Nelson Thiffault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8147108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Living without herbicides in Québec (Canada): historical context, current strategy, research and challenges in forest vegetation management. European Journal of Forest Research, 2011, 130, 117-133.	2.5	79
3	Management of forest regeneration in boreal and temperate deer–forest systems: challenges, guidelines, and research gaps. Ecosphere, 2016, 7, e01488.	2.2	68
4	Conifer Regeneration After Experimental Shelterwood and Seed-Tree Treatments in Boreal Forests: Finding Silvicultural Alternatives. Frontiers in Plant Science, 2018, 9, 1145.	3.6	58
5	How climate change might affect tree regeneration following fire at northern latitudes: a review. New Forests, 2020, 51, 543-571.	1.7	54
6	The changing culture of silviculture. Forestry, 2022, 95, 143-152.	2.3	54
7	Black spruce seedlings in a Kalmia–Vaccinium association: microsite manipulation to explore interactions in the field. Canadian Journal of Forest Research, 2004, 34, 1657-1668.	1.7	53
8	Performance and physiology of large containerized and bare-root spruce seedlings in relation to scarification and competition in Qu�bec (Canada). Annals of Forest Science, 2003, 60, 645-655.	2.0	50
9	How to shift unproductive Kalmia angustifolia – Rhododendron groenlandicum heath to productive conifer plantation. Canadian Journal of Forest Research, 2006, 36, 2364-2376.	1.7	49
10	An Overview of The Efficacy of Vegetation Management Alternatives for Conifer Regeneration in Boreal Forests. Forestry Chronicle, 2011, 87, 175-200.	0.6	46
11	Silvicultural options to promote seedling establishment on Kalmia–Vaccinium-dominated sites. Scandinavian Journal of Forest Research, 2005, 20, 110-121.	1.4	40
12	Plant species diversity and composition along an experimental gradient of northern hardwood abundance in Picea mariana plantations. Forest Ecology and Management, 2004, 198, 209-221.	3.2	39
13	Régénération artificielle des pessières noires à éricacées : effets du scarifiage, de la fertilisation et du type de plants après 10 ans. Forestry Chronicle, 2004, 80, 141-149.	0.6	37
14	Social Concerns, Risk and The Acceptability of Forest Vegetation Management Alternatives: Insights for Managers. Forestry Chronicle, 2011, 87, 274-289.	0.6	34
15	Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Functional Ecology, 2019, 33, 1771-1784.	3.6	34
16	Kalmia removal increases nutrient supply and growth of black spruce seedlings: An effect fertilizer cannot emulate. Forest Ecology and Management, 2008, 256, 1780-1784.	3.2	32
17	Managing Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model. Forests, 2013, 4, 613-631.	2.1	31
18	Do position and species identity of neighbours matter in 8–15-year-old post harvest mesic stands in the boreal mixedwood?. Forest Ecology and Management, 2010, 260, 1124-1131.	3.2	30

#	Article	IF	CITATIONS
19	Issues and solutions for intensive plantation silviculture in a context of ecosystem management. Forestry Chronicle, 2014, 90, 748-762.	0.6	26
20	Amounts of logging residues affect planting microsites: A manipulative study across northern forest ecosystems. Forest Ecology and Management, 2014, 312, 203-215.	3.2	26
21	Structuring Effects of Deer in Boreal Forest Ecosystems. Advances in Ecology, 2014, 2014, 1-10.	0.5	24
22	Stock type in intensive silviculture: A (short) discussion about roots and size. Forestry Chronicle, 2004, 80, 463-468.	0.6	23
23	A multi-resolution satellite imagery approach for large area mapping of ericaceous shrubs in Northern Quebec, Canada. International Journal of Applied Earth Observation and Geoinformation, 2009, 11, 334-343.	2.8	23
24	The Biology of Canadian Weeds. 146. <i>Rhododendron groenlandicum</i> (Oeder) Kron and Judd. Canadian Journal of Plant Science, 2011, 91, 725-738.	0.9	21
25	Ericaceous shrubs affect black spruce physiology independently from inherent site fertility. Forest Ecology and Management, 2010, 260, 219-228.	3.2	20
26	Comparing large containerized and bareroot conifer stock on sites of contrasting vegetation composition in a non-herbicide scenario. New Forests, 2014, 45, 875-891.	1.7	19
27	Early performance of planted hybrid larch: effects of mechanical site preparation and planting depth. New Forests, 2015, 46, 319-337.	1.7	19
28	Phosphate-solubilizing bacteria isolated from ectomycorrhizal mycelium of <i>Picea glauca</i> are highly efficient at fluorapatite weathering. Botany, 2016, 94, 1183-1193.	1.0	18
29	Revisiting the Functional Zoning Concept under Climate Change to Expand the Portfolio of Adaptation Options. Forests, 2021, 12, 273.	2.1	18
30	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
31	Comparative physiological responses of Rhododendron groenlandicum and regenerating Picea mariana following partial canopy removal in northeastern Quebec, Canada. Canadian Journal of Forest Research, 2010, 40, 1791-1802.	1.7	17
32	Ecological drivers of post-fire regeneration in a recently managed boreal forest landscape of eastern Canada. Forest Ecology and Management, 2017, 399, 74-81.	3.2	17
33	Nine years of in situ soil warming and topography impact the temperature sensitivity and basal respiration rate of the forest floor in a Canadian boreal forest. PLoS ONE, 2019, 14, e0226909.	2.5	17
34	Mechanical site preparation: Key to microsite creation success on Clay Belt paludified sites. Forestry Chronicle, 2015, 91, 187-196.	0.6	17
35	Long-term black spruce plantation growth and structure after release and juvenile cleaning: A 24-year study. Forestry Chronicle, 2009, 85, 417-426.	0.6	16
36	Ecology and Traits of Plant Species that Compete with Boreal and Temperate Forest Conifers: An Overview of Available Information and its Use in Forest Management in Canada. Forestry Chronicle, 2011, 87, 161-174.	0.6	16

#	Article	IF	CITATIONS
37	Mitigating post-fire regeneration failure in boreal landscapes with reforestation and variable retention harvesting: At what cost?. Canadian Journal of Forest Research, 2022, 52, 568-581.	1.7	16
38	Stock type performance in addressing top-down and bottom-up factors for the restoration of indigenous trees. Forest Ecology and Management, 2013, 307, 333-340.	3.2	15
39	Silviculture and planted species interact to influence reforestation success on a <i>Kalmia</i> -dominated site – a 15-year study. Forestry Chronicle, 2010, 86, 234-242.	0.6	14
40	The Role of Aggregated Forest Harvest Residue in Soil Fertility, Plant Growth, and Pollination Services. Soil Science Society of America Journal, 2014, 78, S196.	2.2	14
41	Key ecosystem attributes and productivity of boreal stands 20 years after the onset of silviculture scenarios of increasing intensity. Forest Ecology and Management, 2017, 389, 404-416.	3.2	14
42	Washing procedure for mixedâ€bed ion exchange resin decontamination for in situ nutrient adsorption. Communications in Soil Science and Plant Analysis, 2000, 31, 543-546.	1.4	13
43	Effects of Mechanical Site Preparation on Microsite Availability and Growth of Planted Black Spruce in Canadian Paludified Forests. Forests, 2019, 10, 670.	2.1	13
44	Phenology-Based Mapping of an Alien Invasive Species Using Time Series of Multispectral Satellite Data: A Case-Study with Glossy Buckthorn in Québec, Canada. Remote Sensing, 2020, 12, 922.	4.0	13
45	The Relative Importance of Nitrogen vs. Moisture Stress May Drive Intraspecific Variations in the SLA-RGR Relationship: The Case of <i>Picea mariana</i> Seedlings. American Journal of Plant Sciences, 2013, 04, 1278-1284.	0.8	13
46	Initial distance to Kalmia angustifolia as a predictor of planted conifer growth. New Forests, 2012, 43, 849-868.	1.7	11
47	Enrichment planting of Picea glauca in boreal mixedwoods: can localized site preparation enhance early seedling survival and growth?. New Forests, 2013, 44, 533-546.	1.7	11
48	Deer browsing outweighs the effects of site preparation and mechanical release on balsam fir seedlings performance: Implications to forest management. Forest Ecology and Management, 2017, 405, 360-366.	3.2	11
49	Controlling Kalmia and reestablishing conifer dominance enhances soil fertility indicators in central Newfoundland, Canada. Canadian Journal of Forest Research, 2009, 39, 1270-1279.	1.7	10
50	Synthesis of Silviculture Options, Costs, and Consequences of Alternative Vegetation Management Practices Relevant to Boreal and Temperate Conifer Forests: Introduction. Forestry Chronicle, 2011, 87, 155-160.	0.6	10
51	Large Planting Stock Type and Mechanical Release Effects on the Establishment Success of <i>Picea glauca</i> Plantations in Quebec, Canada. International Journal of Forestry Research, 2012, 2012, 1-12.	0.8	10
52	Abundance and Impacts of Competing Species on Conifer Regeneration Following Careful Logging in the Eastern Canadian Boreal Forest. Forests, 2019, 10, 177.	2.1	10
53	Planted Picea mariana growth and nutrition as influenced by silviculture x nursery interactions on an ericaceous-dominated site. Silva Fennica, 2012, 46, .	1.3	10
54	Silviculture to sustain productivity in black spruce paludified forests. Forest Ecology and Management, 2016, 375, 172-181.	3.2	9

Nelson Thiffault

#	Article	IF	CITATIONS
55	Balsam fir stands of northeastern North America are resilient to spruce plantation. Forest Ecology and Management, 2019, 450, 117504.	3.2	9
56	Moose Browsing Tends Spruce Plantations More Efficiently Than a Single Mechanical Release. Forests, 2020, 11, 1138.	2.1	9
57	Role of green alder in boreal conifer growth: competitor or facilitator?. Facets, 2020, 5, 166-181.	2.4	9
58	Opportunities and limitations of thinning to increase resistance and resilience of trees and forests to global change. Forestry, 0, , .	2.3	9
59	Ecological gradients driving the distribution of four Ericaceae in boreal Quebec, Canada. Ecology and Evolution, 2015, 5, 1837-1853.	1.9	8
60	The Delphi method as an alternative to standard committee meetings to identify ecological issues for forest ecosystem-based management: A case study. Forestry Chronicle, 2016, 92, 453-464.	0.6	8
61	Mechanical site preparation and nurse plant facilitation for the restoration of subarctic forest ecosystems. Canadian Journal of Forest Research, 2017, 47, 926-934.	1.7	8
62	Root system origin and structure influence planting shock of black spruce seedlings in boreal microsites. Forest Ecology and Management, 2019, 433, 594-605.	3.2	8
63	Regional Climate, Edaphic Conditions and Establishment Substrates Interact to Influence Initial Growth of Black Spruce and Jack Pine Planted in the Boreal Forest. Forests, 2020, 11, 139.	2.1	8
64	Height growth stagnation of planted spruce in boreal mixedwoods: Importance of landscape, microsite, and growing-season frosts. Forest Ecology and Management, 2021, 479, 118533.	3.2	8
65	Above―and belowground drivers of intraspecific trait variability across subcontinental gradients for five ubiquitous forest plants in North America. Journal of Ecology, 2022, 110, 1590-1605.	4.0	8
66	Stabilité mécanique et caractéristiques racinaires de plants de fortes dimensions de Picea mariana produits en récipients ou à racines nues. Forestry Chronicle, 2010, 86, 469-476.	0.6	7
67	Does trait plasticity of three boreal nutrient-conserving species relate to their competitive ability?. Ecoscience, 2011, 18, 382-393.	1.4	7
68	Field Photosynthesis Measurements on Black Spruce (<i>Picea mariana</i>): Does Needle Age Matter?. Communications in Soil Science and Plant Analysis, 2011, 42, 2738-2750.	1.4	7
69	Large spruce seedling responses to the interacting effects of vegetation zone, competing vegetation dominance and year of mechanical release. Forestry, 2014, 87, 153-164.	2.3	7
70	Twenty-five years post-treatment conifer responses to silviculture on a <i>Kalmia</i> -dominated site in eastern Canada. Forestry Chronicle, 2017, 93, 161-170.	0.6	7
71	Contribution of adventitious vs initial roots to growth and physiology of black spruce seedlings. Physiologia Plantarum, 2019, 165, 29-38.	5.2	7
72	Managing plantation density through initial spacing and commercial thinning: yield results from a 60-year-old red pine spacing trial experiment. Canadian Journal of Forest Research, 2021, 51, 181-189.	1.7	7

#	Article	IF	CITATIONS
73	Precommercial Thinning of <i>Picea mariana</i> and <i>Pinus banksiana</i> : Impact of Treatment Timing and Competitors on Growth Response. Forest Science, 2017, 63, 62-70.	1.0	6
74	Intensive Mechanical Site Preparation to Establish Short Rotation Hybrid Poplar Plantations—A Case-Study in Québec, Canada. Forests, 2020, 11, 785.	2.1	6
75	POTENTIAL OF UAV BASED CONVERGENT PHOTOGRAMMETRY IN MONITORING REGENERATION STANDARDS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-1/W4, 281-285.	0.2	6
76	Canopy Nitrogen Addition and Soil Warming Affect Conifer Seedlings' Phenology but Have Limited Impact on Growth and Soil N Mineralization in Boreal Forests of Eastern Canada. Frontiers in Forests and Global Change, 2020, 3, .	2.3	5
77	Resilience of natural forests can jeopardize or enhance plantation productivity. Forest Ecology and Management, 2021, 482, 118872.	3.2	5
78	Biomass procurement in boreal forests affected by spruce budworm: effects on regeneration, costs, and carbon balance. Canadian Journal of Forest Research, 2021, 51, 1939-1952.	1.7	5
79	Resource availability and physiological response of black spruce to scarification in two climatic regions of Québec (Canada). Silva Fennica, 2020, 54, .	1.3	5
80	Enjeux et solutions pour la sylviculture intensive de plantations dans un contexte d'aménagement écosystémique. Forestry Chronicle, 2014, 90, 732-747.	0.6	4
81	Forest productivity after careful logging and fire in black spruce stands of the Canadian Clay Belt. Canadian Journal of Forest Research, 2016, 46, 783-793.	1.7	4
82	Trade-Offs among Release Treatments in Jack Pine Plantations: Twenty-Five Year Responses. Forests, 2021, 12, 370.	2.1	4
83	Modeling tolerant hardwood sapling density and occurrence probability in the Acadian forests of New Brunswick, Canada: Results 14 years after harvesting. Forestry Chronicle, 2021, 97, 204-218.	0.6	4
84	Can understory functional traits predict post-harvest forest productivity in boreal ecosystems?. Forest Ecology and Management, 2021, 495, 119375.	3.2	4
85	Issues and perspectives on the use of exotic species in the sustainable management of Canadian forests. Reforesta, 2016, , 261-280.	0.4	4
86	Towards the development of multifunctional molecular indicators combining soil biogeochemical and microbiological variables to predict the ecological integrity of silvicultural practices. Microbial Biotechnology, 2016, 9, 316-329.	4.2	3
87	Recovery of plant community functional traits following severe soil perturbation in plantations: a case-study. International Journal of Biodiversity Science, Ecosystem Services & Management, 2016, 12, 116-127.	2.9	3
88	Influence of Root System Characteristics on Black Spruce Seedling Responses to Limiting Conditions. Plants, 2019, 8, 70.	3.5	3
89	Ecological issues related to second-growth boreal forest management in eastern Quebec, Canada: Expert perspectives from a Delphi process. Forest Ecology and Management, 2020, 470-471, 118214.	3.2	3
90	Detecting Compensatory Growth in Silviculture Trials: Empirical Evidence From Three Case Studies Across Canada. Frontiers in Plant Science, 2022, 13, .	3.6	3

#	Article	IF	CITATIONS
91	Vegetation Management, Stock Type, and Scarification Effects on White Pine Weevil Incidence and Early Norway Spruce Growth in QuA©bec, Canada. Forest Science, 2015, 61, 966-972.	1.0	2
92	Short-term effects of organic matter scalping on the growth and nutrition of black spruce and jack pine seedlings planted in the boreal forest. Forestry Chronicle, 2016, 92, 221-231.	0.6	2
93	Complex impacts of logging residues on planted hybrid poplar seedlings in boreal ecosystems. New Forests, 2016, 47, 877-895.	1.7	2
94	Black spruce seedling growth response in controlled organic and organic-mineral substrates. Silva Fennica, 2019, 53, .	1.3	2
95	Legacy effects of precommercial thinning on the natural regeneration of next rotation balsam fir stands in eastern Canada. Silva Fennica, 2019, 53, .	1.3	2
96	Interactions entre le type de plants et la sylviculture dans la restauration de sapinières sous forte pression de broutement. Forestry Chronicle, 2019, 95, 29-38.	0.6	2
97	Manipulating forage and risk avoidance to increase white-tailed deer vulnerability to hunters. Wildlife Biology, 2020, 2020, .	1.4	2
98	Enhancing Forest Productivity, Value, and Health through Silviculture in a Changing World. Forests, 2021, 12, 1550.	2.1	2
99	Résultats d'un délai d'application du dégagement mécanique en plantations d'épinettes l noire dans un scénario de reboisement hâtif. Forestry Chronicle, 2018, 94, 183-194.	olanche et	1
100	Correction: Managing plantation density through initial spacing and commercial thinning: yield results from a 60-year-old red pine spacing trial experiment. Canadian Journal of Forest Research, 2021, 51, 879-879.	1.7	1
101	Early silvicultural guidelines for intensive management of hybrid larch plantations on fertile sub-boreal sites. Silva Fennica, 2017, 51, .	1.3	1
102	Mid- and long-term effects of stock type on the growth and yield of spruce seedlings in a non-herbicide scenario. Reforesta, 2018, , 60-70.	0.4	1
103	White spruce enrichment planting in boreal mixedwoods as influenced by localized site preparation: 11-year update. Forestry Chronicle, 2020, 96, 27-35.	0.6	1
104	Datasets of productivity and vegetation composition of boreal stands from an experiment comparing silviculture scenarios of increasing intensity after 20 years. Data in Brief, 2022, 43, 108387.	1.0	1
105	How to wreck your own presentation: Twelve tips to confuse an audience. Forestry Chronicle, 2005, 81, 498-501.	0.6	0
106	Bluejoint Is an Effective Bio-Barrier Species on Mine Covers. Journal of Environmental Quality, 2015, 44, 1791-1799.	2.0	0
107	Effets à court terme du décapage de la matière organique sur la croissance et la nutrition d'épinettes noires et de pins gris mis en terre en forêt boréale. Forestry Chronicle, 2016, 92, 210-220.	0.6	0
108	A conditional probability index to quantify the amplitude and the direction of spatiotemporal changes in communities. Ecosphere, 2017, 8, e01782.	2.2	0

#	Article	IF	CITATIONS
109	Effets comparatifs de la préparation mécanique du sol et de l'application répétée d'un phytoc chimique pour mątriser le nerprun et favoriser la croissance en plantations foresti̕res. Forestry Chronicle, 2018, 94, 68-74.	de 0.6	0
110	Exploring the potential of two-aged white spruce plantations for the production of sawlog volume with simulations using SORTIE-ND. Reforesta, 2020, , 11-24.	0.4	0
111	Biomass Procurement in Boreal Forests Affected by Spruce Budworm: Effects on Regeneration, Costs and Carbon Balance. SSRN Electronic Journal, 0, , .	0.4	0
112	Twenty-six years of aspen regeneration under varying light conditions in a boreal mixedwood forest. Forestry Chronicle, 2021, 97, 326-342.	0.6	0
113	Title is missing!. , 2019, 14, e0226909.		0
114	Title is missing!. , 2019, 14, e0226909.		0
115	Title is missing!. , 2019, 14, e0226909.		0
116	Title is missing!. , 2019, 14, e0226909.		0
117	Title is missing!. , 2019, 14, e0226909.		0
118	Title is missing!. , 2019, 14, e0226909.		0