Ashlie Martini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8147065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40, 3941.	18.7	5,132
2	Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554, 224-228.	13.7	970
3	A radiative cooling structural material. Science, 2019, 364, 760-763.	6.0	856
4	Solid Lubrication with MoS2: A Review. Lubricants, 2019, 7, 57.	1.2	320
5	Synergetic effects of surface texturing and solid lubricants to tailor friction and wear – A review. Tribology International, 2021, 155, 106792.	3.0	268
6	Speed Dependence of Atomic Stick-Slip Friction in Optimally Matched Experiments and Molecular Dynamics Simulations. Physical Review Letters, 2011, 106, 126101.	2.9	176
7	Molecular dynamics simulation of atomic friction: A review and guide. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	147
8	Thermal Expansion of Self-Organized and Shear-Oriented Cellulose Nanocrystal Films. Biomacromolecules, 2013, 14, 2900-2908.	2.6	146
9	Lubricious oxide coatings for extreme temperature applications: A review. Surface and Coatings Technology, 2014, 257, 266-277.	2.2	142
10	Emerging superlubricity: A review of the state of the art and perspectives on future research. Applied Physics Reviews, 2018, 5, .	5.5	138
11	Thermal Conductivity in Nanostructured Films: From Single Cellulose Nanocrystals to Bulk Films. Biomacromolecules, 2014, 15, 4096-4101.	2.6	119
12	Origin of Nanoscale Friction Contrast between Supported Graphene, MoS ₂ , and a Graphene/MoS ₂ Heterostructure. Nano Letters, 2019, 19, 5496-5505.	4.5	115
13	Tensile strength of lÎ ² crystalline cellulose predicted by molecular dynamics simulation. Cellulose, 2014, 21, 2233-2245.	2.4	112
14	Slip at High Shear Rates. Physical Review Letters, 2008, 100, 206001.	2.9	111
15	Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose, 2013, 20, 43-55.	2.4	110
16	Role of wrinkle height in friction variation with number of graphene layers. Journal of Applied Physics, 2012, 112, .	1.1	102
17	Mechanochemistry at Solid Surfaces: Polymerization of Adsorbed Molecules by Mechanical Shear at Tribological Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 3142-3148.	4.0	99
18	Adaptive NbN/Ag coatings for high temperature tribological applications. Surface and Coatings Technology, 2012, 206, 4316-4321.	2.2	98

#	Article	IF	CITATIONS
19	Review of Viscosity Modifier Lubricant Additives. Tribology Letters, 2018, 66, 1.	1.2	98
20	Molecular mechanisms of liquid slip. Journal of Fluid Mechanics, 2008, 600, 257-269.	1.4	96
21	Analytical Models for Atomic Friction. Tribology Letters, 2011, 44, 367-386.	1.2	92
22	Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology, 2013, 24, 375701.	1.3	87
23	Simulation of Sliding Wear in Mixed Lubrication. Journal of Tribology, 2007, 129, 544-552.	1.0	78
24	Dynamics of Atomic Stick-Slip Friction Examined with Atomic Force Microscopy and Atomistic Simulations at Overlapping Speeds. Physical Review Letters, 2015, 114, 146102.	2.9	78
25	Measuring and Understanding Contact Area at the Nanoscale: A Review. Applied Mechanics Reviews, 2017, 69, .	4.5	73
26	Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property. ACS Applied Materials & Interfaces, 2017, 9, 25038-25048.	4.0	70
27	Environmental dependence of atomic-scale friction at graphite surface steps. Physical Review B, 2013, 88, .	1.1	69
28	Shear-Induced Mechanochemistry: Pushing Molecules Around. Journal of Physical Chemistry C, 2015, 119, 7115-7123.	1.5	65
29	Friction Reduction in Mixed Lubrication. Tribology Letters, 2007, 28, 139-147.	1.2	63
30	Chemical and physical origins of friction on surfaces with atomic steps. Science Advances, 2019, 5, eaaw0513.	4.7	62
31	Surface amorphization of NiTi alloy induced by Ultrasonic Nanocrystal Surface Modification for improved mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 455-462.	1.5	60
32	Liquid Slip in Nanoscale Channels as a Rate Process. Physical Review Letters, 2007, 98, 226001.	2.9	58
33	Load-Dependent Friction Hysteresis on Graphene. ACS Nano, 2016, 10, 5161-5168.	7.3	56
34	Tribochemistry: A Review of Reactive Molecular Dynamics Simulations. Lubricants, 2020, 8, 44.	1.2	52
35	A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification. Materials Science and Engineering C, 2017, 78, 1061-1071.	3.8	49
36	Correlation Between Probe Shape and Atomic Friction Peaks at Graphite Step Edges. Tribology Letters, 2013, 50, 49-57.	1.2	47

#	Article	IF	CITATIONS
37	Effects of substrate surface roughness and nano/micro particle additive size on friction and wear in lubricated sliding. Tribology International, 2018, 119, 88-98.	3.0	47
38	Carbon Nanotube Chirality Determines Efficiency of Electron Transfer to Fullerene in All-Carbon Photovoltaics. Journal of Physical Chemistry Letters, 2013, 4, 2914-2918.	2.1	46
39	Effect of roughness on the layer-dependent friction of few-layer graphene. Physical Review B, 2017, 96,	1.1	46
40	Mechanochemical Association Reaction of Interfacial Molecules Driven by Shear. Langmuir, 2018, 34, 5971-5977.	1.6	46
41	Friction Anisotropy of MoS ₂ : Effect of Tip–Sample Contact Quality. Journal of Physical Chemistry Letters, 2020, 11, 6900-6906.	2.1	40
42	Rolling Contact Fatigue Performance of Vibro-Mechanical Textured Surfaces. Tribology Transactions, 2010, 53, 610-620.	1.1	37
43	Highly Oriented MoS2 Coatings: Tribology and Environmental Stability. Tribology Letters, 2016, 64, 1.	1.2	37
44	Rate theory description of atomic stick-slip friction. Physical Review B, 2010, 81, .	1.1	36
45	Nanoscale Friction Behavior of Transition-Metal Dichalcogenides: Role of the Chalcogenide. ACS Nano, 2020, 14, 16013-16021.	7.3	36
46	Atomic friction at exposed and buried graphite step edges: Experiments and simulations. Applied Physics Letters, 2015, 106, .	1.5	35
47	Recent progress on phosphonium-based room temperature ionic liquids: Synthesis, properties, tribological performances and applications. Tribology International, 2022, 167, 107331.	3.0	35
48	Low-Speed Atomistic Simulation of Stick–Slip Friction using Parallel Replica Dynamics. Tribology Letters, 2009, 36, 63-68.	1.2	34
49	Atomistic Simulation of the Load Dependence of Nanoscale Friction on Suspended and Supported Graphene. Langmuir, 2014, 30, 14707-14711.	1.6	33
50	(Ag,Cu)–Ta–O Ternaries As High-Temperature Solid-Lubricant Coatings. ACS Applied Materials & Interfaces, 2015, 7, 15422-15429.	4.0	32
51	Atomistic simulation of the effect of roughness on nanoscale wear. Computational Materials Science, 2015, 102, 208-212.	1.4	31
52	Effect of tip shape on atomic-friction at graphite step edges. Applied Physics Letters, 2013, 103, 081601.	1.5	30
53	Experiments and simulations of the humidity dependence of friction between nanoasperities and graphite: The role of interfacial contact quality. Physical Review Materials, 2018, 2, .	0.9	30
54	A Multilevel Model for Elastic-Plastic Contact Between a Sphere and a Flat Rough Surface. Journal of Tribology, 2009, 131, .	1.0	27

#	Article	IF	CITATIONS
55	In Situ Measurements of Boundary Film Formation Pathways and Kinetics: Dimethyl and Diethyl Disulfide on Copper. Tribology Letters, 2016, 62, 1.	1.2	27
56	Activation Volume in Shear-Driven Chemical Reactions. Tribology Letters, 2021, 69, 1.	1.2	27
57	Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose lβ. Computational Materials Science, 2015, 109, 330-340.	1.4	26
58	Thermal activation in atomic friction: revisiting the theoretical analysis. Journal of Physics Condensed Matter, 2012, 24, 265001.	0.7	24
59	Substituent Effects on the Thermal Decomposition of Phosphate Esters on Ferrous Surfaces. Journal of Physical Chemistry C, 2020, 124, 9852-9865.	1.5	24
60	Low molecular weight polymethacrylates as multi-functional lubricant additives. European Polymer Journal, 2018, 104, 39-44.	2.6	23
61	The Roles of Statics and Dynamics in Determining Transitions Between Atomic Friction Regimes. Tribology Letters, 2011, 42, 99-107.	1.2	22
62	Atomic Friction Modulation on the Reconstructed Au(111) Surface. Tribology Letters, 2011, 43, 369-378.	1.2	22
63	Friction, slip and structural inhomogeneity of the buried interface. Modelling and Simulation in Materials Science and Engineering, 2011, 19, 065003.	0.8	22
64	Development of a ReaxFF Force Field for Cu/S/C/H and Reactive MD Simulations of Methyl Thiolate Decomposition on Cu (100). Journal of Physical Chemistry B, 2018, 122, 888-896.	1.2	22
65	Strong and Superhydrophobic Wood with Aligned Cellulose Nanofibers as a Waterproof Structural Material ^{â€} . Chinese Journal of Chemistry, 2020, 38, 823-829.	2.6	21
66	Amorphization-assisted nanoscale wear during the running-in process. Wear, 2017, 370-371, 46-50.	1.5	20
67	Decomposition Mechanisms of Anti-wear Lubricant Additive Tricresyl Phosphate on Iron Surfaces Using DFT and Atomistic Thermodynamic Studies. Tribology Letters, 2018, 66, 1.	1.2	20
68	Hierarchical structures on nickel-titanium fabricated by ultrasonic nanocrystal surface modification. Materials Science and Engineering C, 2018, 93, 12-20.	3.8	20
69	Structure–stability relationships for graphene-wrapped fullerene-coated carbon nanotubes. Carbon, 2013, 61, 458-466.	5.4	19
70	Niâ€Đoped MoS ₂ Dry Film Lubricant Life. Advanced Materials Interfaces, 2020, 7, 2001109.	1.9	19
71	Chemical Basis of the Tribological Properties of AgTaO ₃ Crystal Surfaces. Journal of Physical Chemistry C, 2014, 118, 17577-17584.	1.5	18
72	Oscillatory motion in layered materials: graphene, boron nitride, and molybdenum disulfide. Nanotechnology, 2015, 26, 165701.	1.3	18

#	Article	IF	CITATIONS
73	Effect of Molecular-Scale Features on the Polymer Coil Size of Model Viscosity Index Improvers. Tribology Letters, 2016, 62, 1.	1.2	18
74	Statistical Analysis of Tri-Cresyl Phosphate Conversion on an Iron Oxide Surface Using Reactive Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2019, 123, 12886-12893.	1.5	18
75	Molecular Dynamics Simulation of the Stress–Strain Behavior of Polyamide Crystals. Macromolecules, 2021, 54, 8289-8302.	2.2	18
76	The role of fragility in EHL entrapment. Tribology International, 2010, 43, 277-282.	3.0	17
77	Prediction of subsurface stress in elastic perfectly plastic rough components. Tribology Letters, 2006, 23, 243-251.	1.2	16
78	Effect of molecular structure on liquid slip. Physical Review E, 2011, 84, 066311.	0.8	16
79	Atomistic Simulation of Frictional Sliding Between Cellulose IÎ ² Nanocrystals. Tribology Letters, 2013, 52, 395-405.	1.2	16
80	Substrate effect on electrical conductance at a nanoasperity-graphene contact. Carbon, 2018, 137, 118-124.	5.4	16
81	Origin of High Friction at Graphene Step Edges on Graphite. ACS Applied Materials & Interfaces, 2021, 13, 1895-1902.	4.0	16
82	Transient Three-Dimensional Solution for Thermoelastic Displacement Due to Surface Heating and Convective Cooling. Journal of Tribology, 2005, 127, 750-755.	1.0	15
83	Compressibility of Thin Film Lubricants Characterized Using Atomistic Simulation. Tribology Letters, 2010, 38, 33-38.	1.2	15
84	Molecular dynamics simulation of amplitude modulation atomic force microscopy. Nanotechnology, 2015, 26, 235705.	1.3	15
85	Effect of Atomic Corrugation on Adhesion and Friction: A Model Study with Graphene Step Edges. Journal of Physical Chemistry Letters, 2019, 10, 6455-6461.	2.1	15
86	Effects of laser shock peening on the corrosion behavior and biocompatibility of a nickel–titanium alloy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1854-1863.	1.6	15
87	Influence of Potential Shape on Constant-Force Atomic-Scale Sliding Friction Models. Tribology Letters, 2015, 60, 1.	1.2	14
88	Matching Atomistic Simulations and In Situ Experiments to Investigate the Mechanics of Nanoscale Contact. Tribology Letters, 2019, 67, 1.	1.2	14
89	Quantitative measurement of contact area and electron transport across platinum nanocontacts for scanning probe microscopy and electrical nanodevices. Nanotechnology, 2019, 30, 045705.	1.3	14
90	Effect of Temperature and Surface Roughness on the Tribological Behavior of Electric Motor Greases for Hybrid Bearing Materials. Lubricants, 2021, 9, 59.	1.2	14

#	Article	IF	CITATIONS
91	Size and load dependence of nanoscale electric contact resistance. Tribology International, 2014, 71, 109-113.	3.0	13
92	Mechanical characterization of diesel soot nanoparticles: <i>in situ</i> compression in a transmission electron microscope and simulations. Nanotechnology, 2018, 29, 085703.	1.3	13
93	Combined Experimental and Simulation Study of Amplitude Modulation Atomic Force Microscopy Measurements of Self-Assembled Monolayers in Water. Langmuir, 2018, 34, 9627-9633.	1.6	13
94	Thermal Decomposition of Tricresyl Phosphate on Ferrous Surfaces. Journal of Physical Chemistry C, 2021, 125, 5076-5087.	1.5	13
95	Model predictions of shear strain-induced ridge defects in graphene. Carbon, 2011, 49, 3571-3578.	5.4	12
96	Reinterpretation of velocity-dependent atomic friction: Influence of the inherent instrumental noise in friction force microscopes. Physical Review E, 2014, 90, 012125.	0.8	12
97	Structural and Chemical Evolution of the Near-Apex Region of an Atomic Force Microscope Tip Subject to Sliding. Tribology Letters, 2014, 53, 181-187.	1.2	12
98	Predicting Pressure–Viscosity Behavior from Ambient Viscosity and Compressibility: Challenges and Opportunities. Tribology Letters, 2015, 57, 1.	1.2	12
99	Trends in Thermoresponsive Behavior of Lipophilic Polymers. Industrial & Engineering Chemistry Research, 2016, 55, 12983-12990.	1.8	12
100	Reactive Molecular Dynamics Simulations of Thermal Film Growth from Di- <i>tert</i> butyl Disulfide on an Fe(100) surface. Langmuir, 2018, 34, 15681-15688.	1.6	12
101	Heat-, Load-, and Shear-Driven Reactions of Di- <i>tert</i> butyl Disulfide on Fe(100). Journal of Physical Chemistry C, 2019, 123, 19688-19692.	1.5	12
102	Synergistic effect of nanodiamonds on the adsorption of tricresyl phosphate on iron oxide surfaces. Applied Physics Letters, 2019, 114, .	1.5	12
103	Thermal decomposition of phosphonium salicylate and phosphonium benzoate ionic liquids. Journal of Molecular Liquids, 2022, 352, 118700.	2.3	12
104	Correlating Molecular Structure to the Behavior of Linear Styrene–Butadiene Viscosity Modifiers. Tribology Letters, 2017, 65, 1.	1.2	11
105	Atomistic simulations of contact area and conductance at nanoscale interfaces. Nanoscale, 2017, 9, 16852-16857.	2.8	11
106	Effect of Substrate Support on Dynamic Graphene/Metal Electrical Contacts. Micromachines, 2018, 9, 169.	1.4	11
107	Measurement of electrical contact resistance at nanoscale gold-graphite interfaces. Applied Physics Letters, 2019, 115, .	1.5	11
108	Reactive molecular dynamics simulations of thermal and shear-driven oligomerization. Applied Surface Science, 2022, 591, 153209.	3.1	11

#	Article	IF	CITATIONS
109	Effect of Ambient Chemistry on Friction at the Basal Plane of Graphite. ACS Applied Materials & Interfaces, 2019, 11, 40800-40807.	4.0	10
110	Understanding contact between platinum nanocontacts at low loads: The effect of reversible plasticity. Nanotechnology, 2019, 30, 035704.	1.3	10
111	Critical Shear Rate of Polymer-Enhanced Hydraulic Fluids. Lubricants, 2020, 8, 102.	1.2	10
112	Formation of MoS2 from elemental Mo and S using reactive molecular dynamics simulations. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 022201.	0.9	10
113	Calculation of single chain cellulose elasticity using fully atomistic modeling. Tappi Journal, 2011, 10, 37-42.	0.2	10
114	Suppression of atomic friction under cryogenic conditions: The role of athermal instability in AFM measurements. Europhysics Letters, 2012, 98, 16002.	0.7	9
115	Lubricant Chemistry and Rheology Effects on Hydraulic Motor Starting Efficiency. Tribology Transactions, 2012, 55, 549-557.	1.1	9
116	Nano-scale roughness effects on hysteresis in micro-scale adhesive contact. Tribology International, 2013, 58, 40-46.	3.0	9
117	Temporary and Permanent Viscosity Loss Correlated to Hydraulic System Performance. Tribology Transactions, 2018, 61, 901-910.	1.1	9
118	Thickening Mechanisms of Polyisobutylene in Polyalphaolefin. Tribology Letters, 2018, 66, 1.	1.2	9
119	Ambient and Nitrogen Environment Friction Data for Various Materials & Surface Treatments for Space Applications. Tribology Letters, 2021, 69, 1.	1.2	9
120	Confined fluid compressibility predicted using molecular dynamics simulation. Tribology International, 2011, 44, 330-335.	3.0	8
121	Stability and Structure of Nanometer-Thin Perfluoropolyether Films Using Molecular Simulations. Tribology Letters, 2014, 54, 119-127.	1.2	8
122	Tip convolution on HOPG surfaces measured in AM-AFM and interpreted using a combined experimental and simulation approach. Nanotechnology, 2017, 28, 025702.	1.3	8
123	Limiting Domain Size of MoS ₂ : Effects of Stoichiometry and Oxygen. Journal of Physical Chemistry C, 2020, 124, 27571-27579.	1.5	8
124	Review of Molecular Dynamics Simulations of Phosphonium Ionic Liquid Lubricants. Tribology Letters, 2022, 70, 1.	1.2	8
125	Effect of polymer structure and chemistry on viscosity index, thickening efficiency, and traction coefficient of lubricants. Journal of Molecular Liquids, 2022, 359, 119215.	2.3	8
126	Evaluation of Force Fields for Molecular Dynamics Simulations of Platinum in Bulk and Nanoparticle Forms. Journal of Chemical Theory and Computation, 2021, 17, 4486-4498.	2.3	7

#	Article	IF	CITATIONS
127	Platinum nanoparticle compression: Combining <i>in situ</i> TEM and atomistic modeling. Applied Physics Letters, 2022, 120, .	1.5	7
128	Measured and Predicted Static Friction for Real Rough Surfaces in Point Contact. Journal of Tribology, 2012, 134, .	1.0	6
129	Simulations of the effect of an oxide on contact area measurements from conductive atomic force microscopy. Nanoscale, 2019, 11, 1029-1036.	2.8	6
130	Identifying Physical and Chemical Contributions to Friction: A Comparative Study of Chemically Inert and Active Graphene Step Edges. ACS Applied Materials & amp; Interfaces, 2020, 12, 30007-30015.	4.0	6
131	Improving the reliability of conductive atomic force microscopy-based electrical contact resistance measurements. Nano Express, 2020, 1, 030023.	1.2	6
132	Atomistic simulation of frictional anisotropy on quasicrystal approximant surfaces. Physical Review B, 2016, 93, .	1.1	5
133	Filtration Effects on Foam Inhibitors and Optically Detected Oil Cleanliness. Tribology Transactions, 2017, 60, 1159-1164.	1.1	5
134	Friction Dependence on Surface Roughness for Castor Oil Lubricated NiTi Alloy Sliding on Steel. Tribology Transactions, 2018, 61, 1162-1166.	1.1	5
135	Quantifying the pressure-dependence of work of adhesion in silicon–diamond contacts. Applied Physics Letters, 2020, 116, .	1.5	5
136	Time-Dependent Electrical Contact Resistance at the Nanoscale. Tribology Letters, 2021, 69, 1.	1.2	5
137	Bifurcation of nanoscale thermolubric friction behavior for sliding on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow>. Physical Review Materials, 2021, 5, .</mml:math 	ⁱ 0.9	5
138	Simulation of Subnanometer Contrast in Dynamic Atomic Force Microscopy of Hydrophilic Alkanethiol Self-Assembled Monolayers in Water. Langmuir, 2020, 36, 2240-2246.	1.6	4
139	Protein High-Force Pulling Simulations Yield Low-Force Results. PLoS ONE, 2012, 7, e34781.	1.1	4
140	Flexible all-carbon photovoltaics with improved thermal stability. Journal of Solid State Chemistry, 2015, 224, 94-101.	1.4	3
141	Atomistic description of coupled thermal-mechanical stresses on a gold/HOPG nanocontact. Computational Materials Science, 2017, 130, 165-171.	1.4	3
142	Insights into dynamic sliding contacts from conductive atomic force microscopy. Nanoscale Advances, 2020, 2, 4117-4124.	2.2	3
143	Nanoscale Friction of Hydrophilic and Hydrophobic Self-Assembled Monolayers in Water. Tribology Letters, 2020, 68, 1.	1.2	3
144	Enhancement of a simplified model for maximum stress prediction. Tribology Letters, 2007, 27, 61-67.	1.2	2

#	Article	IF	CITATIONS
145	Viscosity Dependence of Static Friction in Lubricated Metallic Line Contacts. Tribology Transactions, 2011, 54, 333-340.	1.1	2
146	The role of roughness-induced damping in the oscillatory motion of bilayer graphene. Nanotechnology, 2014, 25, 425703.	1.3	2
147	Identification of the Shear Plane During Sliding of Solid Boundary Films: Potassium Chloride Films on Iron. Tribology Letters, 2016, 62, 1.	1.2	2
148	Grease Lubrication of Self-Mated 60NiTi Bearing Materials. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	2
149	Publishing Science in Tribology: The Past, Present and Future of Tribology Letters. Tribology Letters, 2021, 69, 1.	1.2	2
150	Effect of Aliphatic Chain Length on the Stress–Strain Response of Semiaromatic Polyamide Crystals. Macromolecules, 2022, 55, 5071-5079.	2.2	2
151	Comment on "A Note on the Two-Spring Tomlinson Model― Tribology Letters, 2012, 45, 225-226.	1.2	1
152	Progress in Tribology Through Integrated Simulations and Experiments. Tribology Letters, 2013, 50, 1-1.	1.2	1
153	Closure to "Discussion of â€~Measuring and Understanding Contact Area at the Nanoscale: A Review'― (Jacobs, T. D. B., and Ashlie Martini, A., 2017, ASME Appl. Mech. Rev., 69(6), p. 060802). Applied Mechanics Reviews, 2017, 69, .	4.5	1
154	Quantifying Varnish Removal Using Chemical Flushes. Tribology Transactions, 2018, 61, 1067-1073.	1.1	1
155	Effect of Ion Pair on Contact Angle for Phosphonium Ionic Liquids. Journal of Physical Chemistry B, 2022, 126, 4354-4363.	1.2	1
156	In situ Mechanical Testing of Contacts Between Nanoscale Bodies: Measuring the Load-dependence of Contact Area Microscopy and Microanalysis, 2017, 23, 746-747.	0.2	0
157	Simulations of Friction Anisotropy on Self-Assembled Monolayers in Water. Langmuir, 2022, 38, 6273-6280.	1.6	0