry Research, 2009, 48, 11048-11059.	1.8	8
125	Heuristic Design of Reaction/Separation Processes with Two Recycles. Industrial & Engineering Chemistry Research, 2011, 50, 4788-4795.	1.8	8
126	Control of a recuperative vapor- recompression air separation process. Journal of Process Control, 2016, 45, 55-64.	1.7	8

#	Article	IF	CITATIONS
127	High-pressure versus low-pressure auxiliary condensers in distillation vapor recompression. Computers and Chemical Engineering, 2019, 125, 427-433.	2.0	8
128	Refrigerant selection for different cryogenic temperatures. Computers and Chemical Engineering, 2019, 126, 241-248.	2.0	8
129	Control of a distillation column with side stripper and side rectifier. Chemical Engineering Research and Design, 2020, 161, 38-44.	2.7	8
130	Production Rate Changes in a Ternary Two-Recycle Process. Industrial & Engineering Chemistry Research, 1996, 35, 2198-2203.	1.8	7
131	Design and Control of Tubular Reactor Systems with Both Gas and Liquid Recycles. Industrial & Engineering Chemistry Research, 2001, 40, 4089-4101.	1.8	7
132	Dynamic Comparison of Alternative Tubular Reactor Systems. Industrial & Engineering Chemistry Research, 2004, 43, 1003-1029.	1.8	7
133	Chemical Process Engineering Principles of Combustion Turbines. Energy & Fuels, 2013, 27, 6316-6321.	2.5	7
134	Optimum Product Recovery in Chemical Process Design. Industrial & Engineering Chemistry Research, 2014, 53, 16044-16050.	1.8	7
135	Comparison of a conventional twoâ€column demethanizer/deethanizer configuration requiring refrigerated condensers with a nonconventional column/rectifier configuration. Journal of Chemical Technology and Biotechnology, 2016, 91, 1688-1696.	1.6	7
136	EFFECT OF RECYCLE ON CHEMICAL REACTOR CONTROLLABILITY. Chemical Engineering Communications, 1994, 128, 65-94.	1.5	6
137	Quantitative Comparison of Temperature Control of Reactors with Jacket Cooling or Internal Cooling Coils. Industrial & Engineering Chemistry Research, 2004, 43, 2691-2703.	1.8	6
138	Dynamic Control of a Column/Side-Reactor Process. Industrial & Engineering Chemistry Research, 2008, 47, 8704-8712.	1.8	6
139	Simplified plantwide control structure for the diethyl oxalate process. Computers and Chemical Engineering, 2019, 126, 451-464.	2.0	6
140	Dynamic simulation and control of a combustion turbine process for biogas derived methane. Computers and Chemical Engineering, 2021, 144, 107121.	2.0	6
141	Plantwide Design and Control of Processes with Inerts. 1. Light Inerts. Industrial & Engineering Chemistry Research, 1998, 37, 516-527.	1.8	5
142	Effect of Kinetic and Design Parameters on Ternary Reactive Distillation Columns. Industrial & Engineering Chemistry Research, 2007, 46, 6944-6952.	1.8	5
143	Design and control of dual condensers in distillation columns. Chemical Engineering and Processing: Process Intensification, 2013, 74, 106-114.	1.8	5
144	External Reset Feedback for Constrained Economic Process Operation. Industrial & Engineering Chemistry Research, 2013, 52, 9654-9664.	1.8	5

#	Article	IF	CITATIONS
145	Simple control structure for a compression purification process in an oxyâ€combustion power plant. AICHE Journal, 2015, 61, 1581-1588.	1.8	5
146	Dynamic Control of Liquid Biomass Digestate Distillation Combined with an Integrated Solar Concentrator Cycle for Sustainable Nitrogen Fertilizer Production. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	5
147	Plantwide Control of Continuous Multiproduct Processes:Â Three-Product Process. Industrial & Engineering Chemistry Research, 2003, 42, 2809-2825.	1.8	4
148	Optimum vacuum distillation pressure. Chemical Engineering and Processing: Process Intensification, 2022, 171, 108630.	1.8	4
149	Control of Outlet Temperature in Adiabatic Tubular Reactors. Industrial & Engineering Chemistry Research, 2000, 39, 1271-1278.	1.8	3
150	Mathematical Modeling and Control of a Multiboiler Steam Generation System. Industrial & Engineering Chemistry Research, 2004, 43, 1839-1852.	1.8	3
151	Quantitative comparison of alternative control schemes for air-cooled condensers. AICHE Journal, 2006, 52, 611-622.	1.8	3
152	Method for Evaluating Single-End Control of Distillation Columns. Industrial & Engineering Chemistry Research, 2009, 48, 10594-10603.	1.8	3
153	Control of an Isomerization Column/Reactor Process. Industrial & Engineering Chemistry Research, 2011, 50, 3382-3389.	1.8	3
154	Design and Control of a Cooled Ammonia Reactor. , 2012, , 273-292.		3
155	Decanter Anomaly. AICHE Journal, 2013, 59, 2088-2095.	1.8	3
156	Design and Control of Stacked-Column Distillation Systems. Industrial & Engineering Chemistry Research, 2014, 53, 13139-13145.	1.8	3
157	Effect of feed composition on cryogenic distillation precooling configurations. Computers and Chemical Engineering, 2018, 118, 261-267.	2.0	3
158	Design and control of distillation columns with inert venting. Computers and Chemical Engineering, 2020, 134, 106725.	2.0	3
159	An experimental study of the control of condensate subcooling in a vertical condenser. AICHE Journal, 1973, 19, 923-928.	1.8	2
160	Design of Rapid-Transition Multiproduct Processes. Industrial & Engineering Chemistry Research, 1996, 35, 2624-2631.	1.8	2
161	Plantwide Design and Control of Processes with Inerts. 2. Heavy Inerts. Industrial & Engineering Chemistry Research, 1998, 37, 528-534.	1.8	2
162	Plantwide Design and Control of Processes with Inerts. 3. Intermediate Inerts. Industrial & Engineering Chemistry Research, 1998, 37, 535-546.	1.8	2

#	ARTICLE	IF	CITATIONS
163	Plantwide Control of Continuous Multiproduct Processes:Â Two-Product Process. Industrial & Engineering Chemistry Research, 2003, 42, 1890-1904.	1.8	2
164	Turndown Control Structures for Distillation Columns. Industrial & Engineering Chemistry Research, 2010, 49, 12548-12559.	1.8	2
165	Feed-Stage Multiplicity in Multicomponent Distillation. Industrial & Engineering Chemistry Research, 2010, 49, 3980-3982.	1.8	2
166	A method for designing equal-area multi-effect evaporators. Chemical Engineering Research and Design, 2021, 170, 69-75.	2.7	2
167	Rebuttal to the Comments of Thomas J. McAvoy on "Simple Regulatory Control of the Eastman Process― Industrial & Engineering Chemistry Research, 1997, 36, 1954-1954.	1.8	1
168	Effect of Feed Impurity on the Design and Control of a Ternary Two-Recycle Process. Industrial & Engineering Chemistry Research, 1999, 38, 3430-3437.	1.8	1
169	Heuristics for Plantwide Control. , 2012, , 97-119.		1
170	Effect of Peak Temperature Limitations on the Design of Processes with Cooled Tubular Reactors. International Journal of Chemical Reactor Engineering, 2014, 12, 191-203.	0.6	1
171	Control structures for process piping systems. Chemical Engineering Research and Design, 2020, 162, 28-37.	2.7	1
172	Design and Control of Refrigerated-Purge Distillation Columns. Industrial & Engineering Chemistry Research, 2004, 43, 8133-8140.	1.8	0
173	Plantwide Control Problem For a Process With Three Distillation Columns and Two Recycle Streams. , 1995, , 269-273.		0